
Why no bugs? 

Marian Petre 

L
. 
S

h
y
a
m

a
l,
 c

c
-b

y
-2

.5
, 
h
tt

p
:/

/e
n
.w

ik
ip

e
d
ia

.o
rg

/w
ik

i/
F

ile
:B

u
g

_
a
g

g
re

g
a
ti
o
n
.j
p
g

 



D
o
u

g
 L

e
n

n
o

x
 



H
e
le

n
 S

h
a

rp
 



H
e
le

n
 S

h
a

rp
 



H
u
g

h
 R

o
b

in
s
o

n
 



S
tu

d
y
in

g
 P

ro
fe

s
s
io

n
a

l S
o

ft
w

a
re

 D
e

s
ig

n
 w

o
rk

s
h

o
p

 



M
a

x
 P

a
tt

e
 –

 R
e
fl
e

c
ti
o

n
 –

 T
e

 

P
a

p
a

 



M
a

rt
in

 K
a

lf
a

to
v
ic

: 
 M

O
B

O
T

  



some typical characteristics of scientific 

software development practices: 

• heavily iterative:  try it and see 

• requirements are not fully understood, either by 
the users or the developers 

• evolutionary:  requirements emerge as 
understanding of science and the software 
evolve 

• lack of testing, much less systematic testing 
procedures 

• little ‘community of practice’ 

• programming per se is not valued 

From empirical work by Judith Segal 



A model of scientists developing their own software 

 

Form a 

vague idea 

of what is 

needed 

Develop a 

piece of 

software 

Um – is this 

what I/we want? 

Modify/extend 

Decide 

it’ll do 
Does it 

seem to do 

what I 

expect? 

No 

Looks 

like it 
No 

Yes 

Judith Segal 



contexts vary … 

• developing one’s own thinking - using the code 

as a thought prompt 

• immediate solutions to problems at hand 

• developing a library of components – for use by 

a larger group 

• developing substantial models or simulations to 

be used by a community 

• developing infrastructure software for scientific 

facilities 



“Faster chips and more sophisticated algorithms 
aren’t enough—if we really want computational 
science to come into its own, we have to tackle 

the bottleneck between our ears.” 
 

       Greg Wilson 



Time to solution is determined by: 

how long it takes to 

write a program 

how long it takes that 

program to run 

human time machine time 

Every language makes a tradeoff 

between these 

Python 

MATLAB 

Java 

C# 

Fortran 

C 

Greg Wilson 

Software Carpentry 



experts can: 

• identify what is relevant and important and to ignore the 

unimportant;  

• match strategies to tasks;  

• recognise resonances across domains;  

• have and use strategies for dealing with intractable 

problems by recognising analogies or transforming them 

into simpler problems;  

• understand the consequences of design decisions, to 

encompass both abstraction and detail;  

• handle conflicts among constraints or principles.  



A
u

to
d

e
s
k
 



H
e
le

n
 S

h
a

rp
 



• ways to maintain the knowledge base 

• ways to change perspective 

• ways to expand the search space 
 

 

Many of their strategies concern  

expansion of the design space,  

not just convergence to a solution. 

disciplines of innovation 



T
D

I 
B

lo
g

 |
 D

e
s
ig

n
: 
 M

e
ts

e
rv

e
 E

n
t.

 



• understanding by breaking 

• leveraging insight 

• ecologies of bugs 

• tolerance within context 

• deferral 

tolerance of error 
 



domain knowledge  
 

Experts: 

• think hard about the problem domain – 

before constructing solutions 

• know where the domain knowledge resides 

in the program 

• recognise a change of purpose 

 

 



doing certain actions in the right order: 
 

e.g.: 

“Setting goals before taking action 

Understand problems before generating 

solutions 

Designing before writing design documents 

Validating designs before investing in code 

Steak before sizzle” 

 

John Schrag, Autodesk 
http://dux.typepad.com/dux/2009/07/values-in-software-design-practice-.html 



experts keep track of…  
 

 

• provisionality:  awareness of which decisions are 

firm, and which are exploratory 

• rationale:  why key decisions are made 

• provenance:  how a particular result came to be 

– with a trail in the code and output 

 



S
tu

d
y
in

g
 P

ro
fe

s
s
io

n
a

l S
o

ft
w

a
re

 D
e

s
ig

n
 w

o
rk

s
h

o
p

 



Experts use systematic practices … 

• testing, debugging, code reviews 

• daily discussions 

• building tools to suit practice 

• disciplines of innovation  

• tinkering, play, bricolage 

 

… that are socially embedded and reinforced 

• pair debugging 

• reliance on team to catch slips  
 freedom to experiment 

• rewarding success 

• roles related to skills 





reflective practice 

 
• systematic efforts to alter perspective 

• deliberate changes of representations, of 

paradigms 

• cultivating an awareness of alternatives 

• reviews of experience 

• tolerance for error 



why bother? 

Because … 

good practices can save you time and pain; 

bad practices can damage your science. 



“Sound methodology can empower and 

liberate the creative mind; it cannot 

inflame or inspire the drudge.”  

                                        (Fred Brooks) 


