

Technical Report RAL-TR-2012-022

Summary of space weather worstcase environments

M Hapgood, R Horne, D Kerridge, B Jones, P Cannon, K Ryden, M Gibbs, D Jackson, A Rodger, A Thomson, C Dyer, L Cander, A Senior

December 2012

©2012 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional copies of this report should be addressed to:

RAL Library STFC Rutherford Appleton Laboratory R61 Harwell Oxford Didcot OX11 0QX

Tel: +44(0)1235 445384 Fax: +44(0)1235 446403 email: <u>libraryral@stfc.ac.uk</u>

Science and Technology Facilities Council reports are available online at: <u>http://epubs.stfc.ac.uk</u>

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of information contained in any of their reports or in any communication about their tests or investigations.

Summary of space weather worst-case environments

Original version: 30 November 2010

Updated for publication: 18 December 2012

coordinated by Mike Hapgood (<u>mike.hapgood@stfc.ac.uk</u>) on behalf of the UK Space Environment Impacts Expert Group

Scope of this document

Space weather may be described as disturbances of the upper atmosphere and near-Earth space that disrupt a wide range of technological systems – and, in a few cases, poses a direct threat to human health. The systems at risk are very diverse and include power grids, many aspects of spacecraft and aircraft operations, many types of radio communications and control systems. This note lists a number of these different systems and outlines what we currently know of:

- The space weather environment parameters that best summarise the threat to those systems
- A reasonable worst case for those parameters, together the quality of the knowledge underpinning that estimate of the worst case and the formal provenance of that knowledge, e.g. in the peer reviewed literature.
- What can be done to improve the quality of that knowledge
- Other useful information

This information is presented in a series of tables below – with each table focusing on a specific class of space weather threat to each particular system.

Caveats

- 1. This summary has been assembled fairly quickly and has been subject to very limited peer review. It should be treated as a guide, but not yet a definitive document.
- 2. While this document provides separate descriptions of different space weather risks, it must be remembered that many of these different risks will present themselves close together in time. because they have a common origin in phenomena on the Sun. The associations between the different risks are illustrated in the figure at the end of this document.
- 3. This document focuses on the environmental aspects of space weather and does not discuss measures that can be taken to provide resilience against space weather, e.g. combined use of complementary technologies with different responses to space weather.

Contributors

Members of the UK Space Environment Impacts Expert Group: Mike Hapgood (RAL Space) (Chair), Richard Horne (BAS), David Kerridge (BGS), Bryn Jones (Solarmetrics), Paul Cannon (QinetiQ), Keith Ryden (QinetiQ), Mark Gibbs and David Jackson (Met Office)

With additional inputs from Alan Rodger (BAS), Alan Thomson (BGS), Clive Dyer (QinetiQ), Lili Cander (RAL Space) and Andrew Senior (Univ. Lancaster),

Summary of environments

Target risk:	Power grid
Environmental risk parameter:	Time rate of change of magnetic field (dB/dt),
	specified in nano-Tesla per minute). The UK magnetic
	field strength is around 50,000 nT for reference.
Rationale:	dB/dt is key driver in fundamental equation for
	geomagnetically induced currents (Waterman, 2007,
	Cagniard, 1953)
Suggested worst case:	5000 n1/min (single event)
Worst case duration	Single event of 1-2 minutes duration.
	\mathbf{J}
	Lesser spikes in dB/dl (1-2 minutes each) will be
	observed throughout the extreme event duration (nours to days). Magnitudes of $> 500 \text{ nT/min}$ have been
	correlated with enhanced risk to the UK grid
	(e.g. Erinmez et al. 2002)
Anticipated affacts	• Tripping of sefety systems potentially leading to
	• Tripping of safety systems potentially reading to regional outages or cascade failure of grid
	 Damage to a number of transformers, through
	transformer magnetic flux leakage
	 Transmission system voltage instability and
	voltage sag
	 Premature aging of transformers leading to
	decreased capacity in months/years following
	event.
Quality of case:	Kappeman paper: Based on single measurement of
	earth currents on railway circuit in central Sweden
	during May 1921. Calibrated by linear extrapolation
	from similar but smaller earth currents observed in
	Sweden during 2500 nT/min event in 1982.
	Thomson et al paper: Published extreme event
	statistical analysis of 1982-2010 digital magnetometer
	data from northern Europe.
Provenance:	Peer-reviewed papers by Kappenman (2006) and
	Thomson et al. (2011).
How to improve case quality:	Analysis of UK geomagnetic observatory data running
	from 1850s to 1982 (digitised paper records) and
	1983-2012 (measured digital data).
	Industry GIC measurements and their correlation with
	development and validation of models of the bazard
Other notes:	The largest recorded disturbance of the last 20 years
Giner noies:	rife fargest recorded disturbance of the fast 50 years
	1082 The largest UK disturbance was 1100 nT/min in
	March 1989

Target risk:	Satellite operations – power
Environmental risk parameter:	Solar energetic particle fluence (> 30 MeV)
Rationale:	Loss of electrical power from solar arrays is related to
	fluence accumulated over spacecraft time in space.
Suggested worst case:	$3 \times 10^{14} \text{ m}^{-2}$ (with energy spectrum possibly as in
	October 1989 or ESP model (Xapsos et al., 2000))
Worst case duration	Single event lasting a few days
Anticipated effects	Premature aging of spacecraft power systems leading
	to decreased capacity in years following event.
Quality of case:	This case was originally based on analysis of nitrate
	concentrations in ice cores to provide proxy data for
	SEP event fluences. Recent work by Wolff et al
	(2012) has shown that this method is flawed. Thus we
	lack data that can put a good upper bound on the worst
	case. We therefore refer to ECSS-E-ST-10-04C for our
	current worst case event which is based on
	extrapolating existing models.
Provenance:	ECSS-E-ST-10-04C standard. The original SEP event
	fluences were from a peer-reviewed paper by Shea et
	al. (2006)
How to improve case quality:	Examine how best to extrapolate from the direct
	observations of solar energetic particles that have been
	collected since 1968.
	Look for other sources of proxy, e.g. recent work by
	Miyake et al (2012) suggests that C^{14} can be used as a
	proxy for extreme events.
	Also to analyse event data using engineering
	approaches (model extrapolations)
Other notes:	Damage depends on spectrum and, for solar cells, is
	more severe for soft spectrum. Further investigation of
	models is needed.

Target risk:	Satellite operations – SEU/control
Environmental risk parameter:	Solar energetic particle flux and fluence (> 30 MeV)
Rationale:	The rate at which SEUs occur is proportional to this
	flux. Thus the frequency of service interruptions, and
	the size of operator workload, in any period will also
	rise and fall with this flux. The fluence over a day is
	useful guide to total number of problems to be
	expected.
Suggested worst case:	Flux .4.4 x 10^9 m ⁻² s ⁻¹
	1-day fluence: $1.9 \times 10^{14} \text{ m}^{-2}$
	(both with energy spectrum as in October 1989 or
	August 1972)
Worst case duration	1 day
Anticipated effects	High anomaly rates on spacecraft:
	• High workload by spacecraft operators to restore
	nominal spacecraft behaviour
	• Temporary reduction in capacity of spacecraft
	services
	• Some potential for permanent loss of sub-systems
	and of whole spacecraft.
Quality of case:	This case was originally based on analysis of nitrate
	concentrations in ice cores as discussed above. It
	therefore suffers from the flaws discussed there.
Provenance:	The original SEP event fluences are from a peer-
	reviewed paper by Shea et al. (2006)
How to improve case quality:	Improved understanding SEP events as discussed
	above.
Other notes:	Depends on energy spectrum of the particles. Probably
	most severe for intermediate hardness. Suggest use
	October 1989 or August 1972 to enable scaling from
	existing space standards- maybe by factor 4. Also need
	to assume worst case composition for heavy ions.

Target risk:	Satellite operations – internal charging
Environmental risk parameter:	Energetic electron flux (> 2 MeV)
Rationale:	These very energetic electrons penetrate deep inside spacecraft. Thus electrical charge can accumulate in dielectric (electrically insulating) materials. If this accumulation becomes too large, the dielectric will breakdown resulting in an electrical discharge. This
	generate false signals that cause the spacecraft to misbehave. The latter will drive up operator workload.
Suggested worst case:	For geosynchronous orbit (e.g. comsats) 24hr average electron flux > 1 x 10^5 cm ⁻² s ⁻¹ sr ⁻¹ For medium earth orbit (e.g. Galileo) 24hr average electron flux > 5 x 10^5 cm ⁻² s ⁻¹ sr ⁻¹ .
Worst case duration	1-2 days
Anticipated effects	 Permanent damage to spacecraft systems High anomaly rates on spacecraft: High workload by spacecraft operators to restore nominal spacecraft behaviour Temporary reduction in capacity of spacecraft services
Quality of case:	Preliminary survey of US data from geosynchronous orbit shows 1-5 min average fluxes of 1×10^5 cm ⁻² s ⁻¹ sr ⁻¹ rising to 1×10^6 cm ⁻² s ⁻¹ sr ⁻¹ during magnetic storms for a Dst index of -200 nT. The risk depends on the duration of the flux and the orbit type. Previous statistical analysis of limited data suggests a 24 hr average electron flux of 1×10^5 cm ⁻² s ⁻¹ sr ⁻¹ in geosynchronous orbit [Koons, 2001] and 5×10^5 cm ⁻² s ⁻¹ sr ⁻¹ in medium Earth orbit [O'Brien et al. 2007]. It is possible that these fluxes might be exceeded by up to a factor ten in an extreme storm based on theoretical considerations [Shprits, 2011] but this is a matter for on-going research.
Provenance:	Surveys of publicly available measurements. Analysis of Geo data [Koons, 2001] and other satellite data [O'Brien et al., 2007]
How to improve case quality:	Detailed survey of available datasets and of the published literature, especially new papers that address this issue.
Other notes:	Geosynchronous orbit lies near edge of the outer radiation belt, whereas medium Earth orbit lies in the heart of that belt, especially when enhanced. Thus there are strong reasons to expect a more dangerous environment in MEO than in GEO.

Target risk:	Satellite operations – surface charging
Environmental risk parameter:	Electron flux (1 to 100 keV)
Rationale:	The surfaces of objects in space always acquire some
	electrical charge. In strong sunlight, this is usually
	dominated by photoemission from the object, which
	stabilises the electrical potential at a few volts
	positive. But in regions of space containing hot
	plasmas, especially outside sunlight, the surface can
	go to a negative potential of several thousand volts. If
	this potential becomes too large it may trigger an
	electrical discharge. This can (a) damage systems on
	the spacecraft surface (e.g. solar arrays), and (b)
	generate false signals that cause the spacecraft to
	misbehave. The latter will drive up operator workload.
	Surface charging often occurs:
	• As a satellite passes out of eclipse into sunlight,
	due to change in currents to & from the spacecraft
	• During substorms which inject typically 1 – 100
	keV electrons across geosynchronous and medium
	Earth orbit, usually between midnight and dawn
	(O'Brien, 2009).
	 During intense aurora caused by 1-10 keV
	electrons which affects satellites in polar low Earth
	orbits crossing the auroral regions
	Surface charging is determined by the flux of electrons
	in the hot plasma in these regions.
Suggested worst case:	Typically a peak electron flux of 10° cm ⁻² sr ⁻¹ s ⁻¹ keV ⁻¹
	between $1 - 10$ keV [Fennel et al., 2001]
Worst case duration	Substorms causing plasma injections may last several
	mins after which the peak flux will decay. However,
	during active periods multiple substorms occur with an
	interval of one to a few hours between each substorm.
	Prolonged periods of multiple substorms can last for
A state to 1 CC set	10 days or more during high speed solar wind streams.
Anticipated effects	Permanent damage to spacecraft systems, particularly
	solar arrays.
	High morely rates on spacecraft, an erotory to restore
	• High workload by spacecraft operators to restore
	nominal spacecrait benaviour
	• Temporary reduction in capacity of spacecraft
Quality of aggar	Services
Quality of case:	Surveys of publicly available measurements.
Provenance:	Analysis of GEO data [Fennel et al., 2001]
now to improve case quality:	literature, consolid new popers that address the issue
Other notes:	merature, especially new papers that address the issue.
Other notes:	

Target risk:	Terrestrial Electronics
Environmental risk parameter:	Cosmic ray neutron flux (>10 MeV) at Earth's surface
Rationale:	Secondary neutrons are dominant source of single
	event effects below 60000 feet. The flux > 10 MeV is
	used in the standards but allowance must be made for
	lower energy neutrons, especially thermal.
Suggested worst case:	50-fold increase in surface radiation environment for
	high latitudes such as UK
Worst case duration	3 hours
Anticipated effects	Greatly enhanced error rates in unprotected digital
	electronic systems, burnout in HV devices
Quality of case:	This is based on observations of the radiation event of
	23 Feb 1956. May be 4 times greater for Carrington
	event. This gives $7 \times 10^7 \mathrm{m}^{-2}$,
Provenance:	Research note by Marsden et al (1956), Quenby and
	Webber (1959), Rishbeth, Shea and Smart(2009)
How to improve case quality:	
Other notes:	Feb 56 is hardest event observed (since observations
	commenced in 1942). The spectral hardness of
	Carrington event is not known and worst case
	assumption should be made. Duration is probably
	worst for short events that give high rates. Event
	durations are typically 3-12 hrs.

Target risk:	Wireless systems
Environmental risk parameter:	Solar radio flux
Rationale:	The Sun can produce strong bursts of radio noise over
	a wide range of frequencies from 10 MHz to 10 GHz.
	These bursts can interfere with wireless systems
	operating at these frequencies if the solar signal is
	stronger than the operational signal.
Suggested worst case:	10^{-17} to 10^{-16} W m ⁻² Hz ⁻¹ over a broad range of
	frequencies.
Worst case duration	1 hour
Anticipated effects	Loss of signal on wireless systems, especially GNSS
	and mobile phones. Impact on WiFi and short range
	control systems is unclear.
Quality of case:	Statistical studies show that radio bursts up to 10^{-17} W
	m^{-2} Hz ⁻¹ are fairly common. A burst of 10^{-16} W m ⁻²
	Hz ⁻¹ was recorded in Dec 2006 and disrupted GPS
	systems across the sunward side of the Earth.
Provenance:	Statistics in peer-reviewed paper by Nita et al., 2004.
	Dec 2006 event in peer-reviewed paper by Cerruti et
	al., 2007.
How to improve case quality:	Review statistical data on solar radio bursts. Collect
	additional data and compare with performance of
	wireless systems.
Other notes:	The lower threshold of 10^{-17} W m ⁻² Hz ⁻¹ should be
	detectable by 3G phones, but the likely impact
	requires expert assessment.
	Impact on mobiles may be greatest at sunrise/sunset
	when Sun in line of sight of base station antenna
	beams. There are no reports of impacts on mobiles
	from the large radio burst in Dec 2006. However, the
	terminator (sunset/sunrise line) on Earth's surface did
	not cross any significant inhabited areas, so the
	potential for interference with base stations was not
	tested.

Target risk:	GNSS – TEC correction
Environmental risk parameter:	Rate of change of TEC (total electron content)
Rationale:	The ionospheric range correction on GNSS positions
	is directly proportional to TEC, e.g. a TEC value of 6
	$\times 10^{16} \text{ m}^{-2}$ gives a range correction of 1m. Most
	accurate GNSS systems use augmentation systems,
	such as EGNOS, that measure TEC and send
	corrections to receivers. This assumes that TEC does
	not change significantly between the measurement and
	delivery of the correction. If the rate of change of TEC
	is too large, the corrections will not be accurate (as
	happened over the US during the October 2003 event).
Suggested worst case:	Unknown
Worst case duration	Several days
Anticipated effects	Inaccurate TEC corrections, errors in GNSS positions.
Quality of case:	
Provenance:	
How to improve case quality:	TEC real-time monitoring and modelling.
Other notes:	• The most promising developments in TEC
	modelling involve new data assimilation methods (see Schunk et al., 2004).
	• Use of dual-frequency GNSS receivers will allow
	direct measurement of TEC corrections without
	need for augmentation systems.

Target risk:	GNSS & satcom – scintillation
Environmental risk parameters:	1. Amplitude scintillation as measured by the S4
	index.
	2. Phase scintillation as quantified by the P_{rms} index
	(These are related to the standard deviation of
	the signal intensity and phase over 60 seconds.
	S4 is normalised to mean signal intensity)
Rationale:	Small-scale spatial irregularities in the ionosphere can
	diffract radio signals. This causes rapid fluctuations in
	signal intensity and phase, known as amplitude and
	phase scintillation respectively.
	• Amplitude scintillation can reduce radio signal
	intensity below a receiver's lock threshold, thereby
	causing loss of signal (e.g. GPS, satellite links).
	• Phase scintillation may lead to cycle slips and loss
	of lock for receivers as they track the signal.
Suggested worst case:	S_4 >greater than ~0.6
	$P_{\rm rms} > 1$ degree
Worst case duration	Several days
Anticipated effects	Widespread loss of GNSS signals for location and
	timing.
Quality of case:	Studies by international Satellite-based Augmentation
	Systems (SBAS) Ionospheric Working Group with
	representatives from the European, Japanese and US
	systems (EGNOS, MSAS and WAAS)
Provenance:	Peer-reviewed papers by Doherty (2000) and Scone
	(2000)
How to improve case quality:	S4 and P_{rms} real-time monitoring and modelling,
	especially over the UK, during strong geomagnetic
	storms.
	Use of historical geomagnetic data to extrapolate to
	UK 1-in-200 year worst case.
Other notes:	Worst case above is threshold for strong scintillation.
	It probably should be higher to reflect a real worst
	case.
	Note that down a scintillation in the last of the last
	Note that strong scintillation is rare over mid-latitude
	regions such as the UK, but may be expected during
	severe geomagnetic storms. It is more common in
	auroral regions (e.g. over ocean areas North of
	Scouand) and in equatorial regions.

Target risk:	Railway signal systems
Environmental risk parameter:	Rate of change of magnetic field (dB/dt, specified in
_	nano-Tesla per minute) – as for power grids.
Rationale:	Track circuits are widely used to detect the presence of
	trains on specific sections of railway track. The
	presence of the train changes the flow of electricity in
	the circuit, compared to an unoccupied track. If GIC
	from space weather also enters a track circuit, it may
	confuse the operation of that circuit.
Suggested worst case:	Unknown
Worst case duration	A few minutes (tbc)
Anticipated effects	Additional currents flowing in track circuits
Quality of case:	
Provenance:	
How to improve case quality:	
Other notes:	Space weather interference with track circuits has been
	reported in Sweden and Russia, e.g, see Eroshenko et
	al., 2010.

Target risk:	Aviation – avionics
Environmental risk parameter:	Neutron fluence $> 10 \text{ MeV}$
Rationale:	Secondary neutrons are dominant source of single
	event effects below 60000 feet. The flux > 10 MeV is
	used in the standards but allowance must be made for
	lower energy neutrons, especially thermal.
Suggested worst case:	300-fold increase in radiation environment at 12 km
Worst case duration	3 hours
Anticipated effects	High failure rates in unprotected digital avionic
	systems
Quality of case:	This is based on ground-level observations of the
	radiation event of 23 Feb 1956 and calculations. May
	be 4 times greater for Carrington event. This gives a
	fluence integrated over a high latitude flight (e.g.
	LHR-LAX) at 12 km of 1.6×10^{11} m ⁻² .
Provenance:	Peer-reviewed papers by Dyer et al (2007), Dyer et al
	(2003), Lantos and Fuller (2003).
	1956 observations in research note by Marsden et al
	(1956), Quenby and Webber (1959), Rishbeth, Shea
	and Smart (2009).
How to improve case quality:	More measurements on board aircraft, and by ground-
	based neutron monitors, to stimulate develop and
	validation of improved models of radiation exposure.
Other notes:	Assumes near worst case altitude (12km) and route
	(e.g. high latitude such as LHR-LAX or polar).
	However any existing geomagnetic storm could
	expose lower latitude routes to similar fluxes.
	Duration is probably worst for short events that give
	high rates. Event durations are typically 3-12 hrs.

Target risk:	Aviation – aircrew radiation exposure
Environmental risk parameter:	Radiation dose
Rationale:	Legal requirement for radiation workers (20 mSv/year
	but limit kept to 6 mSv/year in practice for aircrew)
Suggested worst case:	2-5 mSv for Feb 56. Possibly factor 4 worse for
	Carrington event. May be 10 to 20 mSv for Carrington
	event.
Worst case duration	4-10 hours
Anticipated effects	Many aircrew exceed their annual exposure
	recommended limits and become unavailable for flight
	duties for many months. Pregnant crew exceed legal
	limit.
Quality of case:	This is based on observations of the radiation event of
	23 Feb 1956 and calculations.
Provenance:	Papers by Dyer et al. (2007) and Lantos and Fuller
	(2003). 1956 ground level observations in research
	note by Marsden et al (1956), Quenby and Webber
	(1959), Rishbeth, Shea and Smart (2009)
How to improve case quality:	More measurements on board aircraft, and by ground-
	based neutron monitors, to stimulate develop and
	validation of improved models of radiation exposure.
Other notes:	Assumes 12 km altitude, high latitude flight. During a
	geomagnetic storm lower latitudes could be equally
	exposed.

Target risk:	Aviation – passenger radiation exposure
Environmental risk parameter:	Dose on any specific flight < half annual exposure for
	high-risk groups in general public (children and
	pregnant women) ;i.e. <0.5 mSv. 1 mSv is the legal
	limit for a planned exposure
Rationale:	It would be invidious (also impracticable) to bar air
	travel by high-risk groups, so the risk should focus
	there. The limit should be at a level such that exposed
	persons can make a return flight and then not fly for
	some period (e.g. one year). Would have to travel
	home during guaranteed quiet period or by land/sea!
Suggested worst case:	2-5 mSv for Feb56 event but Carrington event could
	be factor 4 worse. May be 10 to 20 mSv for
	Carrington event.
Worst case duration	3 hours
Anticipated effects	Passengers exposed to radiation doses above limits
	prescribed for general public.
Quality of case:	This is based on observations of the radiation event of
	23 February 1956.
Provenance:	Papers by Dyer et al. (2007) and Lantos and Fuller
	(2003). 1956 ground level observations in research
	note by Marsden et al (1956), Quenby and Webber
	(1959), Rishbeth, Shea and Smart(2009).
How to improve case quality:	Need to calculate safe altitude, latitude to keep below
	limit.
Other notes:	Assumes near worst case altitude (12 km) and route
	(e.g. high latitude such as LHR-LAX or polar).
	However any existing geomagnetic storm could
	expose lower latitude routes to similar doses. Duration
	is probably worst for short events that give high dose
	rates and little time for avoidance. However longer
	duration could affect more flights and/or expose more
	passengers. Event durations are typically 3-12 hrs.
	More investigation needed.

Target risk:	Satellites – Thermospheric Drag
Environmental risk parameter:	Change in thermospheric neutral density at LEO
	satellite orbit height
Rationale:	Density changes affect satellite orbital determination,
	since they lead to changes in the drag on the satellite
Suggested worst case:	Density enhancements of 200-300% - associated with
	this a LEO satellite orbital altitude dropped by 30km
	over the same time period.
Worst case duration	~ few hours
Anticipated effects	• Satellite loses altitude, or satellite
	raising manoeuvres need to be carried
	out to counteract this
	• Issues with orbital determination – in
	extremis satellites have crashed into
	each other
	 Tracking of space debris is made more
	problematic
Quality of case:	Worst case based on observations during October
	2003 geomagnetic storms.
Provenance:	Sutton et al (2005) - density fluctuations in October
	2003 geomagnetic storms.
	Pawlowski and Ridley (2008) – thermospheric
	response to solar flares.
How to improve case quality:	Further exploitation of satellite accelerometer data,
	including assimilation of such data into models
Other notes:	Density changes of ~20% can also occur during small
	geomagnetic storms and solar flares. Integrated effect
	of many such small storms, or flares, on satellite orbit
	may also need to be examined.

Glossary

BGS	British Geological Survey
EGNOS	European Geostationary Navigation Overlay Service (European
	SBAS)
GEO	Geosynchronous orbit
GIC	Geomagnetically induced currents
GNSS	Global Navigation Satellite System
HV	High voltage
MeV	million electron-volts
MSAS	Multi-functional Satellite Augmentation System (Japanese
	SBSAS)
mSv	milliSievert – unit of radiation dose
SBAS	Satellite-based Augumentation System (for GNSS)
SEP	Solar energetic particle
Tbc	To be confirmed
Tbd	To be done
WAAS	Wide Area Augmentation System (US SBAS)

References

Cagniard, L., 1953, Basic theory of the magneto-telluric method of geophysical prospecting, <i>Geophysics</i> , 18 , 605–635
Cerruti, A.P., Kintner, P.M., Gary, D.E., Mannucci, A.J., Meyer, R.F., Doherty, P., and
Coster, A.J. 2008. Effect of intense December 2006 solar radio bursts on GPS
receivers. SPACE WEATHER, VOL. 6, S10D07, doi:10.1029/2007SW000375.
Doherty, P., 2000. Ionospheric Scintillation Effects in Equatorial and Auroral Regions,
ION GPS 2000, Salt Lake City, Utah, p. 662-671.
Dyer, C.S., Lei, F., Hands, A., Truscott, P., 2007, "Solar Particle Events In The QinetiQ
Atmospheric Radiation Model, "IEEE Trans. Nuc. Sci., Vol. 54, No. 4, pp 1071-1075.
Dyer, C. S., Lei, F., Clucas S. N., Smart, D.F., Shea, M. A., 2003, "Solar particle
enhancements of single event effect rates at aircraft altitudes," IEEE Trans. Nuc. Sci.,
Vol. 50, No. 6, pp. 2038-2045.
ECSS-E-ST-10-04C: European Cooperation for Space Standardization, 2008, Space
engineering - Space environment, download from <u>http://www.ecss.nl/</u> .
Erinmez, I. A., J. G. Kappenman, and W. A. Radasky (2002), Management of the
geomagnetically induced current risks on the national grid company's electric power
transmission system., Journal of Atmospheric and Solar-Terrestrial Physics, 64, 5-6,
/45-/50. Erechenke F.A. A.V. Deley, D. Deteler, S.D. Ceidech, S.L. Lehkey, D. Diriele, I.
Erosnenko, E.A., A. V. Belov, D. Boleler, S.P. Galdash, S.L. Lobkov, R. Pirjola, L. Trichtchenko, 2010. Effects of strong geomegnetic storms on Northern reilways in
Russia Adv. Space Res 46, 1102-1110
Fennell I. F. : Koons, H. C. : Roeder, I. I. : Blake, I. B. (2001) Spacecraft Charging:
Observations and Relationship to Satellite Anomalies Aerospace Report TR-
2001(8570)-5
Feynman, J., G. Spitale, J. Wang, and S. Gabriel (1993), Interplanetary proton fluence
model: JPL 1991, J. Geophys. Res., 98(A8), 13,281–13,294, doi:10.1029/92JA02670.
Kappenman, J.G., 2006, Great geomagnetic storms and extreme impulsive geomagnetic
field disturbance events – An analysis of observational evidence including the great
storm of May 1921, Adv. Space Res. 38, 188-199. doi: 10.1016/j.asr.2005.08.055
Koons, H. C. (2001), Statistical analysis of extreme values in space science, J. Geophys.
<i>Res.</i> , 106(A6), 10,915–10,921, doi:10.1029/2000JA000234.
Lantos, P., Fuller, N., 2003, "History of the solar particle event radiation doses on-board
aeroplanes using a semi-empirical model and Concorde measurements," Radiation
Protection Dosimetry, 104 , 3 , $199-210$.
Miyake, F., K. Nagaya, K. Masuda, and I. Nakamura (2012), A signature of cosmic-ray
Increase III AD $7/4-7/5$ from tree rings in Japan, Nature, 480, 240-242, doi: 10.1038/nature11123
O'Brien T P I F Fennell I I Roeder and G D Reeves (2007) Extreme electron
fluxes in the outer zone. Space Weather 5, \$01001, doi:10.1029/2006\$W000240
O'Brien, T. P., 2009, SEAES-GEO: A spacecraft environmental anomalies expert system
for geosynchronous orbit, Space Weather, 7, S09003, doi:10.1029/2009SW000473
Pawlowski, D.J. and A.J. Ridley, Modeling the thermospheric response to solar flares, J.
Geophys. Res., 113, A10309, doi:10.1029/2008JA013182, 2008
Schunk et al., 2004. Global assimilation of ionospheric measurements (GAIM), Radio
Sci., 39 RS1S02, doi:10.1029/2002RS002794.
Quenby, J. J., Webber, W., 1959, "Cosmic-ray geomagnetic cut-off rigidities and the
Earth's magnetic field," Phil. Mag., 4, 90-112.
Rishbeth, H., Shea, M. A., Smart, D. F., 2009, "The solar-terrestrial event of 23 February
1956," Advances in Space Research, 44, 1096-1106.

Shea M.A., D.F. Smart, K.G. McCracken, G.A.M. Dreschhoff, H.E. Spence., 2006, Solar proton events for 450 years: The Carrington event in perspective. Adv. Space Res. 38 232–238. doi:10.1016/j.asr.2005.02.100

Shprits, Y., D. Subbotin, B. Ni, R. Horne, D. Baker, and P. Cruce (2011), Profound change of the near-Earth radiation environment caused by solar superstorms, *Space Weather*, 9, S08007, doi:10.1029/2011SW000662.

Skone, S., 2000, Impact of Ionospheric Scintillation on SBAS Performance, ION GPS 2000, Salt Lake City, Utah, 284-293.

Sutton, E.K, J. M. Forbes, and R. S. Nerem, 2005, Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data, J. Geophys. Res., 110, A09S40, doi:10.1029/2004JA010985

Thomson, A. W. P., E. B. Dawson, and S. J. Reay (2011), Quantifying extreme behavior in geomagnetic activity, Space Weather, 9, S10001, doi: 10.1029/2011SW000696.

Waterman, J. 2007. The Magnetic Environment – GIC and other ground effects, in: Lilensten, J. (Ed.), Space Weather – Research towards applications in Europe. Springer, Dordrecht, pp. 269-275, 2007.

Wolff, E. W., M. Bigler, M. A. J. Curran, J. E. Dibb, M. M. Frey, M. Legrand, and J. R. McConnell (2012), The Carrington event not observed in most ice core nitrate records, Geophys. Res. Lett., 39, L08503, doi: 10.1029/2012GL051603

Xapsos, M. A., G.P. Summers, J.L. Barth, E. G. Stassinopoulos and E.A. Burke, "Probability Model for Cumulative Solar Proton Event Fluences", IEEE Trans. Nucl. Sci., vol. 47, no. 3, June 2000, pp 486-490.

Interrelationships between effects

Many space weather effects will occur close together in time as they have a common origin in solar phenomena such as coronal mass ejections. The figure below outlines many of the most important associations between space weather effects.

