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Linear operators

Let M € R™™ and N € R™*" be symmetric positive definite
matrices, and let A € R™*" be a full rank matrix.

M ={veR"; |ulf =v Mv}, N = {q € R" ||qlly = a"Nq}

M ={w eR™; |w|?_: =w M w},
N'={y e R% |lyllg» =y N7y}
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Linear operators

Let M € R™™ and N € R™*" be symmetric positive definite
matrices, and let A € R™*" be a full rank matrix.

M= {v e R |ul} = v My}, N = {q € R" |ql} = a"Na}

M ={w eR™; |w|?_1 =w M w},
N ={y e R" |lyllj-+ =y "Ny}

<V7Aq>/\/l,./\/l’ = VTAq> Aq € ‘C(M) Vg € N.
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Linear operators

Let M € R™™ and N € R™" be symmetric positive definite
matrices, and let A € R™*" be a full rank matrix.

M = {veR™ ul} =v Mv}, N ={q€R"|q|i =a"Nqg}

M ={w e R™; |w|? 1 =w M w},
N'={y eR%|yla-: =y Ny}

(v,Aq)p v =vT Aq, Aq € L(M)VqeEN.
The adjoint operator AX of A can be defined as
(A*g f)\ v =FTATg, ATge L(N)Vg e M.
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Generalized SVD

Given g € M and v € N, the critical points for the functional
viAq
alln [[v]im

are the “generalized singular values and singular vectors” of A.
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Generalized SVD

Given g € M and v € N, the critical points for the functional
viAq
lalln [viim

are the “generalized singular values and singular vectors” of A.
The saddle-point conditions are

)

{ Aq,- = O‘,'MV,' V-TMVj = 5ij
ATV,' = o0;Nq; qI-Tqu:(SI-J-

012022 -2>20,>0
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Given g € M and v € N, the critical points for the functional

viAq
[lalln ([v]m

are the “generalized singular values and singular vectors” of A.
The saddle-point conditions are

{ Aq,- = U,'MV,' V,-TMVJ' = 5ij
ATV,' = a,-Nq,- q,Tquzé,-j

012>202>-2>20,>0

The generalized singular values are the standard singular values of
A = M~1/2AN~1/2, The generalized singular vectors q; and v;,
i=1,...,n are the transformation by M~1/2 and N—1/2 respectively of

the left and right standard singular vector of-A: & Science & Technology
@ Facilities Council
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Quadratic programming
The general problem
1
min —w'Ww —g’w
ATw=r

where the matrix W is positive semidefinite and
ker(W) Nker(AT) = 0 can be reformulated by choosing

M =W +rvANIAT
u=w-M-lg
b=r—ATM g

as a projection problem

: 2
min u
min [l

If W is non singular then we can choose v = 0. ) science & Technology
@ Facilities Council
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:

o] [a]=1a )
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Generalized Golub-Kahan bidiagonalization

7/1

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m X n matrix are presented. All of
them can be theoretically applied to A and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the

" Craig"-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

AQ = M\"/[g’] VIMV =1,
ATV = NQ [BT;O} QNG =1,
where
a1 O 0 0
Ba 0 0
0 /anl &nfl 0
0 0 Bn Qi
L 0 0 0 ﬁnJrl
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Generalized Golub-Kahan bidiagonalization

AQ = MV[E’ VIMV =1,
ATV = NQ[B';0] Q'NQ =1,
where
[0 pf1 O 0 ]
0 a B 0
B = )

o - 0 ap-1 B
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Algorithm

The augmented system that gives the optimality conditions for

MINAT—p HU|||2v|
M A ul |0
AT 0 pl| | b

can be transformed by the change of variables

{u:Vz
P = Qy
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Z
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Algorithm

[BI’"T IgHﬂ:[QOTb]

Q"b = e1||b|n

the value of z; will correspond to the first column of the inverse of
B multiplied by ||b||n.
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqq, such as

w = M_lAql
a1 =w!Mw = wAq:

vi =w/ /a1
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqq, such as

w=M"1Aq;
a1 =w! Mw = wAq;

V] = W/\ /7.
Finally, knowing q; and v; we can start the recursive relations

gi+1 = N1 (ATv; — a;Ng;)
Bir1 =g Ng

qir1 =8 +\/Bin
w=M"1(Aqg;;1 — Bir1MV))
Qg1 = WTMW

Viy1 = W/\/Oéi—i-l-
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u

Thus, the value of u can be approximated when we have computed
the first k columns of U by

K
u) =V, z) = ZCJVJ-
j=1
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u

Thus, the value of u can be approximated when we have computed
the first k columns of U by

k
u(k) = Vka = ZCJVJ.
j=1

The entries (; of z, can be easily computed recursively starting

with
_|[blIn
a1

(=

as
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p

Approximating p = Qy by p(*) = Q,y, = EJI-(:;[ jqj, we have that

Yk = —B;lzk.
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p

Approximating p = Qy by p(K) = Quyx = Zj-(zl 1;q;, we have that

Yk = —B;lzk.

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.
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p

Approximating p = Qy by p(®) = Quyx = ijzl 1;q;, we have that

vk = —By 'z
—TAT)" —-TAT
From p ) = —Q«B P 12 = — (Bk Qk) zpand D, =B, " Q,
g = ¥ Odien (dozo)
A
where d; are the cqumns of D.
Startlng with p) = —(1d; and u® = G1vi
ul ) = u® 4 ¢ vig -
(1) _ (i) i=1,...,n
P =p" — Gi+1diq1
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Stopping criteria

Ju— w2, ||ek)HM*ZC H [zok]Hj

Jj=k+1
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Stopping criteria

Ju s = e = 3 ¢z Kl
j=k+1

IATu®) — bl[y-1 = [Besr Gl < o1lCil = [IA[I2]¢k]-
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Stopping criteria

lu = w5 = ™I = Z G = HZ_ [ o ] Hi
j=k+1

IATu®) — b1 = [Bes Gl < o1|Cel = IA[I2]¢k].

On

oo e[ ]) ] < 40
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Error bound
Lower bound We can estimate [|e(¥)||2, by the lower bound

k+d+1

Ga= Y G <le®ln.

j=k+1

Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

2 2 2
§d ST Z G < 7lullm-

j=1
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Error bound
Lower bound We can estimate [|e(¥)||2, by the lower bound

k+d+1

Ga= Y G <le®ln.

j=k+1

Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

2 2 2
§d ST Z G < 7lullm-

j=t

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar.to-the one
described in Golub-Meurant (2010). % Science & Technology
13/1
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Symmetric Quasi-Definite Systems

R RIS

v

Interior-point methods for LP, QP, NLP, SOCP, SDP, ...
Regularized/stabilized PDE problems

v

v

Regularized least squares

v

How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation

matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDL".

» Cholesky-factorizable
> Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

» Stability analysis by Gill, Saunders, Shinnerl (1996).
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

MINRES
SYMMLQ
(F)GMRES??
QMRS?777

v

v

v

v
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

MINRES
SYMMLQ
(F)GMRES??
QMRS?777

v

v

v

v

Fact: ... none exploits the SQD structure.

If the system were definite, we would like to use CG.
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Related Problems: an example
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Related Problems: an example

M Al [x] [b

AT —N y| |0
are the optimality conditions of
o[- 3
yeR™ 2|1 0

= minm%
et yeR
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.
At k-th iteration, seek y ~ y, = \"/kyk:

(B/B, + 1)yx = B] Bres
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.

At k-th iteration, seek y ~ yy := \"/kyk:

(B/B, + 1)yx = B] Bres

, Bi|. [Aes
ynquk H{l]y_[ 0 }

2

N=

2
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.

At k-th iteration, seek y ~ yy := \"/kyk:

(B/B, + 1)yx = B] Bres
. 2
min LB« §— prer

yeR* 2 I 0

2

or:

18/1
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2
min

Generalized LSQR
-
yeR* I 0

Solve
by specialized Givens Rotations (Eliminate | first and Ry will be
upper bidiagonal)

N|—=
<

2
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2
min

Generalized LSQR
-
yeR* I 0

Solve
by specialized Givens Rotations (Eliminate | first and Ry will be

upper bidiagonal)
Rl - [ox
5513

N|—=
<

2

2

min %
k

yeR

2
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2
min

Generalized LSQR
-
yeR* I 0

Solve
by specialized Givens Rotations (Eliminate | first and Ry will be
upper bidiagonal)

Rl - [ox

ik

As in Paige-Saunders '82 we can build recursive expressions of y,
Yit+1 = Yk + didi (Dk = Vk§;1>

and we have that

<

N|—=

2

2

min %
k

yeR

2

m

m
2 2 2
||YHN+ATM71A = Z ¢j and |ly — Yk||N+ATM*1A = %2
j=1 J ience & Technology
acilities Council
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Conclusions

> Nice relation between the algebraic error and the
approximation error for mixed finite-element method (See A.
RAL-TR-2010-008)
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Conclusions
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RAL-TR-2010-008)
» Dominique Orban and | are analysing several other variants
» Craig,
» GLSMR
and the numerical results validate the theory.
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Conclusions

> Nice relation between the algebraic error and the
approximation error for mixed finite-element method (See A.
RAL-TR-2010-008)
» Dominique Orban and | are analysing several other variants
» Craig,
» GLSMR
and the numerical results validate the theory.
» A. and Orban " Iterative methods for symmetric quasi definite
systems” in preparation. WORK IN PROGRESS
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