Iterative Methods for Symmetric Quasi-Definite Linear Systems

Mario Arioli ${ }^{1}$ Dominique Orban ${ }^{2}$
${ }^{1}$ Rutherford Appleton Laboratory, mario.arioli@stfc.ac.uk
${ }^{2}$ GERAD and École Polytechnique de Montréal, dominique.orban@gerad.ca
June 21, 2012

Overview of talk

- Symmetric Quasi Positive Definite matrices

Overview of talk

- Symmetric Quasi Positive Definite matrices
- Why SQD are important?

Overview of talk

- Symmetric Quasi Positive Definite matrices
- Why SQD are important?
- Main properties

Overview of talk

- Symmetric Quasi Positive Definite matrices
- Why SQD are important?
- Main properties
- Generalized singular values and minimization problem
- G-K bidiagonalization
- Generalized LSQR and Craig (Stopping criteria)

Overview of talk

- Symmetric Quasi Positive Definite matrices
- Why SQD are important?
- Main properties
- Generalized singular values and minimization problem
- G-K bidiagonalization
- Generalized LSQR and Craig (Stopping criteria)
- Numerical examples

Linear operators

Let $\mathbf{M} \in \mathrm{R}^{m \times m}$ and $\mathbf{N} \in \mathrm{R}^{n \times n}$ be symmetric positive definite matrices, and let $\mathbf{A} \in \mathrm{R}^{m \times n}$ be a full rank matrix.

$$
\begin{gathered}
\mathcal{M}=\left\{\mathbf{v} \in \mathbf{R}^{m} ;\|\mathbf{u}\|_{\mathbf{M}}^{2}=\mathbf{v}^{\top} \mathbf{M} \mathbf{v}\right\}, \mathcal{N}=\left\{\mathbf{q} \in \mathbf{R}^{n} ;\|\mathbf{q}\|_{\mathrm{N}}^{2}=\mathbf{q}^{\top} \mathbf{N} \mathbf{q}\right\} \\
\mathcal{M}^{\prime}=\left\{\mathbf{w} \in \mathbf{R}^{m} ;\|\mathbf{w}\|_{\mathbf{M}^{-1}}^{2}=\mathbf{w}^{\top} \mathbf{M}^{-1} \mathbf{w}\right\}, \\
\mathcal{N}^{\prime}=\left\{\mathbf{y} \in \mathbf{R}^{n} ;\|\mathbf{y}\|_{\mathbf{N}^{-1}}^{2}=\mathbf{y}^{\top} \mathbf{N}^{-1} \mathbf{y}\right\}
\end{gathered}
$$

Linear operators

Let $\mathbf{M} \in \mathbf{R}^{m \times m}$ and $\mathbf{N} \in \mathbf{R}^{n \times n}$ be symmetric positive definite matrices, and let $\mathbf{A} \in \mathbf{R}^{m \times n}$ be a full rank matrix.

$$
\begin{gathered}
\mathcal{M}=\left\{\mathbf{v} \in \mathbf{R}^{m} ;\|\mathbf{u}\|_{\mathbf{M}}^{2}=\mathbf{v}^{T} \mathbf{M} \mathbf{v}\right\}, \mathcal{N}=\left\{\mathbf{q} \in \mathbf{R}^{n} ;\|\mathbf{q}\|_{\mathbf{N}}^{2}=\mathbf{q}^{T} \mathbf{N q}\right\} \\
\mathcal{M}^{\prime}=\left\{\mathbf{w} \in \mathbf{R}^{m} ;\|\mathbf{w}\|_{\mathbf{M}^{-1}}^{2}=\mathbf{w}^{T} \mathbf{M}^{-1} \mathbf{w}\right\} \\
\mathcal{N}^{\prime}=\left\{\mathbf{y} \in \mathbf{R}^{n} ;\|\mathbf{y}\|_{\mathbf{N}^{-1}}^{2}=\mathbf{y}^{T} \mathbf{N}^{-1} \mathbf{y}\right\} \\
\langle\mathbf{v}, \mathbf{A} \mathbf{q}\rangle_{\mathcal{M}, \mathcal{M}^{\prime}}=\mathbf{v}^{T} \mathbf{A q}, \quad \mathbf{A q} \in \mathcal{L}(\mathcal{M}) \forall \mathbf{q} \in \mathcal{N} .
\end{gathered}
$$

Linear operators

Let $\mathbf{M} \in \mathbf{R}^{m \times m}$ and $\mathbf{N} \in \mathbf{R}^{n \times n}$ be symmetric positive definite matrices, and let $\mathbf{A} \in \mathbf{R}^{m \times n}$ be a full rank matrix.

$$
\begin{gathered}
\mathcal{M}=\left\{\mathbf{v} \in \mathbf{R}^{m} ;\|\mathbf{u}\|_{\mathbf{M}}^{2}=\mathbf{v}^{T} \mathbf{M} \mathbf{v}\right\}, \mathcal{N}=\left\{\mathbf{q} \in \mathbf{R}^{n} ;\|\mathbf{q}\|_{\mathbf{N}}^{2}=\mathbf{q}^{T} \mathbf{N q}\right\} \\
\mathcal{M}^{\prime}=\left\{\mathbf{w} \in \mathbf{R}^{m} ;\|\mathbf{w}\|_{\mathbf{M}^{-1}}^{2}=\mathbf{w}^{T} \mathbf{M}^{-1} \mathbf{w}\right\} \\
\mathcal{N}^{\prime}=\left\{\mathbf{y} \in \mathbf{R}^{n} ;\|\mathbf{y}\|_{\mathbf{N}^{-1}}^{2}=\mathbf{y}^{T} \mathbf{N}^{-1} \mathbf{y}\right\} \\
\langle\mathbf{v}, \mathbf{A} \mathbf{q}\rangle_{\mathcal{M}, \mathcal{M}^{\prime}}=\mathbf{v}^{T} \mathbf{A q}, \quad \mathbf{A q} \in \mathcal{L}(\mathcal{M}) \forall \mathbf{q} \in \mathcal{N} .
\end{gathered}
$$

The adjoint operator \mathbf{A}^{\star} of \mathbf{A} can be defined as

$$
\left\langle\mathbf{A}^{\star} \mathbf{g}, \mathbf{f}\right\rangle_{\mathcal{N}^{\prime}, \mathcal{N}}=\mathbf{f}^{T} \mathbf{A}^{T} \mathbf{g}, \quad \mathbf{A}^{T} \mathbf{g} \in \mathcal{L}(\mathcal{N}) \forall \mathbf{g} \in \mathcal{M}
$$

Generalized SVD

Given $\mathbf{q} \in \mathcal{M}$ and $\mathbf{v} \in \mathcal{N}$, the critical points for the functional

$$
\frac{\mathbf{v}^{\top} \mathbf{A q}}{\|\mathbf{q}\|_{\mathrm{N}}\|\mathbf{v}\|_{\mathrm{M}}}
$$

are the "generalized singular values and singular vectors" of \mathbf{A}.

Generalized SVD

Given $\mathbf{q} \in \mathcal{M}$ and $\mathbf{v} \in \mathcal{N}$, the critical points for the functional

$$
\frac{\mathbf{v}^{T} \mathbf{A q}}{\|\mathbf{q}\|_{\mathrm{N}}\|\mathbf{v}\|_{\mathbf{M}}}
$$

are the "generalized singular values and singular vectors" of \mathbf{A}.
The saddle-point conditions are

$$
\begin{cases}\mathbf{A q}_{i}=\sigma_{i} \mathbf{M} \mathbf{v}_{i} & \mathbf{v}_{i}^{T} \mathbf{M} \mathbf{v}_{j}=\delta_{i j} \\ \mathbf{A}^{T} \mathbf{v}_{i}=\sigma_{i} \mathbf{N} \mathbf{q}_{i} & \mathbf{q}_{i}^{T} \mathbf{N} \mathbf{q}_{j}=\delta_{i j} \\ & \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0\end{cases}
$$

Generalized SVD

Given $\mathbf{q} \in \mathcal{M}$ and $\mathbf{v} \in \mathcal{N}$, the critical points for the functional

$$
\frac{\mathbf{v}^{\top} \mathbf{A q}}{\|\mathbf{q}\|_{N}\|\mathbf{v}\|_{M}}
$$

are the "generalized singular values and singular vectors" of \mathbf{A}.
The saddle-point conditions are

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\mathbf{A q}_{i} & =\sigma_{i} \mathbf{M v}_{i} & \mathbf{v}_{i}^{T} \mathbf{M} \mathbf{v}_{j}=\delta_{i j} \\
\mathbf{A}^{T} \mathbf{v}_{i}=\sigma_{i} \mathbf{N q}_{i} & \mathbf{q}_{i}^{T} \mathbf{N q _ { j }}=\delta_{i j}
\end{array}\right. \\
& \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0
\end{aligned}
$$

The generalized singular values are the standard singular values of $\tilde{\mathbf{A}}=\mathbf{M}^{-1 / 2} \mathbf{A} \mathbf{N}^{-1 / 2}$. The generalized singular vectors \mathbf{q}_{i} and \mathbf{v}_{i}, $i=1, \ldots, n$ are the transformation by $\mathbf{M}^{-1 / 2}$ and $\mathbf{N}^{-1 / 2}$ respectively of the left and right standard singular vector of $\tilde{\mathbf{A}}$.

Quadratic programming

The general problem

$$
\min _{\mathbf{A}^{\top} \mathbf{w}=\mathbf{r}} \frac{1}{2} \mathbf{w}^{T} \mathbf{W} \mathbf{w}-\mathbf{g}^{T} \mathbf{w}
$$

where the matrix \mathbf{W} is positive semidefinite and $\operatorname{ker}(\mathbf{W}) \cap \operatorname{ker}\left(\mathbf{A}^{T}\right)=0$ can be reformulated by choosing

$$
\left.\begin{array}{l}
\mathbf{M}=\mathbf{W}+\nu \mathbf{A} \mathbf{N}^{-1} \mathbf{A}^{T} \\
\mathbf{u}=\mathbf{w}-\mathbf{M}^{-1} \mathbf{g} \\
\mathbf{b}=\mathbf{r}-\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{g} .
\end{array}\right\}
$$

as a projection problem

$$
\min _{\mathbf{A}^{T} \mathbf{u}=\mathbf{b}}\|\mathbf{u}\|_{\mathbf{M}}^{2}
$$

If \mathbf{W} is non singular then we can choose $\nu=0$.

Augmented system

The augmented system that gives the optimality conditions for the projection problem:

$$
\left[\begin{array}{cc}
\mathbf{M} & \mathbf{A} \\
\mathbf{A}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms for the bidiagonalization of a $m \times n$ matrix are presented. All of them can be theoretically applied to $\tilde{\mathbf{A}}$ and their generalization to \mathbf{A} is straightforward as shown by Bembow (1999). Here, we want specifically to analyse one of the variants known as the
"Craig"-variant (see Paige Saunders (1982), Saunders
$(1995,1997))$.

Generalized Golub-Kahan bidiagonalization

$$
\begin{cases}\mathbf{A} \tilde{\mathbf{Q}}=\mathbf{M} \tilde{\mathbf{V}}\left[\begin{array}{c}
\tilde{\mathbf{B}} \\
0
\end{array}\right] & \tilde{\mathbf{V}}^{T} \mathbf{M} \tilde{\mathbf{V}}=\mathbf{I}_{m} \\
\mathbf{A}^{T} \tilde{\mathbf{V}}=\mathbf{N} \tilde{\mathbf{Q}}\left[\tilde{\mathbf{B}}^{T} ; 0\right] & \tilde{\mathbf{Q}}^{T} \mathbf{N} \tilde{\mathbf{Q}}=\mathbf{I}_{n}\end{cases}
$$

where

$$
\tilde{\mathbf{B}}=\left[\begin{array}{ccccc}
\tilde{\alpha}_{1} & 0 & 0 & \cdots & 0 \\
\tilde{\beta}_{2} & \tilde{\alpha}_{2} & 0 & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \tilde{\beta}_{n-1} & \tilde{\alpha}_{n-1} & 0 \\
0 & \cdots & 0 & \tilde{\beta}_{n} & \tilde{\alpha}_{n} \\
0 & \cdots & 0 & 0 & \tilde{\beta}_{n+1}
\end{array}\right]
$$

Generalized Golub-Kahan bidiagonalization

$$
\begin{cases}\mathbf{A Q}=\mathbf{M} \mathbf{V}\left[\begin{array}{c}
\mathbf{B} \\
0
\end{array}\right] & \mathbf{V}^{T} \mathbf{M V}=\mathbf{I}_{m} \\
\mathbf{A}^{T} \mathbf{V}=\mathbf{N Q}\left[\mathbf{B}^{T} ; 0\right] & \mathbf{Q}^{T} \mathbf{N Q}=\mathbf{I}_{n}\end{cases}
$$

where

$$
\mathbf{B}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & 0 & \cdots & 0 \\
0 & \alpha_{2} & \beta_{2} & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & 0 & \alpha_{n-1} & \beta_{n-1} \\
0 & \cdots & 0 & 0 & \alpha_{n}
\end{array}\right]
$$

Algorithm

The augmented system that gives the optimality conditions for $\min _{\mathbf{A}^{T} \mathbf{u}=\mathbf{b}}\|\mathbf{u}\|_{\mathbf{M}}^{2}$

$$
\left[\begin{array}{cc}
\mathbf{M} & \mathbf{A} \\
\mathbf{A}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{u} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

can be transformed by the change of variables

$$
\left\{\begin{array}{l}
\mathbf{u}=\mathbf{V} \mathbf{z} \\
\mathbf{p}=\mathbf{Q} \mathbf{y}
\end{array}\right.
$$

Algorithm

$$
\left[\begin{array}{ccc}
\mathbf{I}_{n} & 0 & \mathbf{B} \\
0 & \mathbf{I}_{m-n} & 0 \\
\mathbf{B}^{T} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{z}_{1} \\
\mathbf{z}_{2} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\mathbf{Q}^{T} \mathbf{b}
\end{array}\right] .
$$

Algorithm

$$
\left[\begin{array}{cc}
\mathbf{I}_{n} & \mathbf{B} \\
\mathbf{B}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{z}_{1} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathbf{Q}^{T} \mathbf{b}
\end{array}\right] .
$$

Algorithm

$$
\begin{gathered}
{\left[\begin{array}{cc}
\mathbf{l}_{n} & \mathbf{B} \\
\mathbf{B}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{z}_{1} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathbf{Q}^{T} \mathbf{b}
\end{array}\right] .} \\
\mathbf{Q}^{T} \mathbf{b}=\mathbf{e}_{1}\|\mathbf{b}\|_{\mathbf{N}}
\end{gathered}
$$

the value of \mathbf{z}_{1} will correspond to the first column of the inverse of B multiplied by $\|\mathbf{b}\|_{\mathrm{N}}$.

Algorithm

Thus, we can compute the first column of \mathbf{B} and of \mathbf{V} : $\alpha_{1} \mathbf{M} \mathbf{v}_{1}=\mathbf{A} \mathbf{q}_{1}$, such as

$$
\begin{aligned}
& \mathbf{w}=\mathbf{M}^{-1} \mathbf{A q}_{1} \\
& \alpha_{1}=\mathbf{w}^{T} \mathbf{M} \mathbf{w}=\mathbf{w} \mathbf{A} \mathbf{q}_{1} \\
& \mathbf{v}_{1}=\mathbf{w} / \sqrt{\alpha_{1}}
\end{aligned}
$$

Algorithm

Thus, we can compute the first column of \mathbf{B} and of \mathbf{V} : $\alpha_{1} \mathbf{M} \mathbf{v}_{1}=\mathbf{A} \mathbf{q}_{1}$, such as

$$
\begin{aligned}
& \mathbf{w}=\mathbf{M}^{-1} \mathbf{A} \mathbf{q}_{1} \\
& \alpha_{1}=\mathbf{w}^{T} \mathbf{M} \mathbf{w}=\mathbf{w} \mathbf{A} \mathbf{q}_{1} \\
& \mathbf{v}_{1}=\mathbf{w} / \sqrt{\alpha_{1}} .
\end{aligned}
$$

Finally, knowing \mathbf{q}_{1} and \mathbf{v}_{1} we can start the recursive relations

$$
\begin{aligned}
& \mathbf{g}_{i+1}=\mathbf{N}^{-1}\left(\mathbf{A}^{T} \mathbf{v}_{i}-\alpha_{i} \mathbf{N} \mathbf{q}_{i}\right) \\
& \beta_{i+1}=\mathbf{g}^{T} \mathbf{N g} \\
& \mathbf{q}_{i+1}=\mathbf{g} \sqrt{\beta_{i+1}} \\
& \mathbf{w}=\mathbf{M}^{-1}\left(\mathbf{A q}_{i+1}-\beta_{i+1} \mathbf{M} \mathbf{v}_{i}\right) \\
& \alpha_{i+1}=\mathbf{w}^{T} \mathbf{M} \mathbf{w} \\
& \mathbf{v}_{i+1}=\mathbf{w} / \sqrt{\alpha_{i+1}} .
\end{aligned}
$$

u

Thus, the value of \mathbf{u} can be approximated when we have computed the first k columns of \mathbf{U} by

$$
\mathbf{u}^{(k)}=\mathbf{V}_{k} \mathbf{z}_{k}=\sum_{j=1}^{k} \zeta_{j} \mathbf{v}_{j}
$$

Thus, the value of \mathbf{u} can be approximated when we have computed the first k columns of \mathbf{U} by

$$
\mathbf{u}^{(k)}=\mathbf{V}_{k} \mathbf{z}_{k}=\sum_{j=1}^{k} \zeta_{j} \mathbf{v}_{j}
$$

The entries ζ_{j} of \mathbf{z}_{k} can be easily computed recursively starting with

$$
\zeta_{1}=-\frac{\|\mathbf{b}\|_{\mathbf{N}}}{\alpha_{1}}
$$

as

$$
\zeta_{i+1}=-\frac{\beta_{i}}{\alpha_{i+1}} \zeta_{i} \quad i=1, \ldots, n
$$

Approximating $\mathbf{p}=\mathbf{Q y}$ by $\mathbf{p}^{(k)}=\mathbf{Q}_{k} \mathbf{y}_{k}=\sum_{j=1}^{k} \psi_{j} \mathbf{q}_{j}$, we have that

$$
\mathbf{y}_{k}=-\mathbf{B}_{k}^{-1} \mathbf{z}_{k} .
$$

Approximating $\mathbf{p}=\mathbf{Q y}$ by $\mathbf{p}^{(k)}=\mathbf{Q}_{k} \mathbf{y}_{k}=\sum_{j=1}^{k} \psi_{j} \mathbf{q}_{j}$, we have that

$$
\mathbf{y}_{k}=-\mathbf{B}_{k}^{-1} \mathbf{z}_{k} .
$$

Following an observation made by Paige and Saunders, we can easily transform the previous relation into a recursive one where only one extra vector is required.

Approximating $\mathbf{p}=\mathbf{Q y}$ by $\mathbf{p}^{(k)}=\mathbf{Q}_{k} \mathbf{y}_{k}=\sum_{j=1}^{k} \psi_{j} \mathbf{q}_{j}$, we have that

$$
\mathbf{y}_{k}=-\mathbf{B}_{k}^{-1} \mathbf{z}_{k} .
$$

From $\mathbf{p}^{(k)}=-\mathbf{Q}_{k} \mathbf{B}_{k}^{-1} \mathbf{z}_{k}=-\left(\mathbf{B}_{k}^{-T} \mathbf{Q}_{k}^{T}\right)^{T} \mathbf{z}_{k}$ and $\mathbf{D}_{k}=\mathbf{B}_{k}^{-T} \mathbf{Q}_{k}^{T}$

$$
\mathbf{d}_{i}=\frac{\mathbf{q}_{i}-\beta_{i} \mathbf{d}_{i-1}}{\alpha_{i}} \quad i=1, \ldots, n\left(\mathbf{d}_{0}=0\right)
$$

where \mathbf{d}_{j} are the columns of \mathbf{D}.
Starting with $\mathbf{p}^{(1)}=-\zeta_{1} \mathbf{d}_{1}$ and $\mathbf{u}^{(1)}=\zeta_{1} \mathbf{v}_{1}$

$$
\left.\begin{array}{l}
\mathbf{u}^{(i+1)}=\mathbf{u}^{(i)}+\zeta_{i+1} \mathbf{v}_{i+1} \\
\mathbf{p}^{(i+1)}=\mathbf{p}^{(i)}-\zeta_{i+1} \mathbf{d}_{i+1}
\end{array}\right\} \quad i=1, \ldots, n
$$

Stopping criteria

$$
\left\|\mathbf{u}-\mathbf{u}^{(k)}\right\|_{\mathbf{M}}^{2}=\left\|\mathbf{e}^{(k)}\right\|_{\mathbf{M}}^{2}=\sum_{j=k+1}^{n} \zeta_{j}^{2}=\left\|\mathbf{z}-\left[\begin{array}{c}
\mathbf{z}_{k} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

Stopping criteria

$$
\begin{gathered}
\left\|\mathbf{u}-\mathbf{u}^{(k)}\right\|_{\mathbf{M}}^{2}=\left\|\mathbf{e}^{(k)}\right\|_{\mathbf{M}}^{2}=\sum_{j=k+1}^{n} \zeta_{j}^{2}=\left\|\mathbf{z}-\left[\begin{array}{c}
\mathbf{z}_{k} \\
0
\end{array}\right]\right\|_{2}^{2} \\
\left\|\mathbf{A}^{T} \mathbf{u}^{(k)}-\mathbf{b}\right\|_{\mathbf{N}^{-1}}=\left|\beta_{k+1} \zeta_{k}\right| \leq \sigma_{1}\left|\zeta_{k}\right|=\|\tilde{\mathbf{A}}\|_{2}\left|\zeta_{k}\right|
\end{gathered}
$$

Stopping criteria

$$
\begin{gathered}
\left\|\mathbf{u}-\mathbf{u}^{(k)}\right\|_{\mathbf{M}}^{2}=\left\|\mathbf{e}^{(k)}\right\|_{\mathbf{M}}^{2}=\sum_{j=k+1}^{n} \zeta_{j}^{2}=\left\|\mathbf{z}-\left[\begin{array}{c}
\mathbf{z}_{k} \\
0
\end{array}\right]\right\|_{2}^{2} . \\
\left\|\mathbf{A}^{T} \mathbf{u}^{(k)}-\mathbf{b}\right\|_{\mathbf{N}^{-1}}=\left|\beta_{k+1} \zeta_{k}\right| \leq \sigma_{1}\left|\zeta_{k}\right|=\|\tilde{\mathbf{A}}\|_{2}\left|\zeta_{k}\right| \\
\left\|\mathbf{p}-\mathbf{p}^{(k)}\right\|_{\mathbf{N}}=\left\|\mathbf{Q B}^{-1}\left(\mathbf{z}-\left[\begin{array}{c}
\mathbf{z}_{k} \\
0
\end{array}\right]\right)\right\|_{\mathbf{N}} \leq \frac{\left\|\mathbf{e}^{(k)}\right\|_{\mathbf{M}}}{\sigma_{n}} .
\end{gathered}
$$

Error bound

Lower bound We can estimate $\left\|\mathbf{e}^{(k)}\right\|_{M}^{2}$ by the lower bound

$$
\xi_{k, d}^{2}=\sum_{j=k+1}^{k+d+1} \zeta_{j}^{2}<\left\|\mathbf{e}^{(k)}\right\|_{\mathbf{M}}^{2}
$$

Given a threshold $\tau<1$ and an integer d, we can stop the iterations when

$$
\xi_{k, d}^{2} \leq \tau \sum_{j=1}^{k+d+1} \zeta_{j}^{2}<\tau\|\mathbf{u}\|_{\mathbf{M}}^{2}
$$

Error bound

Lower bound We can estimate $\left\|\mathbf{e}^{(k)}\right\|_{M}^{2}$ by the lower bound

$$
\xi_{k, d}^{2}=\sum_{j=k+1}^{k+d+1} \zeta_{j}^{2}<\left\|\mathbf{e}^{(k)}\right\|_{\mathbf{M}}^{2}
$$

Given a threshold $\tau<1$ and an integer d, we can stop the iterations when

$$
\xi_{k, d}^{2} \leq \tau \sum_{j=1}^{k+d+1} \zeta_{j}^{2}<\tau\|\mathbf{u}\|_{\mathbf{M}}^{2}
$$

Upper bound Despite being very inexpensive, the previous estimator is still a lower bound of the error. We can use an approach inspired by the Gauss-Radau quadrature algorithm and similar to the one described in Golub-Meurant (2010).

Symmetric Quasi-Definite Systems

$\left[\begin{array}{rr}\mathbf{M} & \mathbf{A} \\ \mathbf{A}^{T} & -\mathbf{N}\end{array}\right]\left[\begin{array}{l}\mathbf{x} \\ \mathbf{y}\end{array}\right]=\left[\begin{array}{l}\mathbf{f} \\ \mathbf{g}\end{array}\right] \quad$ where $\quad \mathbf{M}=\mathbf{M}^{T} \succ 0, \mathbf{N}=\mathbf{N}^{T} \succ 0$.

- Interior-point methods for LP, QP, NLP, SOCP, SDP, ...
- Regularized/stabilized PDE problems
- Regularized least squares
- How to best take advantage of the structure?

Main Property

Theorem (Vanderbei, 1995)
If \mathbf{K} is SQD, it is strongly factorizable, i.e., for any permutation matrix \mathbf{P}, there exists a unit lower triangular \mathbf{L} and a diagonal \mathbf{D} such that $\mathbf{P}^{T} \mathbf{K P}=\mathbf{L D L}{ }^{T}$.

- Cholesky-factorizable
- Used to speed up factorization in regularized least-squares (Saunders) and interior-point methods (Friedlander and O.)
- Stability analysis by Gill, Saunders, Shinnerl (1996).

Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and indefinite.

Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and indefinite.

- MINRES
- SYMMLQ
- (F)GMRES??
- QMRS????

Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and indefinite.

- MINRES
- SYMMLQ
- (F)GMRES??
- QMRS????

Fact: ... none exploits the SQD structure.

Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and indefinite.

- MINRES
- SYMMLQ
- (F)GMRES??
- QMRS????

Fact: ... none exploits the SQD structure.
If the system were definite, we would like to use CG.

Related Problems: an example

$$
\left[\begin{array}{rr}
\mathbf{M} & \mathbf{A} \\
\mathbf{A}^{T} & -\mathbf{N}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
0
\end{array}\right]
$$

Related Problems: an example

$$
\left[\begin{array}{rr}
\mathbf{M} & \mathbf{A} \\
\mathbf{A}^{T} & -\mathbf{N}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x} \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{b} \\
0
\end{array}\right]
$$

are the optimality conditions of

$$
\min _{\mathbf{y} \in \mathbf{R}^{m}} \frac{1}{2}\left\|\left[\begin{array}{c}
\mathbf{A} \\
\mathbf{I}
\end{array}\right] \mathbf{y}-\left[\begin{array}{l}
\mathbf{b} \\
0
\end{array}\right]\right\|_{E_{+}^{-1}}^{2} \equiv \min _{y \in \mathbf{R}^{m}} \frac{1}{2}\left\|\left[\begin{array}{cc}
\mathbf{M}^{-\frac{1}{2}} & 0 \\
0 & \mathbf{N}^{\frac{1}{2}}
\end{array}\right]\left(\left[\begin{array}{c}
\mathbf{A} \\
\mathbf{l}
\end{array}\right] \mathbf{y}-\left[\begin{array}{l}
\mathbf{b} \\
0
\end{array}\right]\right)\right\|_{2}^{2}
$$

Generalized Least Squares

Normal equations: $\left(\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{A}+\mathbf{N}\right) \mathbf{y}=\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{b}$.

Generalized Least Squares

Normal equations: $\left(\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{A}+\mathbf{N}\right) \mathbf{y}=\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{b}$.
At k-th iteration, seek $y \approx \mathbf{y}_{k}:=\tilde{\mathbf{V}}_{k} \overline{\mathbf{y}}_{k}$:

$$
\left(\tilde{\mathbf{B}}_{k}^{T} \tilde{\mathbf{B}}_{k}+\mathbf{I}\right) \overline{\mathbf{y}}_{k}=\tilde{\mathbf{B}}_{k}^{T} \beta_{1} \mathbf{e}_{1}
$$

Generalized Least Squares

Normal equations: $\left(\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{A}+\mathbf{N}\right) \mathbf{y}=\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{b}$.
At k-th iteration, seek $y \approx \mathbf{y}_{k}:=\tilde{\mathbf{V}}_{k} \overline{\mathbf{y}}_{k}$:

$$
\left(\tilde{\mathbf{B}}_{k}^{T} \tilde{\mathbf{B}}_{k}+\mathbf{I}\right) \overline{\mathbf{y}}_{k}=\tilde{\mathbf{B}}_{k}^{T} \beta_{1} \mathbf{e}_{1}
$$

i.e.:

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{B}}_{k} \\
\mathbf{I}
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\beta_{1} \mathbf{e}_{1} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

Generalized Least Squares

Normal equations: $\left(\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{A}+\mathbf{N}\right) \mathbf{y}=\mathbf{A}^{T} \mathbf{M}^{-1} \mathbf{b}$.
At k-th iteration, seek $y \approx \mathbf{y}_{k}:=\tilde{\mathbf{V}}_{k} \overline{\mathbf{y}}_{k}$:

$$
\left(\tilde{\mathbf{B}}_{k}^{T} \tilde{\mathbf{B}}_{k}+\mathbf{I}\right) \overline{\mathbf{y}}_{k}=\tilde{\mathbf{B}}_{k}^{T} \beta_{1} \mathbf{e}_{1}
$$

i.e.:

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{B}}_{k} \\
\mathbf{I}
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\beta_{1} \mathbf{e}_{1} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

or:

$$
\left[\begin{array}{cc}
\mathbf{I} & \tilde{\mathbf{B}}_{k} \\
\tilde{\mathbf{B}}_{k}^{T} & -\mathbf{I}
\end{array}\right]\left[\begin{array}{c}
\overline{\mathbf{x}}_{k} \\
\overline{\mathbf{y}}_{k}
\end{array}\right]=\left[\begin{array}{c}
\beta_{1} \mathbf{e}_{1} \\
0
\end{array}\right] .
$$

Generalized LSQR

Solve

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{B}}_{k} \\
\mathbf{I}
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\beta_{1} \mathbf{e}_{1} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

by specialized Givens Rotations (Eliminate \mathbf{I} first and $\tilde{\mathbf{R}}_{k}$ will be upper bidiagonal)

Generalized LSQR

Solve

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{B}}_{k} \\
\mathbf{I}
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\beta_{1} \mathbf{e}_{1} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

by specialized Givens Rotations (Eliminate \mathbf{I} first and $\tilde{\mathbf{R}}_{k}$ will be upper bidiagonal)

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{R}}_{k} \\
0
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\phi_{k} \\
0
\end{array}\right]\right\|_{2}^{2} .
$$

Generalized LSQR

Solve

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{B}}_{k} \\
\mathbf{I}
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\beta_{1} \mathbf{e}_{1} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

by specialized Givens Rotations (Eliminate I first and $\tilde{\mathbf{R}}_{k}$ will be upper bidiagonal)

$$
\min _{\overline{\mathbf{y}} \in \mathbf{R}^{k}} \frac{1}{2}\left\|\left[\begin{array}{c}
\tilde{\mathbf{R}}_{k} \\
0
\end{array}\right] \overline{\mathbf{y}}-\left[\begin{array}{c}
\phi_{k} \\
0
\end{array}\right]\right\|_{2}^{2}
$$

As in Paige-Saunders '82 we can build recursive expressions of \mathbf{y}_{k}

$$
\mathbf{y}_{k+1}=\mathbf{y}_{k}+\mathbf{d}_{k} \phi_{k} \quad\left(\mathbf{D}_{k}=\tilde{\mathbf{V}}_{k} \tilde{\mathbf{R}}_{k}^{-1}\right)
$$

and we have that

Conclusions

- Nice relation between the algebraic error and the approximation error for mixed finite-element method (See A. RAL-TR-2010-008)

Conclusions

- Nice relation between the algebraic error and the approximation error for mixed finite-element method (See A. RAL-TR-2010-008)
- Dominique Orban and I are analysing several other variants
- Craig,
- GLSMR
and the numerical results validate the theory.

Conclusions

- Nice relation between the algebraic error and the approximation error for mixed finite-element method (See A. RAL-TR-2010-008)
- Dominique Orban and I are analysing several other variants
- Craig,
- GLSMR
and the numerical results validate the theory.
- A. and Orban "Iterative methods for symmetric quasi definite systems" in preparation. WORK IN PROGRESS

