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June 21, 2012



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Overview of talk

I Symmetric Quasi Positive Definite matrices

I Why SQD are important?

I Main properties

I Generalized singular values and minimization problem

I G-K bidiagonalization

I Generalized LSQR and Craig (Stopping criteria)

I Numerical examples

2 / 1



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Overview of talk

I Symmetric Quasi Positive Definite matrices

I Why SQD are important?

I Main properties

I Generalized singular values and minimization problem

I G-K bidiagonalization

I Generalized LSQR and Craig (Stopping criteria)

I Numerical examples

2 / 1



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Overview of talk

I Symmetric Quasi Positive Definite matrices

I Why SQD are important?

I Main properties

I Generalized singular values and minimization problem

I G-K bidiagonalization

I Generalized LSQR and Craig (Stopping criteria)

I Numerical examples

2 / 1



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Overview of talk

I Symmetric Quasi Positive Definite matrices

I Why SQD are important?

I Main properties

I Generalized singular values and minimization problem

I G-K bidiagonalization

I Generalized LSQR and Craig (Stopping criteria)

I Numerical examples

2 / 1



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Overview of talk

I Symmetric Quasi Positive Definite matrices

I Why SQD are important?

I Main properties

I Generalized singular values and minimization problem

I G-K bidiagonalization

I Generalized LSQR and Craig (Stopping criteria)

I Numerical examples

2 / 1



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Linear operators

Let M ∈ IRm×m and N ∈ IRn×n be symmetric positive definite
matrices, and let A ∈ IRm×n be a full rank matrix.

M = {v ∈ IRm; ‖u‖2
M = vTMv}, N = {q ∈ IRn; ‖q‖2

N = qTNq}

M′ = {w ∈ IRm; ‖w‖2
M−1 = wTM−1w},

N ′ = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}
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M′ = {w ∈ IRm; ‖w‖2
M−1 = wTM−1w},

N ′ = {y ∈ IRn; ‖y‖2
N−1 = yTN−1y}

〈v,Aq〉M,M′ = vTAq, Aq ∈ L(M) ∀q ∈ N .

The adjoint operator AF of A can be defined as

〈AFg, f〉N ′,N = fTATg, ATg ∈ L(N ) ∀g ∈M.
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Generalized SVD

Given q ∈M and v ∈ N , the critical points for the functional

vTAq

‖q‖N ‖v‖M

are the “generalized singular values and singular vectors’’ of A.
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vTAq

‖q‖N ‖v‖M

are the “generalized singular values and singular vectors’’ of A.
The saddle-point conditions are{

Aqi = σiMvi vTi Mvj = δij
ATvi = σiNqi qTi Nqj = δij

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

The generalized singular values are the standard singular values of

Ã = M−1/2AN−1/2. The generalized singular vectors qi and vi ,

i = 1, . . . , n are the transformation by M−1/2 and N−1/2 respectively of

the left and right standard singular vector of Ã.
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Quadratic programming

The general problem

min
ATw=r

1

2
wTWw − gTw

where the matrix W is positive semidefinite and
ker(W) ∩ ker(AT ) = 0 can be reformulated by choosing

M = W + νAN−1AT

u = w −M−1g
b = r − ATM−1g.


as a projection problem

min
ATu=b

‖u‖2
M

If W is non singular then we can choose ν = 0.
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Augmented system

The augmented system that gives the optimality conditions for the
projection problem:[

M A
AT 0

] [
u
p

]
=

[
0
b

]
.
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Generalized Golub-Kahan bidiagonalization

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m × n matrix are presented. All of
them can be theoretically applied to Ã and their generalization to
A is straightforward as shown by Bembow (1999). Here, we want
specifically to analyse one of the variants known as the
”Craig”-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

 AQ̃ = MṼ

[
B̃
0

]
ṼTMṼ = Im

AT Ṽ = NQ̃
[
B̃T ; 0

]
Q̃TNQ̃ = In

where

B̃ =



α̃1 0 0 · · · 0

β̃2 α̃2 0
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · β̃n−1 α̃n−1 0

0 · · · 0 β̃n α̃n

0 · · · 0 0 β̃n+1


.
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Generalized Golub-Kahan bidiagonalization

 AQ = MV

[
B
0

]
VTMV = Im

ATV = NQ
[
BT ; 0

]
QTNQ = In

where

B =


α1 β1 0 · · · 0

0 α2 β2
. . . 0

...
. . .

. . .
. . .

. . .

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn

 .
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Algorithm

The augmented system that gives the optimality conditions for
minATu=b ‖u‖2

M [
M A
AT 0

] [
u
p

]
=

[
0
b

]
can be transformed by the change of variables{

u = Vz
p = Qy
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Algorithm

 In 0 B
0 Im−n 0
BT 0 0

 z1

z2

y

 =

 0
0

QTb

 .
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Algorithm

[
In B
BT 0

] [
z1

y

]
=

[
0

QTb

]
.

8 / 1



Sparse Days, Toulouse, 2012 Mario Arioli, Dominique Orban

Algorithm

[
In B
BT 0

] [
z1

y

]
=

[
0

QTb

]
.

QTb = e1‖b‖N
the value of z1 will correspond to the first column of the inverse of
B multiplied by ‖b‖N.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.
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Algorithm

Thus, we can compute the first column of B and of V:
α1Mv1 = Aq1, such as

w = M−1Aq1

α1 = wTMw = wAq1

v1 = w/
√
α1.

Finally, knowing q1 and v1 we can start the recursive relations

gi+1 = N−1
(
ATvi − αiNqi

)
βi+1 = gTNg

qi+1 = g
√
βi+1

w = M−1 (Aqi+1 − βi+1Mvi )
αi+1 = wTMw
vi+1 = w/

√
αi+1.
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u

Thus, the value of u can be approximated when we have computed
the first k columns of U by

u(k) = Vkzk =
k∑

j=1

ζjvj .
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u

Thus, the value of u can be approximated when we have computed
the first k columns of U by

u(k) = Vkzk =
k∑

j=1

ζjvj .

The entries ζj of zk can be easily computed recursively starting
with

ζ1 = −‖b‖N
α1

as

ζi+1 = − βi
αi+1

ζi i = 1, . . . , n
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

Following an observation made by Paige and Saunders, we can
easily transform the previous relation into a recursive one where
only one extra vector is required.
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p

Approximating p = Qy by p(k) = Qkyk =
∑k

j=1 ψjqj , we have that

yk = −B−1
k zk .

From p(k) = −QkB
−1
k zk = −

(
B−Tk QT

k

)T
zk and Dk = B−Tk QT

k

di =
qi − βidi−1

αi
i = 1, . . . , n

(
d0 = 0

)
where dj are the columns of D.
Starting with p(1) = −ζ1d1 and u(1) = ζ1v1

u(i+1) = u(i) + ζi+1vi+1

p(i+1) = p(i) − ζi+1di+1

}
i = 1, . . . , n
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.
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Stopping criteria

‖u− u(k)‖2
M = ‖e(k)‖2

M =
n∑

j=k+1

ζ2
j =

∣∣∣∣∣∣z− [ zk
0

] ∣∣∣∣∣∣2
2
.

‖ATu(k) − b‖N−1 = |βk+1 ζk | ≤ σ1|ζk | = ‖Ã‖2|ζk |.

‖p− p(k)‖N =
∣∣∣∣∣∣QB−1

(
z−

[
zk
0

]) ∣∣∣∣∣∣
N
≤ ‖e

(k)‖M
σn

.
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Error bound

Lower bound We can estimate ‖e(k)‖2
M by the lower bound

ξ2
k,d =

k+d+1∑
j=k+1

ζ2
j < ‖e(k)‖2

M.

Given a threshold τ < 1 and an integer d , we can
stop the iterations when

ξ2
k,d ≤ τ

k+d+1∑
j=1

ζ2
j < τ‖u‖2

M.

Upper bound Despite being very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one
described in Golub-Meurant (2010).
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Symmetric Quasi-Definite Systems

[
M A
AT −N

] [
x
y

]
=

[
f
g

]
where M = MT � 0, N = NT � 0.

I Interior-point methods for LP, QP, NLP, SOCP, SDP, . . .

I Regularized/stabilized PDE problems

I Regularized least squares

I How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation
matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDLT .

I Cholesky-factorizable

I Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

I Stability analysis by Gill, Saunders, Shinnerl (1996).
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Iterative Methods I

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

I MINRES

I SYMMLQ

I (F)GMRES??

I QMRS????

Fact: . . . none exploits the SQD structure.

If the system were definite, we would like to use CG.
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Related Problems: an example

[
M A
AT −N

] [
x
y

]
=

[
b
0

]

are the optimality conditions of

min
y∈IRm

1
2

∥∥∥∥[AI
]
y −

[
b
0

]∥∥∥∥2

E−1
+

≡ min
y∈IRm

1
2

∥∥∥∥∥
[
M−

1
2 0

0 N
1
2

]([
A
I

]
y −

[
b
0

])∥∥∥∥∥
2

2
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Generalized Least Squares

Normal equations: (ATM−1A + N)y = ATM−1b.

At k-th iteration, seek y ≈ yk := Ṽk ȳk :

(B̃T
k B̃k + I)ȳk = B̃T

k β1e1

i.e.:

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

or: [
I B̃k

B̃T
k −I

] [
x̄k
ȳk

]
=

[
β1e1

0

]
.
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ȳ −

[
β1e1

0

]∥∥∥∥2

2

or: [
I B̃k

B̃T
k −I

] [
x̄k
ȳk
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Generalized LSQR
Solve

min
ȳ∈IRk

1
2

∥∥∥∥[B̃k

I

]
ȳ −

[
β1e1

0

]∥∥∥∥2

2

by specialized Givens Rotations (Eliminate I first and R̃k will be
upper bidiagonal)

min
ȳ∈IRk

1
2

∥∥∥∥[R̃k

0

]
ȳ −

[
φk
0

]∥∥∥∥2

2

.

As in Paige-Saunders ’82 we can build recursive expressions of yk

yk+1 = yk + dkφk
(
Dk = Ṽk R̃

−1
k

)
and we have that

||y||2N+ATM−1A =
m∑
j=1

φ2
j and ||y − yk ||2N+ATM−1A =

m∑
j=k+1

φ2
j
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Conclusions

I Nice relation between the algebraic error and the
approximation error for mixed finite-element method (See A.
RAL-TR-2010-008)

I Dominique Orban and I are analysing several other variants
I Craig,
I GLSMR

and the numerical results validate the theory.

I A. and Orban ”Iterative methods for symmetric quasi definite
systems” in preparation. WORK IN PROGRESS
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