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Abstract

In this paper we describe investigations into the use of automatic theorem proving technology in the
refutation of proof obligations. Specifically, we discuss the use of resolution based theorem proving and
model checking to find false obligations and counterexamples. These techniques can be used as basis
of an automatic method for finding faults in design during the formal development of software. This
approach is complementary to verifcation by proof as such proofs can only be completed when all faults
have been corrected. We give a simple example using the B formal development method to demonstrate
its potential.

1 Introduction

Formal specifications have long been advocated as a means of precisely capturing system requirements and
hence as a reference relative to which correctness of an implementation can be proven. In practice how-
ever, although formal techniques are increasingly being adopted particularly in certain critical application
domains, obtaining a proof from first principles of correctness remains an expensive activity.

Despite advances in theorem proving technology which have enabled many proof tasks to be completed
automatically, when a prover fails to complete a proof, the developer is left uncertain as to whether the
failure is due to the inability of the prover to find a proof or simply because the conjecture is actually false,
that is, because there is in fact some defect in the design.

In this situation, the developer is often left with the highly specialised task of inspecting the failed proof to
try to discover which of these is the case. In our experience in proof of real-life formal developments [7, 5]
using the B-Method and tools, although automatic proof may discharge the large majority of the many
thousands of proof obligations generated by even a simple design, the fact that several hundred proof
obligations may remain unproven, means that even cursory inspection of them is highly expensive.

Experience shows however, that when the failed proofsare inspected, some are easily seen to be unprov-
able. Often, there are simply no hypotheses which could possibly be used to justify the conclusion: a
situation which typically indicates that the precondition of an operation needs to be strengthened. The fault
in the specification being relatively obvious once the false proof obligation has been detected. Correction
of the fault then leads to automatic proof succeeding for this proof obligation.

In this paper we describe investigations into the use of automatic theorem proving technology in the refu-
tation of proof obligations in order to find faults in design during the formal development of software.

This activity can be seen as the formal counterpart to software testing which is, after all, the industry’s
standard way of demonstrating correctness of software. A false proof obligation is akin to a failed test in
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that it indicates a fault in the design, the correction of which, by definition, improves the correctness of
the software. An individual true proof obligation, on the other hand, rather like a test success, in itself
does little to demonstrate correctness. Although, refutation, like testing, can never be used to demonstrate
absolutely the absence of errors, successive detection and correction of faults can help increase confidence
in that correctness. Furthermore, each fault corrected, improves the success of automatic proof and hence
lessens the cost of completing the overall proof task.

It has been said that testing can only show the presence of bugs, not their absence (Dijkstra [12]). Whilst this
is true, it does not tell the whole story, and in practical software development, the difference between testing
and proof is not so clear cut. The formal development of a new software system is akin to developing a new
theory in mathematics, with axioms describing the properties of the system. Lakatos argues in his work
on the logic of mathematical discovery [19] that the full development of a mathematical theory requires a
parallel search for proof and for counter-examples. These latter, while seeming to refute the theory actually
contribute a vital part in its development, modifying the assumptions and limitations of the theory, as well
its consequences, and leading ultimately to a better defined and often a more widely applicable or more
elegant theory.

We propose that this methodology is transferred to the formal development of software through a method-
ical search for counter-examples as well as the formal proof of the development. This would not only
demonstrate the presence of bugs at an early stage in the development, but also through demonstrating
weaknesses in the assumptions of the system, improve the specification of its requirements, and ultimately
help produce a better software solution. The view has also been noted within the Irish School of VDM [20].

2 Formal Software Development using the B method

The B method [1] is a “model-oriented” formal method providing notations and support tools for many
of the activities in the software development lifecycle. It is currently being used in several industrial
organisations [15, 3, 4, 16, 9, 6].

Modularity is central to the B method and this is achieved by structuring specifications and developments
into “Abstract Machines”. Machines define an encapsulated state with operations. The state is defined by
the construction of a set theoretic model. Similar constructors to those of other model-oriented notations
are available, although, in practice, one tends to use a number of variables each of simple type, rather than
building more complex, user-defined, types as encouraged by VDM [18] or Z [25].

The invariant and other predicates are given in first order predicate calculus and set theory. The underlying
logic is untyped and typing constraints appear as set memberships in the invariant along with the usual
relationships between variables. The foundations are based on Zermelo set theory with an axiom of choice,
an axiom of infinity, and an axiomatic definition of Cartesian product.

Operations are defined as “Generalised Substitutions”. This departure from the before-after predicates of
VDM and Z, yields the same expressive power whilst giving the language a more programmatic feel and
thus making it more accessible to those with programming, rather than mathematical, experience. For
example, a number of constructs are available which mimic the usual notation for assignment,x := y for
x becomes equal toy, to give loose specifications such asx :2 S for x becomes any member ofS. The
semantics of operations are given by weakest preconditions.

The overall specification is structured by using machine composition. Specifications can be built incremen-
tally by using the “sees” and “includes” mechanisms which respectively allow a read-only and read-write
extension of a machine by new variables and operations. Data reification is provided by “refinements” and
compositional development by “imports”. Low-level machines, “implementations”, can be written in an
executable subset of the language and a library of “base” machines which can be automatically translated
into C code.

Validation is supported by an animation facility which allows the developer to interactively “execute”
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a specification by providing input to simplify non-executable constructs or to resolve non-determinism.
Verification is supported through the generation and discharge of proof obligations which ensure the con-
sistency of specifications and the correctness of refinements.

The emphasis on modularity is also applied to proof. The motivation here is that the overall proof task
should, as far as possible, be decomposed into proofs concerning individual machines. Once a machine
has been proven consistent and correct, those proofs should be valid in any context in which this machine
is used as part of a more complex specification. Indeed, it is this aim that has determined the structuring
mechanisms available for machines. Thus, a highly compositional method is provided for proof so that,
although numerous, proof obligations are mostly simple and the majority can be discharged automatically.

The B-Toolkit, a support system for B [2], provides two approaches to proving : the “autoprover” is used
to automatically discharge the majority of proof obligations using a “rulebase” of built-in rules and tactics;
and the “interprover” which is used to interactively explore the failed proof attempt and extend the rulebase
with user defined “theories” which provide problem specific rules and tactics.

Proof is performed in a cycle of automation and interaction. Firstly theautoproveris used to discharge
obligations using the built-in rulebase. Then the user browses the remainingunproven obligations and
selects one to analyse. The leaves of its failed proof search tree are examined and the user selects a leaf
which is believed to be valid. This is asserted as a lemma which proves the selected proof obligation.
Lemmas thus generated are then proved interactively using the interprover by adding rules to the users rule
set. Future invocations of the autoprover will now pick up the proof rules developed interactively in order
to make the proof of this (and possibly other) proof obligations automatic. This cycle is repeated until all
the proof obligations are discharged. Each iteration of this cycle introduces a new ‘level’ of user theory
thus allowing the addition of only those rules which are necessary to prove the current obligations.

Automated proof is based upon a largerule baseof built-in rules and associated control tactics. This
rule base is not normally visible to the user, but rather provides a number of ‘hooks’ whereby user rules
for forward and backward proof are called from the automatic process. Within the rule base, rules are
organised into ‘theories’, linear collections of rules which are searched in sequence. Each rule can include
a tactic call which directs the prover in the proof search, including tactics which encode the dependencies
between rule sets. Thus thetheoriesare not logical theories in the usual sense, as they are characterised by
their use in proofs rather than logical form, and provide a control strategy for guiding the automatic proof.

Although the combination of autoproof and interproof constitutes a reasonably cost-effective way of com-
pleting the proofs of the large number of proof obligations generated by the method, to date it has been
tuned to the proof of the universally quantified obligations which are typical, and is completely ineffective
at refuting them by proving their negation.

3 Automatic proof using Resolution

3.1 Resolution

Resolution is perhaps the most widely investigated technique for automated theorem proving. First devel-
oped by Robinson in the mid 1960’s [23], it provides a partial decision procedure for the (classical) first
order predicate calculus. It is refutationally complete. That is, if the original premises are not satisfiable, it
will eventually uncover a contradiction. We give a brief review of resolution.

To show that a conclusion,A, follows from a set of premises�, we negate the conclusion and show that the
set of formulae� [ :A is unsatisfiable. The formulae are Skolemised and converted to clausal form. This
gives a set of clauses,fCigni=1, which may not have the same models as� [ :A, however, by a theorem
due originally to Skolem, the clausal form is equivalent as far as satisfiability is concerned. IffCigni=1 is
unsatisfiable, then so is� [ :A. As it is the unsatisfiability of� [ :A, and so the validity ofA given�,
we are interested in, this is sufficient.
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In fCigni=1, each clause is in the form of a disjunction ofliterals,P1 _ P2 _ : : : _ Pm, where eachliteral
Pj is either an atom or the negation of an atom. With the formulae in this form, resolution is described by
a single rule of inference. Given two clauses:

P (�x) _Q :P (�y) _R

whereQ andR represent the remaining literals in the respective clauses, resolution adds a new clause
generated from these two in the following fashion. First the literalsP (�x) and:P (�y) are unified with their
most general unifier� (renaming variables as necessary) and then the two clauses under this unifier are
combined while deleting the contradictory literals. So the resulting clause has the form

�(Q)_ �(R)

The intuition behind this step is that there is an instance of the two literals, given by�, under which they
cannot both be satisfied. Thus, in any model, for the original clauses to be satisfied, the remainingliterals
under that substitution must hold. Clauses continue to be generated in this fashion using the extended
clause set. Eventually, if the clauses are unsatisfiable, the the clause set will contain clausesP and:P for
some atomP . Using the resolution rule this results in the clause with no literals.

The resolution principle gives us a simple yet powerful way of performing proofs. It is relatively simple to
establish the soundness of the procedure, and also its refutational completeness[8]. It is simple to automate
the process. However it suffers from a severe drawback: for a problem of any complexity, it produces a very
large search space. There has been a large effort to devise strategies to control the number of resolvents
generated while maintaining the soundness and refutational completeness of the procedure.

Paramodulation The most basic way to handle the equality predicate in first order logic is to include
amongst the clauses an axiomatisation of the four laws of equational logic. This leads to an explosion in
the number of clauses needed to express a particular problem, with the corresponding greatly increased
search space. In order to handle the equality predicate more simply, the resolution procedure is augmented
by the technique ofparamodulation. Paramodulation adds an extra inference rule to the resolution method.
Given a clauseL(: : : a : : :)_C and a clause containing the equality predicate,(a = b)_D, we can derive
the paramodulantL(: : : b : : :)_C_D. If used with the addition of the reflexivity axiom(x = x), resolution
and paramodulation combined is refutationally complete [8].

The paramodulation method can be combined with some of the normal strategies used in resolution, but
care must be taken to preserve completeness. While a fairly successful technique for handling the equality
predicate, the search space generated is still very large. It does not have the power that a reduction method
using rewrite rules has to rapidly decide the equality of terms. Completion procedures, such as that of
Knuth and Bendix can also be included to augment the power of the rewriting by deriving additional rules.

3.2 Otter and Mace

Otter and Mace are a complementary pair of tools from Argonne National Laboratory. Otter [21] is a
resolution-based automated deduction system. It has a front end which reduces formulae in first-order
logic with equality to clausal form by Skolemisation. As well as resolution and paramodulation, it in-
cludes facilities for term rewriting, term orderings, Knuth-Bendix completion, weighting, and strategies
for directing and restricting searches for proofs.

MACE [22] is a program that can be used to search for (small) finite models of first-order statements. It
takes the same input format as Otter and, for a given number, searches exhaustively for models of that
size. The size has to be very small:in our problem we found that models of more than 10 elements became
infeasible.
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4 Theories and models

We summarise part of the theory of first-order logic (following [8]) and then discuss how this can be used
to support the search for refutations in formal software development.

We assume a basic knowledge of first-order predicate logic, with constant, function and predicate symbols,
with free and bound variables. We begin with a discussion the of the interpretation of first-order formulae.
(We omit for brevity the standard consideration of valuations of free variables.)

Definition 1 Interpretation An interpretationI of a first-order formula� is a setD, together mapping
�I from the symbols of� toD such that:

1. for each constant symbolc, �I(c) 2 D

2. for each n-ary function symbolf , �I(f) : Dn ! D

3. for each n-ary predicate symbolP , �I(P ) : Dn ! fT;Fg

Under the interpretation,� can be evaluated toT or F according to the rules for predicate logic.

Definition 2 Model. If given a first-order formula� and an interpretationm, �m(�) evaluates toT, then
m is a model for�. The set of models for a formula� is given by[�].

Definition 3 Satisfiable.A first-order formula� is satisfiable if there exists a model for�. In this case,
the modelm satisfies�.

A set of formula� is a (consistent)Theoryif there is some interpretationm such thatm is a model for each
formula in�.

Definition 4 Validity. A first-order formula� is valid if every interpretation satisfies�. This is written
j= �.

Definition 5 Logical Consequence.Given a set of first-order formulas�, a first-order formula� is a
logical consequence of� (or is valid with respect to�) if every interpretationI which satisfies� also
satisfies� (or in other words[�] � [�]). This is written� j= �.

The usual process of theorem proving is to prove the validity of a formula with respect to a set of initial
formulas or axioms, that is to develop a sound proof theory.

Definition 6 Soundness.A logical entailment system̀is sound if whenever� is provable from�, � ` �,
then� j= �.

4.1 Refutation

A refutation by proof of� is proof of:�.

Proposition 1 If � is consistent and� j= :� then� 6j= �.
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This is clearly true as for any model for�, :� holds and therefore� cannot hold. Thus to achieve a
refutation, the proof procedure (e.g. resolution) can attempt to show� ` :�.

Refutation by proof may not be possible, even if a theorem is not provable. Refutation by proof would
show:� in all models, whereas,� is not provable if there issomemodel for the axiomatisation� such
that� does not hold. That is, there exists some counter-example model which does not satisfy the formula.

Proposition 2 � 6j= � if there exists a counter-example, that is a modelm for � which is not a model for
�.

This proposition suggests two methods for generating counter-examples to the validity of a formula�. One
is from the following corollary. Note that we informally extend the notation for models to include sets of
formulae and conjunctions.

Corollary 1 � 6j= � if there exists a modelm such thatm 2 [� ^ :�].

This is true since ifm 2 [:�] thenm 62 [�].

Thus we can show the invalidity of a formula by generating counterexamples. Model generators such as
Mace can generate finite models for a set of first-order clauses. Thus a refutational proof method is to
present� ^ :� to the model generator and look for models.

The second method to refute� by counterexample comes from the observation that if� j= � then[�] �
[�]. Thus if [� ^ �] � [�], then there is a modelm 2 [�] such thatm 62 [�] and thus� 6j= �. Hence if
[� ^ �] is strictly contained within[�] then the models in[�]� [� ^�] are counterexamples to� j= �.

Thus model generation and checking provides a means of producing counter-examples to refute (show the
invalidity of) a formula under an axiomatisation.

4.2 Weaker theories

In general, the axiomatisation� of the base theory of a method like B is likely to be too rich for exhaustive
model generation. This is because:

1. � is too large for model generation with reasonable time and space restrictions.

2. Second-order axioms, such as induction which are not realisable in a first-order system.

Thus in general, if we are to use resolution, we have to carry out theorem proving in a weaker theory, ie.
under a subset� � �. For proof this is not a problem since validity in classical logic is monotonic:

Proposition 3 Monotonicity If � j= � then� [� j= �.

However, for searching for counterexamples, this is not the case. If we find a modelm such thatm 2
[�^�], it is not necessarily the case thatm 2 [�^�], since[�] � [�], and so perhapsm =2 [�]. However,
we can make the following statement concerning the weaker theory:

Proposition 4 Given an interpretationm such thatm 2 [�] andm 62 [�] (or alternativelym 2 [:�] ), if
m 2 [� ��] then� 6j= �.

At first sight this seems to be to no advantage as the model has to satisfy the whole of�. However, it can
give rise to a counter-example generation procedure. The model-generator generates models which satisfy
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� ^ :�. These models then becomecandidatesfor counter-examples for� ^ �, and can be tested via
model-checking against���.

These candidates are akin to test cases whichmayshow up design faults. Thus, this method combines
features of proof with features of testing.

4.3 Extending Theories

Having weakened the theory, we can extend it to a larger theory if the larger theory does not negate any
existing theory, that is if the extension is conservative.

Definition 7 Conservative Extension� is a conservative extension to� if for any�, � j= � if and only
if � [� j= �, where� is in the language of�.

Then any model of� can be extended to a model1of �. In this case, we can be sure that a counter-example
in � will also yield a counter-example in� = � [�. (The test is sure to fail.) A similar result applies for
Definitional Extensions. Note that, in particular,inductiongives a conservative extension and so inductive
theorems can be disproved by finding a finite counter-example.

5 Example

5.1 A simple B development

We demonstrate the approach on an simple example development in the B method. Even on this extremely
small example we see the added value which is possible by considering refutation as well as proof in
development, although we do not claim this result to be anything but a demonstration of potential.

The example specification and refinement are presented in Figure 1. The abstract specification (on the left
hand side) defines a set-valued variable,ss, with operations to add an element to the set and to remove an
arbitrary element from it. It also defines an underspecified function which chooses and returns an element
of the set.

The concrete specification attempts to implement the abstract by choosing an element will always return
the last element added, that element having been stored in the variable,rr2, since it was added.

The reader may note that, as it stands, there is an error in the refinement. If the last element added is
removed before it is chosen, then the result of the next invocation of choose will not be from the set. Note
that because of the underspecification of the remove operation, this error could be difficult to find by testing
alone.

The proof of consistency of the abstract specification gives four proof obligations, all of which are proved
automatically. The proof of the validity of the refinement comprises nine proof obligations of which seven
are discharged by the autoprover. Of the remaining two, inspection quickly reveals that one is false, whilst
the status of the other is less clear. The false proof obligation is given below.

8 ss, rr, ee(
(
((ss 6= fg )) (rr 2 ss)) ^
ee2 ss^
ss 6= fg ^

1Strictly speaking this should be for any model of�, there is anelementary equivalent modelwhich can be extended to a model
of � [27, 10]. For the purposes of this paper, this can be ignored.
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MACHINE aset

SETS ENUMSET

VARIABLES ss

INVARIANT ss� ENUMSET

INITIALISATION ss:= fg

OPERATIONS

addelem( ee) b=

PRE ee2 ENUMSET

THEN ss:= ss[ f eeg

END ;

remelem b=

PRE ss 6= fg

THEN

ANY ee

WHERE ee2 ss

THEN

ss:= ss� f eeg

END

END ;

oo � chooseelem b=

PRE ss 6= fg

THEN

oo :2 ss

END

END

REFINEMENT asetR

REFINES aset

VARIABLES ss2, rr2

INVARIANT
ss2� ENUMSET^

rr2 2 ENUMSET^

( ss26= fg ) rr2 2 ss2) ^

ss2= ss

INITIALISATION
ss2:= fg k

rr2 :2 ENUMSET

OPERATIONS

addelem( ee) b=

PRE ee2 ENUMSET

THEN

ss2:= ss2[ f eeg k

rr2 := ee

END ;

remelem b=

PRE ss26= fg

THEN

ANY ee

WHERE ee2 ss2

THEN

ss2:= ss2� f eeg

END

END ;

oo � chooseelem b=

PRE ss26= fg

THEN

oo := rr2

END

END

Figure 1: Abstract and Concrete specification of a set valued variable.
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rr 2 ss^
9 x � ( x2 ss^ x 6= ee)
)
)
(rr 2 ss) ^ ( rr 6= ee)

)

This can be seen to be false since although there somex necessarily different fromee, there is no reason
why thisx should be equal torr, and so it is possible thatrr = ee.

Of course, in a larger example, with many hundreds of unproved obligations, even this cursory inspection
would be very costly. In what follows, we show how resolution based theorem proving techniques can be
used to automatically refute the false obligation and discover a counterexample to it, thus leading to a low
cost means of finding the fault in the design.

5.2 Axiomatisation in Otter

In order to investigate the validity of this unproven proof obligation, we employ a mixture of proof and
counter-example search using Otter and Mace. To use these tools one has to provide them with an axioma-
tisation of the specification in first order logic.

set(auto).
formula_list(usable).

all x -(isaSet(x) & isaElem(x)).
-isaElem(undef) & -isaSet(undef).

isaElem(e1).
isaElem(e2).
e1!=e2.
isaSet(empty).
isaSet(ENUM).
empty!= ENUM.
ENUM = add(e1, add(e2,empty)).

% empty and universe
all x ( isaElem(x) -> -member(x,empty) & member(x,ENUM)).

% add form
all x s (isaSet(s) & isaElem(x) -> isaSet(add(x,s))).
all x s (-(isaSet(s) & isaElem(x)) -> (undef=add(x,s))).

% comm add
all x y s (isaElem(x)& isaElem(y)& isaSet(s)

-> (add(x,add(y,s))= add(y,add(x,s)))).

% idem add
all x s (isaElem(x)& isaSet(s)

-> (add(x,add(x,s))= add(x,s))).

% member definition
all x y s (isaElem(x)& isaElem(y)& isaSet(s)

-> (member(x,add(y,s))<-> x=y | member(x,s))).
end_of_list.

Figure 2: Axioms for a doubleton set world in Otter.

Figure 2 presents the axiomatisation in Otter format of finite set theory which we used. It defines two
types, sets and elements, and constructors for finite setsadd andempty . Note that we know that the
counterexample we are looking for will be a finite set and so we can work in the simpler logic.

In order to give a tightly defined set of models, in this axiomatisation, we have been very specific in our
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requirements on possible models for finite sets. We require two distinct elementse1 ande2 which are
not sets, and also that no sets are members of other sets. We add an extra elementundef representing
non-well-formed terms which reduces the number of models by forcing a single interpretation for many
undefined terms.

======================= Model #1 at 3.21 seconds:
isaElem :

0 1 2 3 4 5 6
-----------------

F F F F F T T

isaSet :
0 1 2 3 4 5 6

-----------------
F T T T T F F

undef: 0
empty: 1
ENUM: 4
e1: 5
e2: 6

add :
| 0 1 2 3 4 5 6

--+--------------
0 | 0 0 0 0 0 0 0
1 | 0 0 0 0 0 0 0
2 | 0 0 0 0 0 0 0
3 | 0 0 0 0 0 0 0
4 | 0 0 0 0 0 0 0
5 | 0 2 2 4 4 0 0
6 | 0 3 4 3 4 0 0

member :
| 0 1 2 3 4 5 6

--+--------------
0 | - - - - - - -
1 | - - - - - - -
2 | - - - - - - -
3 | - - - - - - -
4 | - - - - - - -
5 | - F T F T - -
6 | - F F T T - -

Figure 3: A model of the doubleton set produced by Mace.

This axiomatisation produces simple models of finite set theory with a minimum of seven elements,empty,
e1, e2,fe1g,fe2g,fe1,e2g, undef, eliminating many models which construct sets from other sets. In this
simple case, we were guided by our understanding of the proof obligation that a two element set would be
sufficient to refute the obligation. In general, a more systematic method of generating models with 1, 2, 3
and more objects could be envisaged.

Figure 3 presents one of the models for the finite set theory above as produced by Mace. In fact, 5040
models are produced by Mace which are all simply renaming permutations of this one (5040 = 7!). The
number of such models can be reduced by explicitly assigning domain elements to terms. This also im-
proves efficiency. In this example, we can easily use this technique to give a unique model.

5.3 Refutation by Proof

In the specification given above, there were two unproven proof obligations. Our intention here is to
demonstrate that the status of the false one can be uncovered automatically, leading to the correction of the
error and the full proof of refinement.

10



The (false) Proof Obligation is easily refuted by resolution using Otter. The false proof obligation in Otter
format is:

(all ss2 rr2 ee
((isaSet(ss2) & isaElem(rr2) & isaElem(ee)) ->

(
- ( (ss2 != empty) -> member(rr2, ss2) )|
- member(ee, ss2)|
- (ss2 != empty) |
- member(rr2, ss2)|
- (exists X (isaElem(X) -> (member(X,ss2) & (X!=ee)))) |

(member(rr2, ss2) & (rr2 != ee))
))).

-----> EMPTY CLAUSE at 8.53 sec ---->
---------------- PROOF ----------------
1 [] -isaElem(undef).
2 [] -isaSet(undef).
3 [] e1!=e2.
4 [copy,3,flip.1] e2!=e1.
5 [] -isaSet(x)| -isaElem(y)|isaSet(add(y,x)).
8 [] empty!=ENUM.
16 [] -isaElem(x)| -member(x,empty).
17 [] -isaElem(x)|member(x,ENUM).
20 [] -isaElem(x)| -isaElem(y)| -isaSet(z)| -member(x,add(y,z))|

x=y|member(x,z).
24 [] -isaSet(x)| -isaElem(y)| -isaElem(z)| -member(z,x)|

x=empty| -member(y,x)| -member(u,x)|u=z|y!=z.
26 [factor,20,1,2] -isaElem(x)| -isaSet(y)| -member(x,add(x,y))|

x=x|member(x,y).
30 [factor,24,2,3,factor_simp] -isaSet(x)| -isaElem(y)|

-member(y,x)|x=empty| -member(z,x)|z=y|y!=y.
32 [] isaSet(empty).
33 [] isaSet(ENUM).
34 [] isaElem(e1).
35 [] isaElem(e2).
36 [] ENUM=add(e1,add(e2,empty)).
37 [copy,36,flip.1] add(e1,add(e2,empty))=ENUM.
55 [hyper,34,17] member(e1,ENUM).
72 [hyper,35,17] member(e2,ENUM).
74 [hyper,35,5,32] isaSet(add(e2,empty)).
110 [para_from,37.1.1,26.3.2,unit_del,34,74,55] e1=e1|

member(e1,add(e2,empty)).
472 [hyper,110,20,34,35,32,unit_del,4] e1=e1|member(e1,empty).
492 [hyper,472,16,34] e1=e1.
498 [hyper,492,30,33,34,55,72,unit_del,8,4] $F.
------------ end of proof -------------

Figure 4: A proof of the falsehood of the proof obligation

On adding this to the axiomatisation, resolution finds a contradiction very quickly thus demonstrating the
falsehood of the proof obligation, resulting in a proof, reconstructed by Otter as in Figure 4.

5.4 Refutation by Model Generation

The same result can be achieved by running the model generator on this augmented theory. As expected
there are now no models of size 7. The fact that any models are invalidated by addition of the proof
obligation implies that the proof obligation is not true on all models and is therefore false.

Interestingly, this means of achieving a refutation is successful even without the axiomENUM = add(e1; add(e2; empty))
although it is slower than the refutation by proof described above.
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5.5 Finding counter examples by Model Generation

Although refuting the proof obligation indicates a fault in design, it does not, in itself, lead us to identify
the source of problem. We now show how one can employ the model generator to find a counter example
to the proof obligation and hence uncover the bug.

Naturally, as the obligation is false, running the model generator on axiomatisation with the proof obligation
yields no models. However, if we negate the proof obligation (thus making it satisfiable) and run the model
generator, we get the same models as for the axiomatisation but now 4 new skolem constants$c1; : : : ; $c4
are added. These correspond to the variables existentially quantified in the negated proof obligation.

======================= Model #1 at 3.24 seconds:
isaElem :

0 1 2 3 4 5 6
-----------------

F F F F F T T

isaSet :
0 1 2 3 4 5 6

-----------------
F T T T T F F

undef: 0
empty: 1
ENUM: 4
e1: 5
e2: 6

add :
| 0 1 2 3 4 5 6

--+--------------
0 | 0 0 0 0 0 0 0
1 | 0 0 0 0 0 0 0
2 | 0 0 0 0 0 0 0
3 | 0 0 0 0 0 0 0
4 | 0 0 0 0 0 0 0
5 | 0 2 2 4 4 0 0
6 | 0 3 4 3 4 0 0

member :
| 0 1 2 3 4 5 6

--+--------------
0 | - - - - - - -
1 | - - - - - - -
2 | - - - - - - -
3 | - - - - - - -
4 | - - - - - - -
5 | - F T F T - -
6 | - F F T T - -

$c4: 4
$c3: 5
$c2: 5
$c1: 6

Figure 5: The Model Generator is used to find a counter example

One such counter-example is given in Figure 5 as it presented by Mace. From this the counter-example
can be deduced in B format. Translated back into the original problem syntax, this model attributes the
following instantiations to the quantified variables, which indicates the counterexample we are searching
for.

ss2 = ENUM; rr2 = e1; ee = e1; X = e2

This can then be checked by testing it within the B-tookit, and the problem with the refinement uncovered.
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On correcting the error, all proof obligations are easily proved, and therefore we have avoided the necessity
to even inspect the last of the original proof obligations, which would require more work to prove or
disprove.

6 Discussion

We have shown how automatic theorem proving techniques can be used to show the falsehood of proof
obligations and so can uncover design faults in formal development using the B method. Although the
techniques used are standard, their application to refutation in this type of formal development is novel and
we believe that the transfer of this technology could significantly improve the cost effectiveness of use of
such methods.

Naturally, there is still much work to bedone before this can be achieved. Significantly, only a tiny fragment
of the B language was axiomatised for this example and there is a considerable piece of work to be done to
extend this. Furthermore, we have not shown any formal correspondence between the axiomatisation we
used and that of the B language, although as first-order classical systems they are clearly similar. Also this
is not necessarily a problem as faults when discovered are tested within the original B context and so any
difference in semantics would not lead to erroneous conclusions.

The problem of scale is perhaps the most significant. In the presented example, with no attempt at optimi-
sation, the refutation proof was found in 8 seconds and the counter example model in 3 seconds. However,
limitations on the size of models produced by the model generator render this tool effectively useless for
more realistic problems. We plan to investigate what can be achieved with other model checkers. Larger
examples also require a more skillful use of resolution and term-rewriting techniques but, here at least, it
should be possible to tune the tools to the requirements of the application. Experience will show how far
this can be developed.

As discussed above, the techniques presented are in some ways akin to testing. Over the last two decades,
research has been undertaken into the possibility of systematically deriving tests from formal specifica-
tions. This has been extensively researched for Algebraic specifications and Process based specifications
(eg. [13] [14]). Error detecting in process algebras has also been considered in [24]. Far less research has
been done on finding faults in model-oriented specifications, but we note [11] which proposes techniques
to derive test cases from VDM specifications, the PROST-Objects project [26] and the “Nitpick” tool [17]
which is designed to find faults in Z specifications

Human directed proof is an expensive and highly specialised activity. In B, modularity mechanisms which
have been tuned to make proof compositional result in very many (but relatively simple) proof obligations.
Depending on the level of assurance that is required by the application, typically, only some of these
are proved from first principles. Others are reduced to acceptable “lemmas”, whilst others may simply be
accepted without proof. In the absence of a complete proof from first principles of all the proof obligations,
the purpose of the proof activity becomes bug finding rather than absolute verification and value comes
therefore from the finding of false obligations rather than true ones. As in all science, the validation of a
theory comes from the failure to find counterexamples rather than through the observation of confirming
instances. From this perspective, there is little point in proving 90% of the obligations which are true, if
the status of the false ones among the remaining 10% is not uncovered.
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