
The augmented block Cimmino
distributed method

IS Duff, R Guivarch, D Ruiz, M Zenadi

February 2013

Submitted for publication in SIAM Journal on Matrix Analysis and Applications

 Preprint
RAL-P-2013-001

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

The Augmented Block Cimmino Distributed method

Iain S. Duff1,2, Ronan Guivarch3, Daniel Ruiz3 and Mohamed Zenadi3

ABSTRACT

We introduce and study a novel way of accelerating the convergence of the block Cimmino

method by augmenting the matrix so that the subspaces corresponding to the partitions

are orthogonal. This results in a requirement to solve a relatively smaller symmetric

positive definite system. We consider ways to reduce the size of this system using a

controlled departure from orthogonality. We illustrate the performance of our method on

some realistic test problems.

Keywords: sparse matrices, hybrid solver, block Cimmino, multifrontal method,

orthogonalization of subspaces

AMS(MOS) subject classifications: 05C50, 05C70, 65F50

This report is available through the URL http://www.stfc.ac.uk/CSE/36276.aspx. It has also appeared as

CERFACS report TR/PA/13/11 and INPT(ENSEEIHT)-IRIT report RT-APO-13-2.
1CERFACS, 42 Avenue Gaspard Coriolis, 31057, Toulouse, France (duff@cerfacs.fr).
2R 18, RAL, Oxon, OX11 0QX, England (iain.duff@stfc.ac.uk). The research of this author was supported in

part by the EPSRC Grant EP/I013067/1.
3Université de Toulouse, INPT(ENSEEIHT)-IRIT, France ({guivarch,ruiz,zenadi}@enseeiht.fr).

Scientific Computing Department

R 18

Rutherford Appleton Laboratory

Oxon OX11 0QX

February 18, 2013

Contents

1 Introduction 1

2 The augmented block Cimmino method 5

2.1 The matrices W and S . 9

2.2 Solving the augmented system . 11

3 Filtered augmented block Cimmino 11

3.1 Filtering Cij . 13

3.2 Filtering Aij . 16

3.3 Compressing Cij with SVD . 18

3.4 Cost analysis . 19

4 Conclusions 21

i

1 Introduction

We study the solution of the system

Ax = b (1.1)

where A is an m × n sparse matrix, x is an n-vector and b is an m-vector. In the following, we

assume the system is consistent and for simplicity we suppose that A has full rank.

We will study the solution of the system (1.1) using the block Cimmino method, an iterative

method using block-row projections. In this method, the system (1.1) is subdivided into strips

of rows as in the following:
A1

A2

...

Ap

x =

b1
b2
...

bp

 . (1.2)

Let PR(AT
i) be the projector onto the range of AT

i and Ai
+ be the Moore-Penrose pseudo-

inverse of the partition Ai. The block Cimmino algorithm then computes a solution iteratively

from an initial estimate x(0) according to:

ui = A+
i

(
bi −Aix

(k)
)

i = 1,p (1.3)

x(k+1) = x(k) + ω

p∑
i=1

ui (1.4)

where we note the independence of the set of p equations, which is why the method is so attractive

in a parallel environment. The block Cimmino method is described in more detail by Ruiz (1992).

Although the matrix in equation (1.1) can be rectangular and the Cimmino method can work

on such systems (Elfving 1980), for our main discussion we will assume that A is square and of

order n.

With the above notations, the iteration equations are thus:

x(k+1) = x(k) + ω

p∑
i=1

A+
i

(
bi −Aix

(k)
)

=

(
I − ω

p∑
i=1

A+
i Ai

)
x(k) + ω

p∑
i=1

A+
i bi

= Qx(k) + ω

p∑
i=1

A+
i bi.

The iteration matrix for block Cimmino H = I − Q is then a sum of projectors H =

ω
∑p

i=1 PR(AT
i). It is thus symmetric and positive definite and so we can solve

Hx = ξ, (1.5)

where ξ = ω
∑p

i=1A
+
i bi using conjugate gradient or block conjugate gradient methods. As ω

appears on both sides of equation (1.5), we can set it to one.

There are many aspects to implementing the block Cimmino method. These include the

original partitioning of the equations as in (1.2), the use of block conjugate gradients, and the

way to solve the underdetermined systems on each partition.

1

Figure 1.1: The matrix permuted to block tridiagonal form.

A common partitioning strategy is to use an ordering like Reverse Cuthill-McKee (Chan

and George 1980) to permute the matrix to block triangular form as in Figure 1.1 and then, if

each partition incorporates at least two block rows, both the even and the odd partitions are

mutually orthogonal (no column overlap) and the resulting matrix partition is called a two-block

partitioning. This was studied in detail by Elfving (1998). The matrix H in this case is the sum

of two orthogonal projectors. Therefore, the maximum eigenvalue of the iteration matrix H is 2

and the eigenvalues are clustered around 1. Indeed, it can be shown that the eigenvalues in this

two-block case are equal to 1 plus or minus the cosine of the principal angles between the two

subspaces. Arioli, Duff, Noailles and Ruiz (1992) used this property to obtain a better eigenvalue

distribution by opening the angles between these subspaces using simple column scalings or

ellipsoidal norms.

In the solution of the underdetermined systems (1.3), A+
i is the Moore Penrose pseudo-inverse

of Ai and we can solve these systems knowing that:

A+
i = AT

i (AiA
T
i)
−1
,

but it is better from a sparsity and a numerical point of view to solve instead

Aiui = ri, (ri = bi −Aix
(k))

using the augmented system approach :(
I AT

i

Ai 0

)(
ui
vi

)
=

(
0

ri

)
.

In our implementation, we use the sparse direct multifrontal solver

MUMPS (Amestoy, Duff, L’Excellent and Koster 2001) to solve this augmented system.

An added benefit to the robustness of a direct solver is that MUMPS can exploit the sparsity

structure within the blocks, giving us another level of parallelism to that already obtained from

the block Cimmino iteration.

There are two ways that ill-conditioning can affect the solution using block Cimmino.

• Within the blocks where the systems being solved are symmetric indefinite problems as

ill-conditioning can cause any sparse direct method to behave poorly or unpredictably.

• The other way is across the blocks where there can be problems if the subspaces are far

from orthogonal.

2

Figure 1.2: Nonzero pattern of the matrix bayer01.

Figure 1.3: Spectrum of block Cimmino iteration matrix for bayer01 with 16 uniform partitions.

In our discussion on the theoretical properties of our algorithm, we will use a realistic test

matrix to illustrate this behaviour. This is the matrix bayer01 obtained from Bayer AG by

Friedrich Grund and available from the sparse matrix collection at the University of Florida

(Davis 2008). It is of order 57735 and has 277774 nonzero entries. We partition it into 16

uniform partitions, and we show its pattern in Figure 1.2. In Figure 1.3, we show the spectrum

of the iteration matrix, H, for the bayer01 matrix when using block Cimmino with these 16

uniform partitions.

Although we see that there is a good clustering of eigenvalues around the value 1 (and

this property is true in general) the matrix may still be badly conditioned. One way to

increase the clustering while reducing the ill-conditioning is to open the angles between subspaces

corresponding to the different partitions. One method for doing this is to reorder the matrix and

partition it following the level sets obtained from the use of the Cuthill-McKee algorithm on AAT

3

(Drummond, Duff and Ruiz 1993). Although this helps to open the angles, it is costly, difficult

to implement in a distributed memory environment, and does not always give better results.

As an alternative, we use a hypergraph partitioner PaToH (Catalyürek and Aykanat 1999)

to find a row permutation that will make the partitions less interconnected. PaToH provides

permutations so that the reordered matrix is in bordered block diagonal form where the blocks

on the diagonal will usually be underdetermined. We notice that, with the matrix in this form,

the overlap is only within the boundary columns that PaToH is trying to minimize. One can input

to PaToH the desired number of partitions and, in this present comparison, we use the value 16,

the same number as for our uniform partition. We notice in Figure 1.4 that the intermediate

eigenvalues have been shifted towards 1 which improves the clustering of eigenvalues in the

iteration matrix.

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0
47 eigvals below µ=λmax/100
83 eigvals below µ=λmax/10
λmin=4.00e−09 λmax=2.00e+00

Figure 1.4: Spectrum of block Cimmino iteration matrix for bayer01 with 16 partitions obtained

using the hypergraph partitioner PaToH.

We notice in Figure 1.5 that a uniform partitioning of the matrix bayer01 presents long

plateaux during the convergence of the conjugate gradient iterations. These plateaux are due

to the presence of clusters of small eigenvalues. However, as we might expect, hypergraph

partitioning reduces the number of small eigenvalues as shown in Figure 1.4 and consequently

improves greatly the convergence as we see from the PaToH curve in Figure 1.5.

Although we see that improving the iteration matrix makes the conjugate gradient method

converge faster, the plateaux are still present. These can be reduced even more by using block CG

as in Arioli, Duff, Ruiz and Sadkane (1995b) but they will still be present. Further techniques,

such as the combination of Chebyshev preconditioning with CG can be beneficial to extract

some near-invariant subspace (corresponding to all eigenvalues below some threshold, typically

λmax/100) from the Krylov subspace and to reuse this spectral information to speed up further

solutions with the same matrix but new right-hand sides (Golub, Ruiz and Touhami 2007). Such

techniques are, however, limited because there may be many eigenvalues in such fixed intervals,

and so the memory requirements can become prohibitive.

We will discuss in the following a novel way of augmenting the system to force orthogonality

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iterations

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
a
ck

w
a
rd

 e
rr

o
r
ω
k

Uniform
PaToH

Figure 1.5: The convergence of block Cimmino iteration for bayer01 with 16 uniform partitions

in comparison with 16 partitions obtained using PaToH.

between the subspaces. We describe our augmentation in Section 2 and consider ways of reducing

the extra work caused by the augmentation in Section 3.

We present our conclusions in Section 4.

2 The augmented block Cimmino method

For simplicity, assume that we have a matrix with a block tridiagonal structure as shown in

Figure 2.1(a). Note that the block Cimmino method can work with any matrix structure.

In this figure we have defined four partitions A1 to A4. As we can see in this practical example,

each partition is interconnected only with its neighbours. Thus, the product of these partitions

can be represented by the following :

AiA
T
j =

{
0 if j 6= i± 1

AijA
T
ji if j = i± 1

where Aji and Aij are the submatrices of Ai and Aj respectively that overlap columnwise with

each other, see Figure 2.1(a).

We then augment the matrix A to generate a matrix Ā with partitions Āi so that the inner

products ĀiĀ
T
j are zero. We consider three different ways to augment the matrix to obtain these

zero matrix products.

• One can repeat the submatrices Aij and Aji, reversing the signs of one of them as in the

following A1,1 A1,2 A1,2

A2,1 A2,2 A2,3 −A2,1 A2,3

A3,2 A3,3 −A3,2

 (2.1)

5

A1

A2

A3

A4

Interconnections Nonzeros

(a) Block tridiagonal structure

C1,2

−I
C2,3

−I
C3,4

−I

(b) Normal equations based augmentation

Figure 2.1: Illustrative example of an augmentation process.

• We can also use the normal equations so that, for each pair of neighbouring partitions Ai

and Aj , we expand them on the right with Cij = AijA
T
ji and −I respectively as in the

following A1,1 A1,2 C1,2

A2,1 A2,2 A2,3 −I C2,3

A3,2 A3,3 −I

 (2.2)

It would also be possible to expand with −I and CT
ij which will reduce the number of

augmenting columns if Cij has more columns than rows.

• Finally, we can use an SVD decomposition of Cij , viz. Cij = UijΣijVij . We then replace

Cij by the product UijΣij and −I by −Vij . We will discuss the benefits of this approach in

Section 3 when investigating ways to compress information in these various augmentation

approaches.

Once we build these submatrices, we place them so that they start in the same column as

shown in Figure 2.1(b).

In the case of augmentation by repeating the submatrices Aij and Aji, the product of each

pair of partitions Āi and Āj gives

ĀiĀ
T
j = AijA

T
ji −AijA

T
ji,

and in the case of the augmentation using normal equations Cij we obtain

ĀiĀ
T
j = AijA

T
ji − Cij .

Notice that in both cases we get ĀiĀ
T
j = 0.

Which of these alternatives to use will depend on the structure of the overlaps and we want

to choose the one that minimizes the number of augmenting columns. In the following, we first

concentrate on the Cij and −I augmentation as shown in Figure 2.1(b) before we compare,

in Table 2.2, its behaviour with the approach (2.1). To prevent the Cij blocks from different

neighbours creating new interconnections, we shift them side by side columnwise as shown in the

illustrative example. We note that in cases where there is a largely full column in the submatrices

6

Aij , the second formulation (2.2) might involve a full Cij and so become too expensive with respect

to the first formulation (2.1).

The resulting augmented matrix is in all cases of the form Ā =
[
A C

]
. However, to ensure

that our new system Ā

[
x

y

]
= b has the same solution x, we add extra constraints to the system

to force y to be equal to 0, resulting in the new system[
A C

0 I

][
x

y

]
=

[
b

0

]

hence Ax+ Cy = b

and y = 0

thus Ax = b.

Now that we have shown that we have the same solution from our new system, we have

one remaining problem. The partitions in
[
A C

]
are mutually orthogonal, but they are not

orthogonal with the extra rows in the bottom partition Y =
[
0 Ik

]
, where k is the number of

columns of C. Therefore, we project Y T onto the orthogonal complement of the upper part using

the orthogonal projector

P = PR(ĀT) = P⊕p
i=1R(ĀT

i) =

p∑
i=1

PR(ĀT
i)

which holds as a sum because of the enforced numerical orthogonality between the blocks Āi of

Ā.

The resulting projected set of rows[
B S

]
= W = Y (I − P) (2.3)

is orthogonal to all other partitions of Ā. However, the right-hand side has to change to maintain

the same solution, viz

f =
[
B S

] [x
0

]
= Y (I − P)

[
x

0

]

= −Y P
[
x

0

]

= −Y Ā+Ā

[
x

0

]
= −Y Ā+b

resulting in the new linear system [
A C

B S

][
x

y

]
=

[
b

f

]
(2.4)

which, if f = −Y Ā+b, has the same solution as the previous one, with x corresponding to the

solution of the original system (1.1).

7

Once the new augmented matrix has been built, we can apply block Cimmino to it by keeping

the partitions that were defined for Ā and including W as a single partition. The eigenvalues of

the iteration matrix in this case are all 1. This contrasts with the spectrum of the non-augmented

system shown in Figures 1.3 and 1.4. Since all eigenvalues of the iteration matrix are 1 the block

Cimmino method will converge in one step. That is, because of the orthogonality of W = [B S]

with Ā, the solution is given by: [
x

y

]
= Ā+b+W+f. (2.5)

Figure 2.2: Pattern of the [A C] part when augmenting the matrix bayer01.

To illustrate what we said previously, we show a picture of the partitioned Ā built from the

bayer01 matrix in Figure 2.2, and the S matrix generated from the augmentation process in

Figure 2.3. This is a graphic illustration of the relative sizes of the unaugmented matrix and the

matrix S. Although it is relatively much smaller, the dimension of S is still 918 which can be

reduced to 804 by using transposes of the submatrices Cij if they are rectangular and have more

columns than rows (as mentioned above). Although the order of C is 1.4% of the dimension of

the original matrix, the construction and solution of this matrix can still be a significant part of

the overall computation which is why we seek to reduce this order in Section 3.

We show in Table 2.1 the size of S for four of our test matrices partitioned either uniformly

with p equally sized partitions, or using PaToH with the same number of partitions. From this

we see that, in the case of uniform partitioning, the dimension of S can be even greater than the

original dimension and also that the strategy of using Cij or CT
ij , whichever has fewer columns

(shown in the column Reduced S in the table), can be very beneficial.

We compare in Table 2.2 the size of S when augmenting the matrix either using the normal

equations Cij or using the submatrices Aij/Aji. We notice that most of the time the Aij/−Aji

gives a smaller S.

8

Figure 2.3: Pattern of the S matrix for the augmented system for the matrix bayer01.

Matrix Size #Part. Partitioning Size of S Reduced S

gre 1107 1107 5
Uniform 1227 1138

PaToH 499 373

bayer01 57735 16
Uniform 2951 2469

PaToH 918 804

lhr34c 35152 8
Uniform 10 108 1803

PaToH 1815 1470

lhr71c 70304 16
Uniform 20 283 3671

PaToH 3203 2679

Table 2.1: Dimension of S for some test matrices with Cij augmentation.

2.1 The matrices W and S

In this subsection, we examine some properties of the matrices W and S. The size of S depends

directly on the number of columns in the C block. Thus, fewer interconnections between the

partitions implies a reduced size of C and S.

Since
[
B S

]
= Y (I − P), we see that

S = Y (I − P)Y T (2.6)

from which, as P is a projection matrix, we can immediately see that S is symmetric.

S is a restriction of the orthogonal projector (I−P) whose eigenvalues are in the range [0, 1].

Therefore the eigenvalues of S are in the range [0, 1]. We see this in Figure 2.4.

From the definition of W ,
WW T = [B S][B S]T

= BBT + SST

= BBT + S2

(2.7)

9

Matrix Size #Part. Augmentation Size of reduced S

gre 1107 1107 5
Cij based 373

Aij based 412

bayer01 57735 16
Cij based 804

Aij based 542

lhr34c 35152 8
Cij based 1470

Aij based 919

lhr71c 70304 16
Cij based 2679

Aij based 1799

Table 2.2: Comparison of the size of S with different augmentation approaches.

Figure 2.4: Eigenvalues of S matrix for bayer01.

but also from equation (2.3) and because (I − P) is an orthogonal projector, we can compute

WW T as
WW T = Y (I − P) (I − P)T Y T

= Y (I − P)2 Y T

= Y (I − P)Y T

= S

(2.8)

and thus

BBT = S − S2 (2.9)

(which also shows that the eigenvalues of S lie between 0 and 1).

The matrix S = Y (I − P)Y T reflects the bad conditioning of the Cimmino iteration matrix.

Hopefully, the size of S is small enough to be an improvement compared to the original Cimmino

iteration matrix. This helps to reduce the length of plateaux in the convergence of conjugate

gradients while having Krylov spaces of smaller dimensions. This aspect is also seen in domain

decomposition methods where the problem is condensed into a smaller matrix called the Schur

10

complement that is usually denoted by S (we have chosen the S notation as an analogy with

this).

As W is a partition in our augmented block Cimmino algorithm, the solution obtained using

equation (2.5) involves W+. Since W+ can be expressed as W T (WW T)−1, we have from equation

(2.8) that

W+ = W TS−1 = (I − P)Y TS−1. (2.10)

This involves only S and P . Therefore, the computation using W+ can be easily performed.

2.2 Solving the augmented system

Due to the orthogonality between the partitions of Ā, we have

Ā+b =
∑p

i=1 Ā
+
i bi and P =

∑p
i=1 PR(Ā+

i) (2.11)

which can be used jointly with equation (2.10) to build a solution of the augmented system[
A C

B S

][
x

y

]
=

[
b

f

]
,

through equations (2.5) and (2.3). This solution can be expressed as[
x

y

]
= Ā+b+W+f

=
∑p

i=1 Ā
+
i bi − (I − P)Y TS−1Y

∑p
i=1 Ā

+
i bi.

An algorithm for solving this system becomes quite simple to define. This can be done in the

following steps:

1. Build w = Ā+b, using equation (2.11), and then by simple restriction set f = −Y w.

2. Solve Sz = f using a direct solver as S should be small.

3. Expand z̄ = Y T z and then project it onto the null space of Ā

viz. u = (I − P) z̄.

4. Then sum w + u to obtain the solution

[
x

y

]
, where y = 0.

Note that we don’t need to build B explicitly, only S is used. In that respect, since S is

of smaller size and symmetric positive definite, we can either build S and factorize it or use it

implicitly in a conjugate gradient procedure through matrix-vector products with Y (I − P)Y T

which implies a sequence of contraction, projections and expansion of the vector.

3 Filtered augmented block Cimmino

In this section we propose an approach to reduce the order of the matrix S. We do this by

reducing the number of columns of C which exactly determines the order of the matrix S. Of

course, one way of doing this is to use a partitioning where there is already good orthogonality

between subspaces so that there are only a few columns in C (Arioli, Drummond, Duff and Ruiz

1995a). We study three dropping strategies to reduce the order of S:

11

• We drop columns from C after it is generated, removing from Cij the columns where the

maximum element is smaller than some predefined threshold. Thus, the columns that

have at least one element larger than the threshold are kept in Cij , and we keep only the

corresponding columns in the matrix −I. We illustrate the results of this dropping strategy

in Section 3.1.

• In the case where we augment the matrix using the submatrices Aij , a drop based on a

straight threshold for entries in each column is not the correct way to go as it can destroy

useful information present in these columns. We propose to drop a column depending on a

relative scaled norm of the column. We discuss this in more detail in Section 3.2.

• We finish by studying another way to drop columns in C by building an SVD UijΣijV
T
ij of

each Cij . From usual data compression techniques, we then keep only the k largest singular

values and the corresponding columns in Uij and Vij . We thus obtain a compressed matrix

Uij1,kΣij1,kV
T
ij1,k

of k columns. Rather than taking a fixed number of the largest columns,

we can can just select those columns with singular values above a given threshold. We

study both cases in Section 3.3.

The main problem, when filtering out columns in C, is that the partitions of the augmented

matrix Ā will no longer be mutually orthogonal, so that the matrix
∑p

i=1 PR(ĀT
i) will no longer be

an orthogonal projector. Thus, when solving systems involving
∑p

i=1 PR(ĀT
i), we will no longer get

the projector P⊕p
i=1R(ĀT

i)directly. However, we can recover this, based on intrinsic properties of

both the block Cimmino iterative scheme and of the conjugate gradient method on semi-positive

definite systems.

Block Cimmino gives the minimum norm solution u = Ā+y to the system Āu = y as shown by

Elfving (1980). The iteration matrix of block Cimmino,
∑p

i=1 Ā
+
i Āi, is symmetric semi-positive

definite, and solving the consistent linear system

p∑
i=1

Ā+
i Āiu =

p∑
i=1

Ā+
i yi

with conjugate gradients also yields the minimum norm solution as shown by Kaasschieter (1988).

Using these properties, we are able to recover w = Ā+b, needed in step 1 of our solution scheme

in Section 2.2, through conjugate gradient iterations to solve the system

p∑
i=1

Ā+
i Āiw =

p∑
i=1

Ā+
i bi,

in which the matrix is the iteration matrix of block Cimmino applied to the system

Āw = b (3.1)

with the same partitioning as originally used on A.

The same issue arises in the construction of the matrix S = Y (I − P)Y T which involves the

projector P = Ā+Ā. We can use the same approach as above simply replacing the right-hand

side b in (3.1) by Āej where ej are canonical vectors from the columns of the matrix Y T .

Solving the system

Āz = Āej

12

gives the minimum norm solution
z = Ā+Āej

= Pej

where ej is a canonical vector from the matrix Y T . Accelerating this solution using conjugate

gradients amounts to solving the system

p∑
i=1

Ā+
i Āiz =

p∑
i=1

Ā+
i Āiej .

We solve the previous system for all ej in Y T to obtain the matrix PY T that can be used to

build S = Y (I−P)Y T explicitly. As the solutions associated with these columns are independent

from each other we may also exploit an extra level of parallelism.

If we can keep the dimension of S small enough, then it is attractive to build it explicitly and

factorize it using a direct method. This is the approach we will consider in the following.

3.1 Filtering Cij

We now examine the effect of dropping entries in the contributing subblocks Cij on the dimension

of S and on the subsequent solution of the problem.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Filtering level (AAT normalized, diag=1)

0

100

200

300

400

500

600

700

800

900

S
iz

e
 o

f
S

Figure 3.1: Number of columns of S against filtering level on C, for bayer01.

We show in Figure 3.1 the reduction in the order of S for bayer01 as we increase the relative

dropping tolerance τ for filtering out entries in the Cij . Since the structure of S has large dense

blocks, the value of reducing its dimension from nearly 804 to less than 192 when dropping at 0.1

is obvious. The effect of this dropping on the convergence of the block Cimmino iteration used

to build w = Ā+b is shown in Figure 3.3.

We notice that as one might expect, the more columns that we drop the slower the

convergence. This is due to the fact that the more columns of C that we drop, the more we

destroy the orthogonality between partitions and, in the limit, we may be just left with the original

Cimmino iteration matrix and its bad conditioning. Looking at the eigenvalue distribution of

13

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0
14 eigvals below µ=λmax/100
25 eigvals below µ=λmax/10
λmin=4.59e−03 λmax=2.00e+00

Spectrum of the iteration matrix - Filter threshold 0.1

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0
21 eigvals below µ=λmax/100
34 eigvals below µ=λmax/10
λmin=2.44e−03 λmax=2.00e+00

Spectrum of the iteration matrix - Filter = 0.3

10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 100

Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0
28 eigvals below µ=λmax/ 100
42 eigvals below µ=λmax/ 10
λmin=4.00e−09 λmax=2.00e+00

Spectrum of the iteration matrix - Filter = 0.4

Figure 3.2: Eigenvalues of the iteration matrix after filtering C columns with different filtering

thresholds.

14

0 50 100 150 200 250 300 350 400 450
Iterations

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Ba
ck

w
ar

d
er

ro
r ω

k

Filter at 0.1
Filter at 0.2
Filter at 0.3
Filter at 0.4
Filter at 0.45

Figure 3.3: The effect of dropping columns of C on the convergence of the block Cimmino process.

Filtering threshold τ 0 0.1 0.3 0.4 0.45

Size of S 804 192 72 62 39

Min. Iterations to build S 1 4 11 13 13

Avg. Iterations to build S 1 15 26 34 62

Max. Iterations to build S 1 48 55 60 101

Nb. Iter. w = Ā+b 1 58 91 281 402

Nb. Iter. u = (I − P) z̄ 1 51 71 212 202

‖r‖/ (‖A‖‖x‖+ ‖b‖) 3e− 16 1e− 11 1e− 11 1e− 11 1e− 11

‖r‖/‖b‖ 2e− 15 6e− 11 6e− 11 4e− 11 5e− 11

‖x∗ − x‖∞/‖x∗‖∞ 3e− 11 4e− 10 1e− 09 4e− 09 9e− 09

Table 3.1: Filtering columns of Cij/− I in ABCD on bayer01.

the iteration matrix in each case, as shown in Figure 3.2, one can see that the more we drop the

more intermediate eigenvalues appear. So when the smallest eigenvalue changes from 4.59×10−3

to 2.44× 10−3 (for a filtering threshold of 0.1 and 0.3 respectively), we require an additional 43

iterations. Moreover, when dropping more columns, two very small eigenvalues appear, one at

4× 10−9 and another at 1× 10−5. This explains the appearance of plateaux in the convergence

profile in Figure 3.3 when filtering at 0.4 and 0.45.

We summarize the results of filtering C for the bayer01 matrix in Table 3.1. The order of S

decreases quite significantly as we increase the filtering level although, after a certain point, the

gains are less noticeable. As we expect, at larger filtering thresholds, when the partitions of Ā

depart more and more from being orthogonal, we observe that CG requires more iterations. The

same goes for the construction of S which requires more iterations too. The resulting accuracy

is still good, even if somewhat degraded from the unfiltered case.

15

3.2 Filtering Aij

We examine now the effect of dropping entries in the submatrices Aij and its corresponding

−Aji when using the first variant (2.1) for the augmentation process. To avoid losing important

information when dropping, we look at the norm of the outer product of the k-th column from

each submatrix with respect to the number of entries generated by this outer product. This is

implemented by applying the following steps on each couple Aij/−Aji in C:

• We compute the Frobenius norm of each rank-one update corresponding to the k-th column[
Aij(∗,k) −Aji(∗,k)

]T
. Denoting this by frobij(k), we can compute it by :

frobij(k) = ‖ Aij(∗,k) ‖2‖ Aji(∗,k) ‖2.

• We define dij , an under-estimate of the number of entries in AijA
T
ji, by :

dij = max
k

(card{|Aij(∗, k)| > 0} × card{|Aji(∗, k)| > 0}) ,

where card{y} is the number of entries in y.

• To identify the dominant contributions from the different rank-one updates, we first

compute as a reference value the mean distribution of the rank-one contributions :

νij =
average (frobij(k))√

dij

• For each column, we then count the number of influential entries :

cardij(k) = card{
∣∣Aij(∗,k)

∣∣ ≥ νij
‖ Aji(∗,k) ‖∞

},

cardji(k) = card{
∣∣Aji(∗,k)

∣∣ ≥ νij
‖ Aij(∗,k) ‖∞

}.

If cardij , respectively cardji, is zero, we set it to mij , respectively mji, the number of rows

in Aij , respectively Aji.

• Next, we define for each of the columns a scaled norm

µij(k) =
frobij(k)√

cardij(k)× cardji(k)
. (3.2)

• Finally, using a given threshold τ we select the columns to retain in the couple Aij/− Aji

satisfying µij(k) ≥ τ .

By following these steps, we try to extract some information regarding the numerical density

of each rank-one update corresponding to the columns of a given couple Aij/−Aij . This numerical

density is then used to select the most influential columns in each couple (those above the

threshold τ).

We show in Figure 3.4 the reduction in the order of S for bayer01 as we increase the relative

dropping tolerance τ for filtering the entries in the Aij/−Aji couples. We show in Figure 3.5 the

16

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Filtering threshold τ

0

100

200

300

400

500

600

S
iz

e
 o

f
S

Figure 3.4: Number of columns of S against the filtering level on Aij , for bayer01.

0 50 100 150 200 250 300 350
Iterations

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
a
ck

w
a
rd

 e
rr

o
r
ω
k

Filter at 0.10
Filter at 0.15
Filter at 0.20
Filter at 0.30
Filter at 0.40

Figure 3.5: The effect of dropping columns on the convergence of the block Cimmino process.

effect of this dropping strategy on the block Cimmino iteration cost when computing w = Ā+b.

More detailed results are summarized in Table 3.2.

We notice the same behaviour as when filtering the Cij normal equations subblocks in the

sense that, the more we drop the slower the convergence. We notice that we require 152 iterations

to build w with the Aij/ − Aji strategy when we have 62 columns in S, while we require 281

iterations using the Cij/− I strategy with the same number of columns in S. We are also able to

reduce the number of columns to 19 without seeing too strong a degradation in the convergence

while still keeping good numerical properties.

We compare in Figure 3.6 the values of two different scalings of the frobij(k) norms, µij(k)

and µ̄ij(k) =
frobij(k)√

nnz{Aij(:,k)}×nnz{Aji(:,k)}
. We notice that using the scaled norms µij(k) we retain

more columns since nnz is the total number of entries in the column whereas cardji(k) in equation

17

Filtering threshold τ 0 0.1 0.15 0.2 0.3 0.4

Size of S 542 181 103 62 50 19

Min. Iterations to build S 1 4 4 4 6 14

Avg. Iterations to build S 1 18 23 25 29 72

Max. Iterations to build S 1 51 55 63 63 120

Nb. Iter. w = Ā+b 1 97 130 152 168 323

Nb. Iter. u = (I − P) z̄ 1 91 121 141 160 76

‖r‖/ (‖A‖‖x‖+ ‖b‖) 6e− 16 1e− 11 1e− 11 1e− 11 1e− 11 3e− 11

‖r‖/‖b‖ 3e− 15 5e− 11 6e− 11 6e− 11 6e− 11 8e− 11

‖x∗ − x‖∞/‖x∗‖∞ 2e− 11 1e− 10 2e− 10 5e− 10 6e− 10 1e− 09

Table 3.2: Filtering columns of Aij/−Aji in ABCD on bayer01.

(3.2) is only the number of entries in the column greater than a threshold. We show the effect

of using these two measures for the scaled norm of the rank-one updates in Figure 3.6 where we

have ordered the columns using the scaled norm µ̄ij(k). We then see that, when filtering at 0.4

for example, there are four spikes that increase the size of S from 15, when using µ̄ij(k), to 19.

When we look at the number of iterations, we notice that adding those four columns reduces

the number of iterations from 498, when using µ̄ij , to 323 so clearly the influence of these four

columns is a strong one. We thus use the scaled norm µij(k) to determine which columns to

retain when using the couples Aij/−Aji.

0 100 200 300 400 500 600
Columns of Ā

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
lt

e
ri

n
g
 t

h
re

sh
o
ld

 v
a
lu

e
s

µij(k)

µ̄ij(k)

Figure 3.6: Comparison of two different scaled norms for each rank-one update in Aij/−Aji.

3.3 Compressing Cij with SVD

We now study the SVD approach in which we decompose each Cij into UijΣijV
T
ij . We then try to

select the minimum number of columns with enough information to maintain good convergence

and reduce at the same time the order of S. The resulting augmented matrix is of the following

18

form: A1,1 A1,2 Û1,2Σ̂1,2

A2,1 A2,2 A2,3 −V̂1,2 Û2,3Σ̂2,3

A3,2 A3,3 −V̂2,3

 (3.3)

where Ûij , Σ̂ij and V̂ij are respectively the reduced Uij , Σij and Vij , with only those selected

columns.

We look, first, at a simple case where we compute the k largest singular values and build the

augmented matrix as in (3.3). The results from this approach are shown in Table 3.3. We notice

that the results are slightly worse than when filtering using Cij/− I or Aij/−Aji for comparable

size of S.

Singular values kept per block 5 10 12 15

Size of S 108 209 249 308

Nb. Iter. w = Ā+b 188 102 94 46

Table 3.3: Selecting k largest singular values from Cij in ABCD on bayer01.

We try now to improve the previous selection by looking at the smallest singular value within

all the set of selected columns. This is implemented as follows:

• Select k columns from all the SVD decompositions applied to the Cij blocks.

• Find the smallest singular value among them.

• Use it as a threshold to select further columns whose singular value is larger than this value.

We show in Table 3.4, the results obtained on the bayer01 matrix when using this approach. For

instance, by selecting 2 columns initially, we see that the smallest singular value is 0.2. Then,

we select all columns whose corresponding singular value is larger than 0.2. The results show

that we are able to improve the previous results for comparable sizes of S. However, we lose the

ability to control explicitly the number of columns.

Singular values initially selected per block 2 3 4 5

Smallest singular value 0.2 0.11 0.049 0.02

Size of S 96 171 376 481

Nb. Iter. w = Ā+b 141 107 45 12

Table 3.4: Selecting singular values larger than a threshold from Cij in ABCD on bayer01.

3.4 Cost analysis

An important aspect of the ABCD method is the reusability of the S matrix for multiple,

successive, solves for different right-hand sides. To evaluate the gains obtained using our method,

we look at the operation counts needed to solve several, successive, right-hand sides using classical

block Cimmino, and using the ABCD method with and without filtering.

19

We first define the cost of each solution. The costly part in each block Cimmino iteration is

the computation of P⊕p
i=1R(AT

i)y. Its cost is basically the number of flops needed by a sparse

direct solver to compute a forward-backward substitution. We will denote this cost by CBC(A).

In the case of ABCD, the cost of computing w =
∑p

i=1 Ā
+
i bi is CBC(Ā) per iteration. We can

obtain a value for these quantities from MUMPS.

The initial cost of solving Sz = f is a combination of a Cholesky factorization on S with a

forward-backward substitution. As we treat the matrix S as a dense matrix, the estimation of

the first step is

CS,init =
1

3
n3
s + 2n2

s,

while for the later steps we need only a forward-backward substitution, a bound on this cost is

CS = 2n2
S .

We show in Table 3.5 the estimations for solving a linear system, with multiple right-hand

sides successively, using the classical block Cimmino method, ABCD without filtering and ABCD

with different filtering thresholds. We denote by itbc the number of iterations needed to solve

a single right-hand side using block Cimmino, by itp the number of iterations to compute both

w =
∑p

i=1 Ā
+
i bi and u = (I − P)z̄ and by its the sum over the number of iterations needed to

build all the columns of S. In the case where we use ABCD without filtering, the number of

iterations itp is equal to 2 as we need a single one to build w and another to build u.

The cost estimate in floating-point operations

First right-hand side Next right-hand sides

Block Cimmino itbc × CBC(A) itbc × CBC(A)

ABCD (no filtering) (ns + 2)× CBC(Ā) + CS,init 2× CBC(Ā) + CS
ABCD (with filtering) (its + itp)× CBC(Ā) + CS,init itp × CBC(Ā) + CS

Table 3.5: Estimation of flops needed per step.

We use the estimations from Table 3.5 to generate the graphs in Figure 3.7 where we show the

amount of work needed to solve multiple right-hand sides successively when using the Cij/ − I
augmentation strategy, where we compare the plain block Cimmino on the original matrix, the

augmented version without filtering, and with multiple filtering thresholds. We illustrate in this

figure how quickly one may expect to recover the extra work induced by the augmentation process.

We notice that using the full augmentation process without filtering recovers this extra work

after just two solutions. Further solutions require very much less work, they require only one

block Cimmino iteration plus the cost of a Forward/Backward substitution, making the graph

look flat.

Filtering at 0.1 requires more work at the first run. Indeed, the number of columns in S

combined with the number of iterations to build a single column of S makes the initial cost very

large. This initial cost is less when dropping at 0.3, as the size of S is dramatically reduced

while the number of iterations increases only slightly. But this cost goes back up when dropping

further, the number of iterations needed for each column increases faster than the reduction in

the number of columns in S.

With higher filtering thresholds, it takes more solutions to recover the original cost, and each

of these solutions requires more CG iterations, which can be seen in the increased slope of the

20

0 5 10 15 20 25 30
Number of Right Hand Sides

0

20000

40000

60000

80000

100000

120000

E
st

im
a
ti

o
n
 o

f
th

e
 t

o
ta

l
M

fl
o
p
s

Block Cimmino
ABCD No Filter
ABCD Filter 0.1
ABCD Filter 0.3
ABCD Filter 0.4
ABCD Filter 0.45

Figure 3.7: Comparison of solving multiple right-hand sides successively when using Cij/ − I
couples.

corresponding straight lines in Figure 3.7. We observe that when the filtering threshold gets too

large, the gain per solution is not so effective. When using a filter level of 0.4, we require around

30 solutions to compensate for the extra work which is not unreasonable given the low memory

requirements at that level of filtering. Finally, increasing the filtering threshold even further

makes the approach useless or counterproductive with respect to the plain block Cimmino solve.

We show in Figure 3.8 the costs when using the Aij/− Aji augmentation strategy. Without

filtering, we perform much better than the original block Cimmino iteration. This is due to

the fact that S very small. However, and in contrary to what we have seen with the Cij/ − I
augmentation strategy, the combination of the small size of S and the small number of iterations

to build columns of S makes it possible to use a filter threshold of 0.4, for which the size of

S is only 19, and we recover the cost of generating S after only 10 subsequent solves. In this

augmentation strategy it is possible to reduce the storage for S while requiring relatively few

iterations to build a single column.

4 Conclusions

The block Cimmino method for solving sets of sparse linear equations has the merit of being

embarrassingly parallel, but its convergence is equivalent to block Jacobi on the normal equations

and can be slow. Preprocessing techniques, partitioning strategies and the use of block conjugate

gradients can improve its convergence. However, all of these have their drawbacks or limitations.

We have proposed a novel technique to augment the systems to force the block Cimmino

subspaces to be orthogonal so that only one iteration is required. This involves the solution of a

relatively smaller positive definite system that we solve by forming the matrix and using a direct

solver. We showed that this method is particularly useful when solving multiple successive right

hand-sides. When this auxiliary system is small, the method works well. However, when it is

large, the memory costs can become prohibitive.

21

0 5 10 15 20 25
Number of Right Hand Sides

0

10000

20000

30000

40000

50000

60000

70000

E
st

im
a
ti

o
n
 o

f
th

e
 t

o
ta

l
M

fl
o
p
s

Block Cimmino
ABCD No Filter
ABCD Filter 0.10
ABCD Filter 0.15
ABCD Filter 0.20
ABCD Filter 0.30
ABCD Filter 0.40

Figure 3.8: Comparison of solving multiple right-hand sides successively when using Aij/ − Aji

couples.

We have then looked at methods to reduce the size of this auxiliary system at the cost of

losing partly the orthogonality obtained by the augmentation and thus increasing the number of

iterations for solution.

This study opens up new doors for future investigations. A parallel computation of the

auxiliary system can indeed be easily conducted as the computation of each column in this

auxiliary matrix is independent. This independence between the columns is the first level of

parallelism, and can be supported by other levels of parallelism through the Cimmino blocking

and the direct solver.

Further investigations concern the solution of the auxiliary system implicitly (without building

it) inside the block Cimmino iterations. This can be performed by an inner iteration of conjugate

gradients. A preconditioner has to be used as the matrix is ill conditioned.

References

Amestoy, P. R., Duff, I. S., L’Excellent, J.-Y. and Koster, J. (2001), ‘A fully asynchronous

multifrontal solver using distributed dynamic scheduling’, SIAM J. Matrix Analysis and

Applications 23(1), 15–41.

Arioli, M., Drummond, A., Duff, I. S. and Ruiz, D. (1995a), Parallel block iterative solvers for

heterogeneous computing environments, in M. Moonen and F. Catthoor, eds, ‘Algorithms

and Parallel VLSI Architectures III’, Elsevier, Amsterdam, pp. 97–108.

Arioli, M., Duff, I. S., Noailles, J. and Ruiz, D. (1992), ‘A block projection method for sparse

matrices’, SIAM J. Scientific and Statistical Computing 13, 47–70.

Arioli, M., Duff, I. S., Ruiz, D. and Sadkane, M. (1995b), ‘Block Lanczos techniques for

accelerating the Block Cimmino method’, SIAM J. Scientific Computing 16(6), 1478–1511.

22

Catalyürek, U. and Aykanat, C. (1999), ‘Patoh: A multilevel hypergraph partitioning tool,

version 3.0’, Bilkent University, Department of Computer Engineering, Ankara.

Chan, W. M. and George, A. (1980), ‘A linear time implementation of the reverse Cuthill-Mckee

algorithm’, BIT 20, 8–14.

Davis, T. A. (2008), ‘University of Florida sparse matrix collection,

http://www.cise.ufl.edu/research/sparse/matrices/’.

Drummond, L. A., Duff, I. S. and Ruiz, D. (1993), A parallel distributed implementation of the

block conjugate gradient algorithm, Technical Report TR/PA/93/02, CERFACS, Toulouse,

France.

Elfving, T. (1980), ‘Block-iterative methods for consistent and inconsistent linear equations’,

Numerische Mathematik 35(1), 1–12.

Elfving, T. (1998), ‘A stationary iterative pseudoinverse algorithm’, BIT 38(2), 275–282.

Golub, G. H., Ruiz, D. and Touhami, A. (2007), ‘A hybrid approach combining Chebyshev filter

and conjugate gradient for solving linear systems with multiple right-hand sides’, SIAM J.

Matrix Analysis and Applications 29(3), 774–795.

Kaasschieter, E. (1988), ‘Preconditioned conjugate gradients for solving singular systems’,

Journal of Computational and Applied mathematics 24(1), 265–275.

Ruiz, D. F. (1992), Solution of large sparse unsymmetric linear systems with a block iterative

method in a multiprocessor environment, Phd thesis, Institut National Polytechnique de

Toulouse. CERFACS Technical Report, TH/PA/92/06.

23

	RAL-P-2013-001-cover
	RAL-P-2013-001-report

