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Abstract 

We focus on the parton model and the role of the axial anomaly in polarised deep 

inelastic scatterin"g. We show that the axial anomaly is relevant to each of the higher 

moments of the spin dependent structure function 91 ( x) and not just the first moment. 

This result implies that the factorisation of mass singularities is not sufficient to define 

the parton model in spin dependent QCD. (It is certainly a necessary condition.) We 

also need to consider the locality of the photon parton interaction. The anomaly is 

observed over all x in the EMC 91(x) data. 
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1. Introduction 

In recent times there has been much excitement in the high energy physics commu-

nity about polarised deep inelastic scattering (pDIS) from hadronic targets, particularly 

after the announcement of the EMC Spin Effect [1]. EMC measured the polarised pro­

ton structure function gf(x). After a Regge extrapolation of their data to x = 0 they 

found 
1 

j dx gf(x) = 0.126 ± 0.010(stat.) ± 0.015(syst.) 

0 

{1) 

The flavour singlet contribution to this quantity is the flavour singlet axial charge ll.qo. 

In the old parton model of Feynman l::r.qo determines the fraction of the proton's spin 

which is carried by its quarks. Hence the surprise when EMC found 

l::r.qo = 0.120 ± 0.094(stat.) ± 0.138(syst.) (2) 

VIZ. consistent with zero. 

In an interacting gauge theory like QCD l::r.qo does not measure quark spin after 

all because of the axial anomaly. As Veneziano has stressed [2], the EMC Spin Effect 

should be interpreted as a violation of OZI {in this case the Ellis-J affe hypothesis (3]) 

which is catalysed by the strong U(1) axial anomaly. 

The partonic interpretation of the axial anomaly has been the source of much debate 

in the literature [4-17]. This work has been motivated by the need to explain the "spin 

crisis" and hence has concentrated on the EMC Spin Effect as a first moment problem. 

In this paper we argue that the EMC Spin Effect is really an all moment problem 

- viz. that the axial anomaly is relevant to each of the higher moments of 91(x). 

Rather than complicating things, this result simplifies the partonic interpretation of 

91(x) considerably. However, we have to give up the idea that factorisation of mass 

singularities is sufficient to define the parton model in QCD. (It is certainly a necessary 
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condition.) We need to introduce an extra locality condition so that the quark parton 

distribution is defined to include all partons that make a local interaction with the hard 

photon. The anomaly is observed over a complete range of x - even in the "valence 

region" x 2:: 0.2. This is in contrast with the usual spin dependent gluon distribution 

which is observed only at small x - essentially outside the range of the present data. 

We also consider the parity odd structure function 93 ( x) which occurs with pDIS 

using an (anti-)neutrino beam and a polarised proton target. We argue that 93(x) is 

anomaly free. Hence, 91 ( x) and 93 ( x) may be significantly different at large x. The 

polarised version of the Gross-Llewellyn Smith sum rule does measure a valence quark 

spin component in the proton. We conclude the paper by explaining how these results 

relate to semi-exclusive DIS where, for example, we separate out fast moving pions or 

kaons from the final state hadrons. 

In section two we briefly review what is known about spm dependent parton 

distributions in QCD. We focus on the flavour singlet part of 91(x). The new results 

are presented in section 3, where we discuss the relationship between gauge invariance 

and the locality of photon parton scattering. 

2. Parton Distributions in QCD 

Formally, deep inelastic scattering is described in QCD by the operator product 

expansion (OPE) and the renormalisation group equations (RGE) (see eg. ref. [18]). 

We may write the flavour singlet contribution to 91 ( x) as a sum over spin dependent 

quark and gluon distributions each of which is convoluted with the relevant Wilson 

coefficient distribution, viz. 

1 1 

2 1 {2 J dz 2 x 2 1 J dz 2 :z: 2 
91(:z:, Q )Is= 3V 3 -;-~qo(z, Q )C~(-;, a,(Q )) + 9 -;-~g(z, Q )CH".;' a,(Q )) 

z z 
(3) 
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In leading twist approximation, the quark Aqk(:r:, Q2 ) and gluonic Ag(:r:, Q2 ) distribu-

tions are defined by relation to the OPE so that their odd moments satisfy 

1 

2Ms+(P+)2n J d:r: x2nAqk(x,Q2
) =< p,sl[q(O)T+'Y5(iD+)2n~kq(O)]Q21P,S > 

0 

1 (4) 
2Ms+(P+)2n J dx :r:2nAg(:r:,Q2) = 

0 

Here Gp.v is the gluon field tensor, Gp.v = ~fp.va~Ga~ is the corresponding dual tensor 

and Dp. = Op. + igAp. is the gauge covariant derivative in QCD. The kinematic variables 

pp. and s!L denote the proton momentum and spin vectors respectively (M is the proton 

mass). These gauge invariant flavour singlet quark and gluonic distributions mix under 

the renormalisation group according to Altarelli Parisi evolution [19]. 

The coefficient distributions Cq(:r:,a:,) = 6(:r: -1) + O(a:,) and CB(x,a:,)"' O(a:,) 

are defined likewise. Their even moments reproduce the Wilson coefficients which 

accompany the quark and gluonic operators in the OPE. We have chosen to define 

the composite operators at the renormalisation scale J.L2 = Q2• The coefficient 

distributions are target independent and are calculated in perturbation theory. The 

parton distributions contain all of the target dependent information. 

In this OPE language, the first moment of 91(:r:)ls is given entirely by the target 

matrix element of the flavour singlet axial vector current multiplied by the relevant 

Wilson coefficient. There is no twist two, spin one, local gauge invariant gluonic operator 

which can contribute to the first moment of gl( :r:) [13]. This implies that there is no 

OPE Ag = J0
1 dx Ag(x) term in the first moment of 91(:r:). One has 

1 

Ag j dx C~(:r:, a:,(Q2)) = 0 (5) 

0 

for an arbitrary choice of target. Although the first moment of Ag( :r:) is not given by 
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any single local gluonic operator there is no reason to suppose that it is identically zero 

- especially for an ideal free gluon target. The Mellin theorem uniquely determines 

D.qo in terms of its moments. However, the lack of any gauge invariant local gluonic 

operator with which to define the first moment of b.g(x, Q2) means that D.g(x, Q2 ) is 

uniquely defined up to a delta function at the origin. This result and the general target 

dependence of bog leads us to the conclusion that the target independent coefficient in 

equ.(5) must vanish to all orders in perturbation theory. This result has been argued 

strongly by Bodwin and Qiu [12] for any choice of gauge invariant renormalisation 

scheme (see also [14]). It has the status of a theorem in QCD. 

Whilst the OPE description of DIS is formally correct it is easy to lose track of 

the physics under towers of operator matrix elements. We would like a more intuitive 

description of what is going on. This leads us to the QCD Improved Parton Model 

(IPM) (20-24]. It is constructed following the OPE result for DIS. We factor the DIS 

cross section into a convolution of the IPM parton distributions of the target hadron 

with a hard parton scattering cross section. 

In the parton model one usually defines the quark and gluon distributions at a scale 

A 2 to include all partons with transverse momentum squared kf ::; A 2 • Thus, the lP M 

gluon distribution b.g(x, A 2)IpM is observed via two-quark-jet events with large kf ~ A 2 

(10, 23]. It contributes to 91 ( x) as a convolution with the spin dependent asymmetry for 

producing qq jets from photon-gluon fusion with transverse momentum squared kf ~ A 2 

(see Fig. 1). Once we impose this cut-off on the kf the hard photon-gluon scattering 

cross section is free of any mass singularity. All quarks with kf ::; A 2 are understood 

to be factored into the quark distribution. The picture that we have just described is 

the simplest form of factorisation. It dates from the work of Gribov and Lipatov [24]. 

The kf cut-off parton model has been developed to all orders of perturbation theory 

(for a review see (22]) and has application to a host of different hadronic processes. The 
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IPM parton distributions which are measured in one process (eg. DIS) can be used to 

make testable predictions in other hadron interactions ( eg. Drell Yan and exclusive jet 

production). There is excellent agreement between the calculations and experiments 

without polarisation. 

In this picture, which is based entirely on factorisation in k}, one finds that the 

IPM gluon distribution does contribute to the first moment of 91 ( x) - in apparent 

contradiction with the OPE. If we define /::iq = J; dxl::iq(x) then one finds that (for 

each flavour q) 

a, 
t:lqop E --+ ( /::iq - -!::19 )I PM 

21T 
(6) 

in the expression for the first moment of 91 ( x). This is the Efremov-Teryaev, Altarelli-

Ross result [4, 5]. The gluon term in the first moment of 91 ( x) is induced by a local 

photon gluon interaction, which appears to generate two quark jet events with k} of 

order Q2 [6]. There is no contribution to the first moment from jets with a range of 

k} between the factorisation scale A 2 and Q2 , which is in contrast with the results in 

unpolarised DIS and the higher moments of 91 ( x). 

The apparent contradiction between the OPE and IPM results for the first moment 

of 91 ( x) has a simple resolution when one considers the axial anomaly in QCD. The axial 

anomaly [25] is related to the definition of /5 and hence is relevant to each moment of 

91 ( x). The simplest way to see this is at one loop in perturbation theory. We now 

evaluate the OPE quark distribution of a gluon at 0( a,). How we treat the axial 

anomaly determines the gluonic Wilson coefficients for each moment. 

3. The Axial Anomaly and pDIS 

The spm dependent asymmetry l::iu( x, Q2 , P 2 , m 2) = u( 1 j 9 j--+ qq) - u(l j 

9 l-+ qq) for photon-gluon fusion at 0( a,) is calculated from the box graphs in Fig. 
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1. This asymmetry is just 91(x) for an ideal gluon target at one loop. We may apply 

the OPE and write Au(x,Q2,P2,m2) as the sum of the target independent gluonic 

Wilson coefficient distribution C9(x, ~,o:,(J.L2 )) and the OPE defined spin dependent 

quark distribution of the gluon Aqgluon( x, J.L 2). Here J.L2 is the renormalisation scale in 

the problem. The quark distribution is defined by the absorptive part of the forward 

vector, vector, axial-vector (VVA) amplitudes, which are obtained by replacing the axial 

vector current by the general spin-odd axial-tensor operator q(Oh+rs(D+?nq(O) in the 

Adler Bell J ackiw triangle amplitude. In A+ = 0 gauge, Aqgluon( x) is given by the x 

dependent triangle amplitude (see Fig. 2) [6] 

2p+Aqgluon( X) = -ig22T 

J d
4k h(x _ k+ )h((k _ p)2 _ m 2) Tr[(k + m)E*(k- p + m)€(k + mh+rs] 

(211')4 P+ (k2 - m2)2 

(7) 

Here we consider one flavour of quark and T = ~ is a group factor; m and pp. denote 

the quark mass and gluon momentum respectively. We shall evaluate Aqgluon(x, J.L2) via 

minimal subtraction. This calculation provides the most transparent insight into the 

role of the axial anomaly in pDIS. With dimensional regularisation the axial anomaly 

becomes a problem of how to continue the ;s into the regulator dimensions. The correct 

~rocedure was established by 't Hooft and Veltman (26]. Gauge invariant regularisation 

is equivalent to the continuation 

{; IL, ;s} + = o 

['Yp., ;s]- = 0 

J.L = 0,1,2,3 
(8) 

J.L = regulator dimensions 

where ;s = i;o;1 r2r3· This 't Hooft Veltman prescription for the ;s reproduces the axial 

anomaly. Hence, it should be used consistently for the renormalisation of each of the 

gauge dependent Noether symmetry current A;, which satisfies the divergence equation 

8~' A! = 2mqi;sq. We shall refer to it as the S continuation.) 
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We first integrate over k+ and k_ to evaluate the the momentum conserving delta 

functions in equ.(7). The Dirac trace is evaluated in 4 + f regulator dimensions. We 

find 

(9) 

Here J.£ 2 is the renormalisation scale and P 2 = -p2 is the virtuality of the gluon. The 

overall positive (negative) sign indicates a left (right) handed gluon polarisation. The 

2:{ k}( 1 - x) term comes from the continuation of r5 into the regulator dimensions 

and is absent when we use the S continuation. If no ultraviolet cut-off is imposed the 

k} integral develops a ~ pole. This pole cancels with 2:{ k}(l - x) to give a finite 

contribution in the limit f-+ 0, which is the axial anomaly (6, 9]. 

Our one loop parton distribution and hence the gluonic coefficient distribution 

depends upon how we choose to continue the rs into the regulator dimensions. We 

find the result 

(10) 

which comes from the maximum possible k} and describes a contact interaction between 

the hard photon and the gluon target. This result is important for our understanding 

of the parton model in spin dependent QCD. 

Each moment of tl.qgluon( x, J.£2 ) and, hence, each gluonic Wilson coefficient is 

dependent upon how we treat the anomaly. The one loop gluon matrix elements of 

the axial tensor operators q(Oh+rs(D+)2nq(O) change by a polynomial in the external 

gluon momentum when if we swap from the 't Hooft Veltman to the S continuation of /S· 

In other words, there is a generalised anomalous gluonic (gauge dependent) counterterm 

associated with each of the spin-odd axial tensor operators. At order 0( a:.,) these local 
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counterterms generate the (gauge independent) anomalous contribution to the gauge 

invariant parton distribution ~qgluon(x,JL2 ), viz. equ.(lO). 

Our calculation at O(a,) is really QED up to the group factor T = l, which comes 

from summing over colour indices at the quark gluon vertex. From equ.(lO) we can 

deduce the generalised (spin 2n + 1) gauge dependent counterterm in QED. In A+ = 0 

gauge it reads 

2a Aa8.X(8 )2n {3 k+ ... +(2n+l) = -6nf+.Xa{3 + A 
11" 

(11) 

where 6n = J0
1 d:z::z: 2n(l-:z: ). These gauge dependent counterterms could also be isolated 

in QED by calculating the surface term which arises when we make the momentum shift 

kp. --+ kp. + ap. in the general VVAxial tensor amplitude. There will be a contribution to 

the surface terms from the gauge invariant photon operators F +a( i8+ )2n-l F+ which 

enter due to operator mixing under renormalisation. These terms are subtracted out to 

isolate the gauge dependent counterterm. 

The gauge-invariant axial tensor operators appear in the OPE. These operators 

are defined following the 't Hooft and Veltman prescription for /5· Thus, the OPE spin 

dependent quark distribution includes the local photon gluon interaction. It can only be 

shifted into the gluonic Wilson coefficient distribution (as the k} IPM would suggest) if 

we use the S continuation of /5 into the regulator dimensions. However, the axial tensor 

operators which are constructed via the S continuation are not gauge invariant. They 

differ from the gauge invariant axial tensor operators by a generalised gauge dependent 

gluonic counterterm. Hence, the quark distribution which is defined following the S 

continuation of 15 is not gauge invariant. It is defined in a gauge non-invariant world 

where chira.l symmetry is exact in the Noether sense. In summary, the parton model 

which is based entirely upon factorisation in k} is inconsistent with gauge invariance 

when we consider spin dependent processes. 
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Furthermore, the gauge dependent S distributions do not satisfy Altarelli-Parisi 

evolution. The gauge invariant operators in the OPE are renormalised independently 

of any gauge non-invariant operators. In other words, it is the gauge invariant spin 

dependent quark distribution which mixes with the OPE defined gluon distribution 

under QCD evolution. When we write this gauge invariant quark distribution as the 

sum of anomalous and non-anomalous contributions then it follows that each behaves 

identically so far as mixing with gluon distribution is concerned. The S distribution by 

itself does not contribute to the renormalisation of the OPE ~g(x). The formal basis 

for Altarelli-Parisi evolution is that the moments of the splitting functions reproduce 

the anomalous dimensions of the gauge invariant operators in the OPE. Thus, the 

Altarelli Parisi equations describe the evolution of the gauge invariant quark and gluon 

distributions which are defined via the OPE in equs. (3) and ( 4). 

The IPM parton distributions can be made gauge invariant if we define the quark 

distribution to include all partons which make a local interaction with a hard photon 

in DIS. This definition was previously proposed by Gribov in a little noticed remark 

at the SLAC Lepton Photon Symposium [27]. It means that we need to factor the 

large k} "' Q2 part of the total phase space for photon-gluon fusion into the quark 

distribution ~q( x, A 2 ) as well as the soft part k} s; A 2 • That is, we also have to worry 

about the top endpoint of the k} integration. The local photon-gluon interaction is a 

renormalisation effect associated with the gluonic dressing of the quark partons. 

At this stage, one might think of splitting the OPE defined quark distribution 

~q(x, Q2 ) into an intrinsic quark and a second (anomalous) gluon distribution, both 

of which are gauge invariant. The topological charge density and its higher spin 

generalisation f.:G ~-'"'D 1-'l ... D ~2n G~-'"'. are not good candidate operators with which to 

define the second gluon distribution. Firstly, the hadronic matrix elements of the 

topological charge density have large 1sospm violations in them [28]. Furthermore, 
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when we add any number of gauge covariant derivatives the resultant operator is not 

a topological invariant. This can be verified by varying with respect to the gluon field. 

Hence, ~GJJ.vDp.1 ••• DP.2nGp.v is not a total derivative for n ~ 1. The only sensible way 

to separate out a second spin dependent gluon distribution would be to generalise the 

renormalisation group analysis of Shore and Veneziano [29] to all of the higher moments 

of 91 ( :z:). However, this requires a prior knowledge of the scale dependence of the new 

anomalous distributions beyond O(a,). The separation of Llqo(z) into intrinsic quark 

and gluon distributions is seemingly arbitrary unless the the two terms have a different 

experimental signature (see below). It is better to talk in terms of the distribution 

~qo( :z:) which has nothing to do with spin in the interacting theory due to the axial 

anomaly. 

Since the axial anomaly contributes to 91 ( x) through the OPE quark distribution 

~q(x,Q2 ) it is convoluted with the quark coefficient distribution C~(x) = h(z- 1) + 

O(a,) (see equ.(3)). This means that it can appear over a complete range of x- even in 

the "valence region" x ~ 0.2. One can see that the anomaly contributes at large x by 

the following physical argument. The intrinsic glue carries about 50% of the proton's 

momentum. Hence, a non-perturbative gluon can exist at x close to one. In the local 

photon gluon interaction this gluon is unable to first radiate away momentum and is 

seen in its bare state (at large x) by the hard photon. This is in contrast to the usual 

partonic gluon distribution 6.9( x, Q2 ) which is observed only at very small x - essentially 

outside the range of the present data [15, 16, 17]. In the latter case, the gluon interacts 

with the hard photon by first radiating into a qq pair, which dissipates the momentum. 

Carlitz et al. [6] have suggested that the axial anomaly should be characterised by 

two-quark-jet events with large k} "' Q2 • If this is correct then we should expect to 

see these events over all z in both polarised and unpolarised DIS. (Recall that 91(x) 

is measured in the difference of two spin dependent deep inelastic muon-proton cross 

12 



sections- the sum of which defines the unpolarised structure function. Cross sections are 

positive definite by definition. Any effect seen in the difference of two positive quantities 

is seen in their sum.) A significant two-quark-jet cross section at large x in unpolarised 

DIS has no place in our understanding of the unpolarised gluon distribution. For this 

reason, I believe that the cross section for two quark jet events with kf ""' Q2 at large 

x will be found to be negligible if any experiment is made to measure it. These jets are 

probably suppressed by some soft effects in QCD, for example those which generate the 

isospin dependence of the hadronic matrix elements of the topological charge density 

fiG p.vGIL". (Non-perturbative effects have been discussed in ref. [30]). A small two­

quark-jet cross section does not imply a small anomaly contribution to ~qo. Altarelli 

and Stirling [7] have investigated the possibility of reconciling the EMC data with the 

Ellis-Jaffe hypothesis by invoking a large ~gin the proton. Following previous work [4, 

5, 6], they tried to relate ~g to the anomaly in an IPM defined purely by factorisation 

of soft k}. They convoluted ~g(x) with 8(x- 1) giving a gluon contribution that was 

much too inflated at large x. However, the preceding argument shows that they were 

on the right track - only that the axial anomaly has nothing to do with ~g( x ). 

When polarised e+ e- beams are available at LEP or at SLAC it will be possible to 

measure the polarised photon structure function g'{ ( x). Here we also have to consider the 

axial anomaly in QED [31]: the generalised anomalous currents in QED (see equ.(ll)) 

describe a contact measurement of the soft target photon at leading order a. To 0( a) 

there are two spin dependent photon distributions of the polarised photon: the usual 

partonic one ~1(x, Q2 ), which is defined via the operators F+a(i8+) 2n-l pa+, and also a 

distribution which describes a contact hard-photon soft-photon interaction. This second 

photon distribution has the form given in equ.(10) where we make the replacement 

a, --t 2a. It is gauge invariant at 0( a) and can be made gauge invariant to all orders if 

we construct it from the derivative operators Fp.v ( i8+ )2n. FIL" instead of the generalised 
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anomalous currents. Since the axial anomaly is in the gauge invariant axial tensor 

operators, it follows that this anomalous distribution behaves exactly as the usual spin 

dependent quark distribution when it mixes with ~"Y(x, Q2 ) under QED evolution. With 

the polarised photon structure function we would expect to see large k} "' Q2 jets (as 

described in ref. [6]) as a signature of the axial anomaly per se in QED. The important 

difference is that the axial anomaly in QED describes a contact measurement of the 

physical target photon, unlike the case with strong U(l) anomaly in QCD and hadronic 

targets. Since the contact hard-photon soft-photon interaction is observed over all x in 

the unpolarised photon structure function [32], a finite two-quark-jet cross section at 

large x would not violate the positivity condition which we used when discussing the 

polarised proton target. 

So far we have concentrated on the anomalous (gauge dependent) counterterms 

associated with each of the spin-odd axial-tensor operators, which define ~q( x ). The 

spin dependent valence distribution 

(12) 

could (in principle) be measured in polarised DIS with a polarised proton target and 

(anti-)neutrino beam in the parity odd structure function gg(x). (The cross section 

is infinitesimal in practice.) It is formally defined by the forward proton matrix 

elements of the spin-even axial tensor operators q(Oh+"Ys(D+)2n-lq(O). The spin-even 

axial-tensor operators have odd charge conjugation. The spin-even gluonic operators 

G+a(O)(D+ )2n-2Gc\(O) are even under charge conjugation and do not contribute to 

DIS. There is no operator mixing between quark and gluonic operators with ~qv( x ). 

Similarly, we cannot construct a generalised spin-even, anomalous gluonic counterterm 

with odd charge conjugation. This means that the valence distribution is anomaly free. 
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The polarised analogy to the Gross-Llewellyn Smith sum-rule (33], viz. 

1 

j dx 9~+il(x) = (Aqv )o 

0 

(13) 

(above the charm production threshold) does measure a valence quark spin component 

in the proton. 

The anomaly is (in principle) distributed over all x in Aq( x ). Hence, the violation 

of the Ellis-J affe hypothesis suggests that A qv( x) and Aq( x) may be significantly 

different at large x. This is indicated in Fig. 3. It means that one has to be careful 

when trying to extract the valence distribution from semi-exclusive measurements of 

91 ( x) ( eg. fast pions in the final state). The method proposed in ref. [34] assumes 

a negligible sea contribution to Aq( x) in the traditional "valence region" x 2: 0.2. 

However, the axial anomaly is a property of the sea. The experiment devised in ref. 

[35] is free from this assumption and would provide a measurement of the spin dependent 

valence distribution. It would be interesting to measure Aqv(x) in this way. One could 

then determine the x dependence of the sea contribution to 91 ( x) (which includes the 

anomaly) at large x. 
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Figures : 

Fig.l : The box graphs relevant to photon-gluon fusion. 

Fig.2: The OPE defined quark parton distribution of a gluon is calculated at O(as) 

(and in A+ = 0 gauge) from the forward x dependent triangle graph. 

Fig.3 : Here we show the contributions to 91 ( x) from 6J..g( x) and the axial anomaly. 

The anomaly is manifest over all x (see the dotted region) whilst the usual partonic 

spin dependent gluon distribution is manifest only at small x-essentially outside the 

range of the present data (the shaded region). The bold curve is the EMC fit to 91(x). 

The dashed curve is a possible shape for 93(x). The point is that the total and valence 

distributions may be significantly different at large x. 
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