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ABSTRACT 

Energy Research Unit, Rutherford Appleton Laboratory, 

Chilton, Didcot, Oxon, OXll OQX, UK 

Department of Mechanical Engineering, Queens Building, 

The University of Bristol, Bristol BSS lTR, UK 

Finite memory nonlinear response functions may be estimated using time 

series techniques. Absolute, central and product moment values are 

estimated from the time series data. The nonlinear response values are 

then deduced using each moment form by a simultaneous algebraic method. 

The input data {x(t)} are drawn from a general stochastic process so that 

differences between the moment estimators may be highlighted. In the 

event, no significant differences in the estimated response values and 

predicted output time series were observed demonstrating that the formalism 

is insensitive to the moment estimator used. The accuracy of the response 

estimates is assessed and discussed with reference to the properties of the 

moment estimators. The effect of additive outliers in the data {x(t)} or 

{y(tl} are considered. A simple 'predictor-corrector' methodology for 

additive outliers is developed and applied to a mixed linear and quadratic 

nonlinear system, and its ability to reduce the effects of the outliers is 

demonstrated. 
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INTRODUCTION 

A response function is a characterisation of a relationship between some 
observed input variable {x(tl}, such as temperature, and some observed 
output variable {y(t)}. In general the form of the relationship is .not 

known and science is concerned with the identification, analysis and 
interpretation of such a relationship. These relations then form the basis 

of the physical laws which describe the observed phenomena and our 

acceptance of such laws relies upon the repeatability of the observations 
and the predictive power of the laws, given the underlying probabilistic 
nature of the observations. When estimating such relationships it is 
important to identify those observables which are essential to the 
description of the data and which are superfluous. Often experimental 
situations occur when one does not know which are the important variables 

and characterisations; consequently some degree of intuition may be 

necessary. Thus there is a need, not only to characterise the properties 
of the data, but also determine the minimum amount of information which 

needs to be extracted from the data in order to adequately describe 

relevant aspects of that data. 

A wide class of physically observable systems are irreversible, time 

dependent, nonlinear and possess only finit~ memories. One natural 

characterisation of the nonlinear input-output problem is the impulse 

1 k 1 f . l V059, VOOO h l · · response or Vo terra erne unct1ona s . T e Vo terra ser1es 1s 
known as a functional power series where the functionals are 

multid~mensional convolutions of the impulse response of the system. The 

Volterra series treats the linear case as a subclass of the nonlinear case 
so that all the concepts that are used in linear analysis may be carried 
over into the nonlinear case. The nonlinear response values may be 

estimated from the input data {x(tl} and output data {y(tl} sequences. 

Wiener WI 42 •WISB was the first to characterise the input-output behaviour 

of nonlinear systems in terms of Volterra functionals. Wiener expressed 

the relationship between the input time series sequence {x(tl} and output 

sequence {y(tl} as a Volterra series. The Volterra series may be written 

as 



N n 
y(t) = E !_ J da1 ... f dun h n(a1, ... ,an) ~ x(t-a.) 

n=1 n! yx i=1 1 
(1) 

where N is the order of the system, where the response functions 

h n (a1, ... ,a) characterise the system, where t denote time and where the yx n 
a.'s denotes time delay with respect to the time t. 
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In the present work the response values are estimated directly from the 

time series data {x(tl} and {y(t)}. The time delayed moments between 

{x(t)} and {y(tl} in terms of the Volterra expansion form a set of 

simultaneous inhomogeneous equations which may be solved for the unknown 

response values. Three forms of moments will be considered and the results 

compared from the analysis of a nonlinear system subjected to the same 

stochastic input data. In addition the effect of additive outliers, and 

the use of a predictor-correction method to improve the estimates of the 

response values in the presence of these outliers, are considered. 

GENERAL THEORY 

Considering first the second order absolute cross moment between {x(t)} and 
. IR92 {y(t)} of equat1on (1), we have that 

E(x(t-r1)y(t)) = 

which may be written as 

n 
E[x(t-r1) ~ x(t-a. )) 

' l 1 l= 

Defining the (n+1)th order absolute auto moment as 

3 
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(3) 



n 
Axxn(r1,a1, ... ,an) = E[x(t-r1l .~ x(t-ai)] 

l=l 

then by inspection the (r+1)th order cross moment may be written as 

E [y (t) 

or as 

r 
11' 

i=l 
x(t-r.)} 

l 

N 

N 
= E 1 I da, ... I da h n ( r 1 , ... , r , a 1 , ... , an) 

n=l nT .L n yx r 

r n 
E[ ~ x(t-r.) 11' x(t-a.)] 

i=l l j =1 J 

Axry(r1, ... ,rr) = E 1 Ida1 . . . Ida h n(a1, . . . ,a) 
~1n! n yx n 

Axr xn ( T 1 , T 2 , ... , T r, a 1, .. . , an) 

Moving to central moments now, the average value of the output {y(tl} is 

N n 
E (y (t)) = r 1 Jda1 ... Jda h n(a1, .. . ,a l E( n x(t-ai)) 

n= l n! n yx n i=l 

which when subtracted from equation (1) yields 

N 
{y(tl - E[y(tll} = r l_ Jda1 .. . Jdan hyxn(a1, ... ,an ) 

n=1 n! 

n n 

(4) 

(5) 

(6) 

(7) 

{ ~ x(t-a.) - E[ ~ x(t-ail]} . (8) 
i=1 l i=1 

r 
Multiplying equation (8) by { ~ 

j =1 
{x(t-r.) - E[x(t-r.)] }} on each side and 

J J 
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taking the expectation, by inspection the (r+l)th order cross central 

moment between the output {y(tl} and the input {x(tl} is 

r 
E[ ~ {x(t-Tj) - E[x(t-Tj)]} {y(t) - E[y(t)]}] 

j=l 

r n n 
E[ ~ {x(t-rJ.) - E[x(t-rJ.ll} { ~ x(t-a.) - E[ ~ x(t-a.)J}J (9) 

j=l i=l 1 i=l 1 

Defining the cross central moments as 

r 
Cxry(r

1
, ... , rr) = E[ ~ {x(t~rjl - E[x(t-rj)J} {y(t) - E[y(t)] }l (10) 

j=1 

and the auto central moment as 

r n n 
= E[{ 7T {x(t-rJ.)- E[x(t-rJ.)J} { ~ x(t-a.)- E[ 7T x(t-a.)J}J. (11) 

j=1 i=1 1 i=1 1 

then equation (9) may be written as 

(12) 
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It should be noted that this form of moment is specific to the formalism 

used here and it is not the same as the usual definition of central 
moments, for example ROBS 

C~r xn ( r 1 , ... , r r, u 1 , ... , u n) 

r n 
= E[ ~ {x(t-r.)-E[x(t-r.)J} ~ {x(t-u.)-E[x(t-u.)] }1 

'1 J J '1 1 1 ]= 1= 

which characterise the properties of the data {x(t)}. 

Operating on the Volterra series with a product moment formulation the 

(r+1)th term is 

r r 
E[{ ~ x(t-r.)-E[ 1T x(t-r.)]}{y(t)-E[y(t)J}l 

j=1 J j=1 · ] 

N r r 
= r 1 Jdu1 ... Jdu h n(u1, .. . ,u) E[{ 1T x(t-r.)-E[ 1T x(t-rJ.)]} - n yx n J n=1 n! j=1 j=1 

n n 
{ 71' x(t-u.)-E[ 1T x(t-u.)J}l 
i =1 l i=1 l 

where now we have operated on equation (8) by 

r r 
E[{ 71' x(t-rj)- E[ 71' x(t-rj)]}.l 

j =1 j =1 

which may be written as 
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N 
E l_ fda1 ... fdan h n(a1, ... ,a) 

n=l n! yx n 

Kxr xn ( r 1 , ... , r r, a 1 , ... , an) (13) 

where the cross product moments have been defined as 

r r 
= E[{ ~ x(t-r .) -E[ ~ x(t-rJ. Jl}{y(t)-E[y(t)J}l 

j=1 J j=l 
(14) 

and the auto product moment as 

Kxr xn ( r 1 , ... , r r, IJ 1 , ... , IJ n) 

r r n n 
= E[{ ~ x(t-r.)-E[ w x(t-r .)] }{ ~ x(t-IJ.)-E[ ~ x(t-IJ.)] }1 

j=l J j=1 J i=1 l i=1 l 

(15) 

As can be observed the equation for the (r+1)th order cross moment remains 

the same for each moment formalism and these can be rewritten by denoting 

the absolute, central and product moments as Mxry(r1, ... ,rr) and 

Mxrxn ( r 1, r 2, .. '.' r r' IJ 1 , ... , IJn) . Note that as the cumulant values are 
simple rearrangements of the absolute moments that form is not readily 

amenable for the solution of the response values. 

Collecting these equations which are nonlinear and simultaneous in the 
IR92 unknown response function hyxn(r1, ... ,rn) then 
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N 
Mxry ( r 1, ... , r r) = I: 1 Jda1 ... Jda h r(a1, ... ,a) 

n=1 - n yx r n! 

Mxr xn ( r 1, r 2 , ... , r r, a 1, ... , an) 

N . . 
MxNy ( r 1, ... , r N) = I: 1 Jda1 . . . fda h n(a1, .. . ,a) 

n=1 - n yx n n! 

where N is the order of the system. 

These form a set of N simultaneous inhomogeneous nonlinear integral 

equations, from which the values of the N unknown response functions 

hyxn(a1, ... ,an) can be estimated. This may be compactly written as 

M N = M N N®h N 
X y X X YX 

(16) 

(17) 

The matrix equation given by (17), which describes the complete sequence of 

equations for r.=0,1, ... ,~and where i=1, ... ,N, can be solved algebraically 
l 

for the unknown response values. 

THE EFFECT OF ADDITIVE OUTLIERS 

In this section the effect of occasional intermittent faults in the 

experimental apparatus are considered. These may be considered as additive 

outliers on the data BA90 . Such outliers will contaminate the data and may 

lead to erroneous conclusions about the properties of the process under 

study. 
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First consider a single delta functional outlier on the output data {y(t)}. 

As before the properties of the process may be characterised using equation 

(l) with 

y(t) = 

only now there is an outlier at time t 1 with the new sequence 

{y(t)+aa(t=t1l}. 

* The estimates of the sample moments Mxry(r1, ... ,rr) will be affected but 

the sample moments of the input data Mxrxn(r1, . .. ,rr,a
1

, . .. ,an) will remain 
unaffected. Explicitly if an absolute form of moments is used then the 

cross moments will be 

(18) 

which may be called the apparent absolute moment, where M r (r1, ... ,r) is x y r 
the same as for the case when no outliers are present and where 

Mxrao(t=t) (r1, ... ,rr) is the moment between the input data {x(tl} and the 
outlier. 1 The modified set of equations to be solved is 
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N 
r 1 Jda1 ... Jda h* n(a1, ... ,a) - n yx n n=1 n! 

(19) 

* where the (apparent) kernel values hyxn(a1, ... ,an) have been modified by 

the inclusion of the additive outlier at timet= t 1 . 

Given the input data {x(t)} and the estimated Volterra kernel values 
* ' hyxn(a1, ... ,an) a pred1cted output sequence {yp(t)} may be generated and 

compared against the observed data {y(tl}. The time t 1 at which the 

additive outlier occurred can be identified and a correction to the 

observed value by an amount {y(k) - yp(kl} made. So after adjusting the 

values of y(t), the moment values can be re-estimated using this corrected 

data, .and hence new estimates of the response values are obtained. By 

adjusting the output data in such a predictor corrector manner the response 

values may be readjusted until the value of some test statistic between 

successive predicted time series lie within some predetermined range. So 

as the magnitude of the corrected outlier tends to zero, ie ao(t=t1) ~o, so 

then the corrected values for the estimated moments will converge to their 
* values if no outlier were present, ie M n (r1, ... ,r ) ~M n (r1, ... ,r ) ; 
X X n X y n 

consequently the determined Volterra kernel values will converge to their 
* time values, ie hyxn(a1, ... ,an) ~hyxn(a 1 , ... ,an). 

Next consider the effect of a single delta functional additive outlier 

ao(k) at some time t=t1 that is superimposed onto the values of the input 

observable {x(t) + a6(t=t1)}. 
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All of the estimated sample moments are affected by the outlier and the 

modified moment equations in this case are 

From the input data {x(t) + ct.O(t=t1)} and the estimated response values 
* h n(a

1
, ... ,a) we may generate a predicted output sequence {y (t)} and 

~ n P 

(20) 

compare this against the observed data {y(t)}. If we can identify the time 

t
1 

at which the additive outlier occurred we may correct the observed value 

by a given amount and then re-estimate the response values using the 

corrected data. In a similar fashion to that applied to the output in the 

output data case we may thus adjust the input data in a predictor corrector 

manner until the value of some test statistic between successively 

predicted time series lies within some predetermined range. So as the 

magnitude of the corrected outlier tends to zero, ie ct.O(t=t
1

) ~o, so then 

the corrected values for the estimated moments will converge to their 

values with no outlier were present, 

ie 
* Mxrxn{r1 , ... ,rr,a1 , ... ,an) ~Mxrxn{r1 , ... ,rr,a1 , ... ,an) 

and 
* M r ( r

1
, ... , r ) ~M r ( r

1 
) ; x y r x y , ... , rr 

and consequently the determined Volterra kernel values will converge to 
* their true values, ie h~n(a 1 , ... ,an) ~hyxn(a 1 , ... ,an ) . 

11 

(21) 



Consider a quadr~tic system where 

and introduce an additive outlier ao(t=t1) at t=t1, to the input, then the 

difference between the observed output {y(tl} and {y (tl} the predicted 
p 

output when the outlier is present will be given by the characteristic 

equation 

where ~ is the finite memory of the system and a is the amplitude of the 

outlier at t=t1 . Estimates of {yp(tl} can be obtained by convoluting the 

input data {x(t)} and the estimated response values h (a 1 ) and 
yx • 

hyxx(a1,a2). The amplitude, a, of the additive outlier at time t 1 may be 

solved for using the equation 

(23) 

The value of x(t1) is now adjusted by an amount a, the moments and response 

values are recalculated and equation (23) solved for a new value of a until 

some convergence criteria is satisfied. A similar procedure may be adopted 

if there are several additive outliers or for higher order nonlinear 

systems. Demonstration of these algorithms are provided in the examples in 

the next section. 
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APPLICATION TO SPECIFIC NUMERICAL EXAMPLES 

In the section on moment formulations a set of nonlinear inhomogeneous 

equations were developed using three separate forms of time series moment 

estimators. In the present section the formalism is applied to a numerical 

example where the properties of the system are known in order to assess the 

ability of and accuracy of the absolute, central and product moment forms 

to estimate the response values. Each of the time series moment estimators 

will have a different bias function and similarly each will have different 

tolerances to any, for example, nonstationary effects or outliers in the 

data. 

In order to make a realistic assessment of the significance of such effects 

experimental data is used as the input time series sequences {x{tl} in the 

following examples. Time series data were collected at one minute 

intervals from a solar building for a duration of 30 days in July 1989 at 

Cranfield. External meteorological measurements were obtained for the dry 

bulb temperature, wind speed, wind direction, global and diffuse horizontal 

irradiance and the nett irradiance between the test cell roof and the sky. 

Internal meteorological measurements were obtained for the air temperature, 

wall surface temperatures, and the nett irradiance between the north wall 

and the south facing window. In addition measurements were made of heat 

flux and temperature time series at a depth of Smm within the test cell 

wall's internal and external surfaces. 

In the present work the external surface heat flux data are used as the 

input {x(tJ}. The data {x{tl}, which is of a general stochastic form, are 

then convoluted with known response functions to generate the output 

sequence of data {y{tl} for each of the numerical examples. Explicitly 

using the convolution 

{24) 
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we obtain the output data values {y(t)}, where~ is the finite memory of 
the system and where g1 (r1l and g2 (r1,r2) are the response functions that 

define the nonlinear system. Given the time series sequences {x(t)} and 

{y(t)} we then estimate the absolute, central and product moment values 

and from these the system response values hyx(r1) and hyx2(r1,r2l are 

deduced for comparison with the known values. 

The accuracy of the response function estimates is determined using the 

root mean square difference and absolute mean difference with 

rrns 

and 

for the first order response and 

and · 

~ ~ 
abs = 1 r: r: I hyx2 ( r 1 , r 2) - g 2 ( r 1, r 2) I 

2 r
1

=0 r
2

::0 
(~+1) 

for the second order response values. 

(25) 

(26) 

(27) 

(28) 

When identifying and analysing unknown nonlinear systems the response 

values are not known a priori. However by generating the predicted output 

time series values {yp(tl} from the input data {x(tl} and the estimated 

Volterra kernel values h (r
1

) and h 2(r
1 
,r?), from which we may assess vv uv 
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the accuracy of the predicted sequence values using the normalised root 
mean square difference statistic 

where we have denoted the sample length as T. 

(29) 

Recently it has been shown that it is possible to isolate individual order 

response functions and a methodology has been developed which may allow the 
properties of an unknown nonlinear system to be determined IR92 There is 

no intention to replicate that work here, rather we wish to assess the 

virtues of utilising the three forms of sample statistics into the 

formalism. 

In this example an input sequence {x(tl} is used which consists of 20,000 

points of heat flux data measured at the external surface of a wall at 

intervals of one minute. The sequence of output data {y(tl} was generated 

using {x(t)} and the convolution equation (24). The response functions 

used are 

-0.25r 
= 10.0 cos (~r 1 /5) e 1 

and 

= e-O.S{(r1-6)*(r1-6)/16) e-0.5((r2-6) (r2-6)/16) 
g2( 71' 72) 

(30) 

(31) 

Figure 1 shows a sample of the input data sequence {x(t)} and the 

corresponding output data sequence {y(t)}. Estimates of the absolute 

central and product moment values are obtained and a sample of these are 

given in Figures 2, 3 and 4 respectively. 

Figure 5 shows the estimated linear response hyx(r) and the differences 

(hyx(r)-gy(r)) for the absolute, central and product moment formalisms. 

Figure 6 shows the estimated quadratic response values hyxx(r1,r2) and the 

difference surfaces (hyxx(r1,r2l-g2(r1,r2ll for the absolute, central and 

product moment cases. In Tables 1, 2 and 3 we present the volume under 

each response function, the root mean square difference and absolute mean 
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square difference between the estimated and known response values, where 

the volume is given by 

JJ 
r hyx(r1) for the linear term and 

r 1=0 

TABLE 1 : ABSOLUTE MOMENT CASE 

Estimated Theoretical rrns Absolute Mean 
Volume Volume difference difference 

linear 1 0 . 67 4 7 6 2 8 4 9 3 1 0 . 67 4 7 6 2 8 4 9 6 1.83x10 -7 1. 44x10 -7 

response 

quadratic 90.39153107713 90.39153107751 2.58x1o-7 2.06x10 -7 

response 

The normalised statistic between the known and the predicted output 

sequence for the absolute moment case is 

-7 nrrns = 1. 7 4 x 1 0 

TABLE 2 : CENTRAL MOMENT CASE 

Estimated Theoretical 
Volume Volume 

linear 10.6747628457 10.6747628496 
response 

quadratic 90.3915310774 90.3915310775 
response 

16 

rrns Absolute Mean 
difference difference 

7 .11x10-8 5.92x10-8 

1. 02x10 -7 8.19x10 -8 



The normalised statistic between the known and the predicted output 

sequences for the central moment case is 

-7 nrms = l.15x10 

TABLE 3 : PRODUCT MOMENT CASE 

Estimated Theoretical 
Volume Volume 

linear 10.6747628484 10.6747628496 
response 

quadratic 90.30153107750 90.39153107751 
response 

rms Absolute Mean 
difference difference 

8.83x10-8 6.95x10-S 

l. 91x10 -7 l. 50x10 -7 

The normalised statistic between the known and the predicted output 

sequences for the product moment case is 

-7 nrms = l. 3 3 x 1 o 

As can be seen the results demonstrate that the three forms of moments used 

(absolute, central and product) can all correctly identify the form and 

order of the system response to a high precision. There are apparently no 

adverse effects due to the form of moment statistic used, in fact the 

uncertainties observed seem more related to the conditioning of the matrix 

than the sample length or bias of each form. 

The above results demonstrate the precision of the formalism and that if 

there are any effects due to, for example, bias, or weak nonstationarity 

they are not evident even though the input data are drawn from a stochastic 

distribution and the moment expansions are divergent. 

Next, consider the effect of additive outliers, for example due to an 

instrumentation fault. In the next two examples the same input data {x(tl} 

and output {y(tl} as in the previous example are used. However in the 

first case an additive outlier is included in the input sequence {x(tl} and 
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in the second case an additive outlier is included in the output sequence 

{y(t)}. 

First consider the case of an additive outlier in the sequence {x(t)}. As 

before the sequence of output data {y(t)} was generated using {x(t)} and 

the convolution equation (24), and the response functions given in 

equations (30) and (31). Having generated the sequences {x(t)} and {y(t)} 

the outlier was then added to {x(t)}. Figure 7 shows a sample of the input 

data sequence {x(t)} with the outlier marked. From these data estimates 

are obtained of the absolute moments values. First the time, t=t1, at 

which the outlier occurred must be identified and then we solve equation 

(24) for an estimate of the amplitude a of the outlier. The value of x(t1) 

is then corrected by an amount a and the moments, responses and output 

sequence are re-estimated using the corrected value. This 

'predictor-corrector' procedure may be repeated until the difference of the 

predicted time series between successive applications of the procedure 

converges within some predetermined range. Figure 8 shows the output 

series {y(tl} and the predicted output series {yp(t)}. The series {yp(tl} 

was generated using the input data and the estimated response values 

hyx(r1J and hyxx(r1,r2) before applying the correction and after two 

applications. That difference indicates that an outlier may be present at 

x(l153), this value was then adjusted. Figure 9 shows the estimates of the 

linear response h (r) and the differences (h (r)-g (r)) for the yx yx yx 
uncorrected case and for the case after the second corrective pass. Figure 

10 shows the estimates of the quadratic response hyx(r1,r2) values before 

applic?tion of the method and after two applications of the method. 

As can be seen in Figure 8 the predicted output improves as the effect of 

the outlier is eliminated. An improvement in the estimated response values 

can be seen in Figures 9 and 10 as the effects of the outlier are 

eliminated. 

The results for the uncorrected case are given in Table 7, Tables 8 and 9 

present the results from a single and then two applications of the 

'predictor-corrector' method. As can be seen the method works well and 

yields a good estimate of the true response. 
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TABLE 7: ABSOLUTE MOMENT CASE FOR OUTLIER IN {x{t)}: NO CORRECTION 

Estimated Theoretical rms Absolute Mean 
Volume Volume difference difference 

linear 10.1627 10.6747628 0.919 0.414 
response 

quadratic 90.3874 90.391531 l. 004 0.806 
response 

The normalised statistic between the known and the predicted output 

sequence is 

nrms = 0.8060 

TABLE 8: OUTLIER IN {x(t)}: RESULTS AFTER THE FIRST PASS CORRECTION 

Estimated Theoretical rms Absolute Mean 
Volume Volume difference difference 

linear 10.6579 10.67476 3.42x10 -2 l. 50x10 -2 

response 

quadratic 90.39118 90.39153 l.42xl0-3 
1. 42xl0 -3 

response 

The normalised statistic between the known and the predicted output 

sequences is 

nrms = 0.0318 
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TABLE 9: OUTLIER IN {x(t)}: RESULTS AFTER THE SECOND PASS CORRECTION 

Estimated Theoretical rms Absolute Mean 
Volume Volume difference difference 

linear 10.6684 10.67476 1.328x10 -2 9.775x10 -3 

response 

quadratic 90.39139 90.39153 1. 067x10-3 8.362x10 -4 

response 

The normalised statistic between the known and the predicted output 

sequences is 

nrms = 0.0186 

In the second example an additive outlier in the output data {y(t)} is 

considered. Again the heat flux data is used as the input data {x(t)} and 

{y(tl} is generated using {x(t)} convoluted with g1 (r1) and g2 (r1,r2l as 

defined in equations (30) and (31) with the outlier added at y(1153). The 

position of the outlier is again identified from the difference set 

{y(t) - y (t)}, where {y (t)} is the data predicted using {x(t)} and the 
p p 

estimated response values hyx(r1) and hyxx(r1,r2). The difference 

(y(1153)-y (1153)) yields an estimate of the amplitude a, and this value is 
p 

subtracted from y(1153). The moments and response are re-evaluated and a 

'predictor-

corrector' sequence may be continued until the test statistic nrms falls 

within a predetermined range. 

In Figure 11 are shown sample plots of yp(t) and y(t) before any correction 

is applied and after a single application of the predictor-corrector. 

Figure 12 shows the estimated linear response values hyx(r1) and the 

differences (hyx(r1l-g1 (r1)) and Figure 13 shows the estimated quadratic 

response surfaces hyxx(r1,r
2

) before any correction is applied and after a 

single application of the predictor-corrector. The results for these two 

cases are presented in Tables 10 and 11 and as can be seen significant 

improvements in the estimated response values are achieved with only a 

single application of the method. 
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TABLE 10: ABSOLUTE MOMENT CASE FOR OUTLIER IN {y(t)}: NO CORRECTION 

Estimated Theoretical rms Absolute Mean 
Volume Volume difference difference 

linear 10.723 10.674762 0.408 0.334 
response 

quadratic 90.392 90.391531 8.67x10-3 6.657x1o-3 

response 

The normalised statistic between the known and the predicted output 

sequence is 

nrms = 0.2015 

TABLE 11: OUTLIER IN {y(t)}: RESULTS AFTER THE FIRST PASS CORRECTION 

Estimated Theoretical rms Absolute Mean 
Volume Volume difference difference 

linear 10.67478 10.674762 l. 977x10 -4 
1. 617x10 -4 

response 

,.. -4 quadratic 90.3915315 90.3915311 -o 4 . 237x10 3.245x10 
response 

The normalised statistic between the known and the predicted output 

sequences is 

-5 nrms = 9.76x10 
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CONCLUSIONS 

In this work a formalism IR92 , which can identify the order and form of 

nonlinear systems, has been used to test if the formulation of the moment 

estimators is an important factor in the analysis of an unknown process. 

Three forms of time series moment estimator were used (absolute, central 

and product) in the formalism and no significant effects due to bias were 

observed. The accuracy seemed more related to the conditioning of the 

matrix used in the formalism than to the statistical accuracy of the 

moments; although when the moments were ill defined the response estimates 

deteriorated. It is also noted that there is no advantage in using 

cumulant estimates in the formalism. An absolute moment form was then used 

to illustrate the use of a simple 'predictor-corrector' method for additive 

outliers that may be present in the input {x(tl} or output {y(t)} data 

sequences. A methodology for the identification and correction of additive 

outliers was demonstrated and may be used when the set of outliers forms a 

small fraction of the time series. 
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I 

FIGURE CAPTIONS 

1 Sample of a) the heat flux data {x(t)} wm-2 K-l and b) the output data 

{y(t)} arbitrary units. 

2a Third order auto moment of the input data using the absolute moment 

formalism. 

2b Third order cross moment between the input and output data, using the 

absolute moment formalism. 

3a Third order auto moment of the input data using the central moment 
formalism. 

3b Third order cross moment between the input and output data, using the 

central moment formalism. 

4a Third order auto moment of the input data using the product moment 

formalism. 

4b Third order cross moment between the input and output data, using the 

product moment formalism. 

5 a) Estimated first order response using the absolute moment formalism 

and the differences between the estimated and known first order 

response using the b) absolute c) central and d) product moment 

formalisms. 

6 a) Estimated second order response using the absolute moment formalism 

and the difference surfaces between the known and estimated second 

order response using the b) absolute c) central and d) the product 

moment formalisms. 

7 Sample of a) the heat flux data {x(t)} with an additive outlier and b) 

the output data {y(tl} arbitrary units. 
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8 Sample of the output data {y(t)} and the output data {yp(t)} predicted 
using the input data {x(t)} and the estimated response values hyx(r1) 
and hyxx(r1,r2) a) before applying any correction and b) after two 

applications of the predictor-corrector. 

9 The estimated response hyx(r1) and the difference surface 

(hyx(r1)-g1 (r1)) for a) before application of the corrector and b) 

after the second application of the predictor-corrector. 

10 The estimated response surface hyxx(r1,r2) a) before application of 
the corrector and b) after two applications of the 

predictor-corrector. 

11 Plot of the predicted output yp(t) and the observed output y(t) in the 

region of the outlier for a) the uncorrected case and b) after a 
single application of the predictor-corrector. 

12 The estimated response hyx(r1) and the differences (hyxx(r1)-g2(r1)) 
for a) the uncorrected case and b) after a single application of the 

predictor-corrector. 

13 The estimated response surface hyxx(r1,r2) a) before application of 

the corrector and b) after a single application of the 

predictor-corrector. 
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