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Abstract 

Starting from the definition of monopoles as topological obstructions, 

one can formulate a universal principle for deriving monopole interactions in 

any gauge theory whether in classical or quantum mechanics. In this paper, 

using loop space techniques developed earlier for the classical monopole, 

equations of motion are derived also for quantum monopoles in nonabelian 

gauge fields. An additional gauge symmetry appears as a degeneracy in 

solving the Euler-Lagrange problem, so that starting say from an SU(N) 

symmetry, a 'parity doubling' of the symmetry to SU(N) X SU(N) is-ob

tained. A beginning is made in exploring the resultant dynamics. 





1 Introduction 

Through the work of Diracl11, Lubkinl21, Wu-Yangl31, Colemanl41 and others, it is 

now well-known that monopoles occur "naturally" as topological obstructions in 

many gauge theories with compact gauge groups. However, it is still perhaps not 

widely recognised that the dynamics of monopoles is then uniquely determined 

as a consequence of the topology. Intuitively, that this is the case can be seen as 

follows. The assertion that the particle carries a monopole charge is synonymous 

with the statement that the gauge field has a certain topological configuration 

in the spatial region surrounding that particle. If the particle moves, therefore, 

the field around it will have to rearrange itself so as to maintain a configuration 

consistent with the particle at the new position still carrying the same monopole 

charge since this charge, being topological, is by continuity conserved. Hence, it 

follows that the field must be coupled to the monopole position in some specific 

manner, or that there is an intrinsic interaction between them. 

The problem may be formulated more precisely as follows. Suppose we take 

the (free) action of a field-particle system as: 

(1) 

where A~ depends only on the field variables and A~ only on the variables 

describing the particle, and stipulate further that the particle carries a monopole 

charge, which according to the argument above means that there is a constraint 

relating the field and particle variables. If we now extremise ( 1) under this 

constraint defining the monopole charge, the equations of motion will no longer 

be free equations of the field and particle separately, but coupled equations with 

interactions between the particle and the field. 

Now, this is not the conventional manner in which interactions between fields 

and particles are formulated. Usually, one introduces into the action in addition 

to (1) an interaction term depending on both the field and particle variables, 

thus: 

A= A~+ A~+ Ar, (2) 

so that in extremising the full action A with respect to the dynamical variables, 

one obtains explicitly through Ar coupled equations containing interactions. 

This conventional formulation involves, first, grafting a new concept of interac

tion on to the original concept of a free action, and, second, introducing a degree 

of arbitrariness into the problem through the choice of the interaction term Ar. 
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Of the two formulations, that of monopole interactions outlined above would 

seem to be much the more elegant, following, as it did, directly and uniquely 

from the definition of the monopole charge as a topological obstruction and, in 

the memorable words of Dirac, "one would be surprised if Nature had made 

no use of it.'*l In order to answer the question whether Nature has actually 

availed herself of this possibility, we have first of course to ascertain what sorts 

of interactions are implied by the above procedure for monopoles, so that we may 

check the result against experiment. This involves solving a variational problem 

which is not entirely straightforward since the gauge potential A~ usually used 

to describe the field has to be patched in the presence of monopoles, with the 

patching conditions depending on the monopoles' positions, so that a direct 

attack using A~ as variables becomes rather intractable. For this reason, some 

new tactics will first have to be devised to bypass this difficulty. 

The problem for the classical monopole was first solved for the abelian theory 

in 1976161, by an ingenious indirect method, and again directly in 1986161. The 

interactions of a monopole were found here to be exactly the dual to those of a 

classical source of the field, namely those described by the Maxwell and Lorentz 

equations. Hence, the abelian theory being dual symmetric in the sense that 

both the Maxwell field and its dual: 

are gauge fields each derivable, at least locally, from a potential: 

(3) 

(4) 

(5) 

and that a monopole of F~.., (*F~..,) can equally be considered as a source in the 

dual field *F~..,(F~..,), the above result can be regarded as just an alternative, yet 

apparently inequivalent, derivation of the standard electromagnetic interactions 

conventionally formulated in terms of an interaction term in (2) of the form: 

(6) 

where Y is the world-path of the particle. In this case, therefore, one can claim, 

if one is so inclined, that monopole interactions as formulated above do occur 

in Nature. 

The result for the corresponding problem for the classical monopole in a 

nonabelian Yang-Mills field, solved in 1986 using loop space techniques, is more 
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intriguing. The theory has then ostensibly no dual symmetry in that given a 

Yang-Mills field F~-'v derivable from a gauge potential A~-': 

(7) 

the dual field defined as in (3) is not in general a gauge field derivable from a 

potential; namely, no A~-' need exist for which: 

(8) 

Furthermore, in contrast to the abelian case, a monopole in a nonabelian theory, 

defined as a topological obstruction in the same way, bears no apparent resem

blance to a source in the gauge field. Indeed, even their charges are different, 

with the charges of a monopole being labelled by homotopy classes of the gauge 

group and those of a source by representations of the same. Nevertheless, the 

dynamics for the monopole as deduced from the constrained action principle out

lined above is found to be still almost dual to that of a classical Yang-Mills source 

as contained in the so-called Wong equations, which are obtained as the classical 

limit ofthe standard Yang-Mills equations. However, this result, though intrigu

ing, is not of much use in answering the practical question of whether monopole 

interactions actually occur in Nature, since Yang-Mills theory is almost never 

applied to classical particles in practice. We are therefore pushed further in this 

paper to investigate the same problem for quantum particles. 

To warm up, we shall solve the quantum problem again first for the abelian 

theory. As in the classical case, we shall find that the equations governing the 

dynamics of a monopole, as deduced from (1) under the constraint defining the 

monopole charge, are exactly the dual of the Maxwell equation: 

(9) 

and the Dirac equation: 

(10) 

governing the dynamics of a source. In other words, the monopole equations 

turn out to be just those obtained by replacing in (9) and (10) the source charge 

e by the monopole charge e, F~-'v by its dual *F~-'v' A~-' by A~-' as defined in (5), 

and the source wave function .,P by the wave function ,(fi describing the monopole. 

Bearing in mind then that the system is dual symmetric in the sense detailed 

above, one concludes that, in the quantum theory also, the constrained action 
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principle for abelian monopoles leads to interactions which occur m Nature, 

since it may be regarded as just an alternative to the conventional approach of 

defining electromagnetic interactions through an interaction term: 

Ar = e J d4zii)A,lr"''I/J, {11) 

in the action {2). The new approach, however, has the novel feature of giving 

the result uniquely as a consequence of the definition of the monopole charge 

without relying on an equivalent of the so-called minimal coupling hypothesis 

required in the conventional approach for choosing the interaction term {11 ). 

There is another notable feature in the result. In extremising the free action 

{1) under the constraint defining the monopole charge, the system acquires, as 

a degeneracy in the solution of the Euler-Lagrange problem, and in addition to 

the original gauge symmetry under the transformations: 

(12) 

a further local gauge symmetry represented by the transformations: 

(13) 

The full symmetry is thus extended to a local U{1) x U(1) where U(1) represents 

a second U(1) symmetry carrying a parity opposite to that of the first. This 

phenomenon which we shall have occasion to discuss further will be referred to 

in the future as a chiral doubling of the symmetry. 

The abelian theory being dual symmetric, the above solution of the Euler

Lagrange problem was not technically difficult, nor was the result obtained en

tirely unexpected. For the nonabelian theory, however, the lack of a dual sym

metry made both the answer to the analogous questions much more intriguing 

and the steps leading to it technically much more complicated. As in the solution 

to the classical problem mentioned above, because of the patching complication 

in the gauge potential A"'( x) as well as in the field tensor F"'v( x ), one is led to 

reformulate the problem in loop space, which being oo-dimensional and there

fore highly redundant in its description, requires some nontrivial development in 

techniquel7l. The results we have obtained in this paper on the nonabelian the

ory are therefore not so easily summarised. We can state nevertheless that the 

equations of motion governing the dynamics of quantum nonabelian monopoles 

are again uniquely derived from the same principles as before, though now in 

loop space. Under some assumptions, these loop space equations reduce to an 
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almost local form in which the monopole field -(fi( x) is coupled to to a vector 

field A~-'( x) in exactly the same way that an ordinary Yang-Mills field 1/J( x) is 

coupled to the ordinary Yang-Mills potential A~-'(x). However, this A~-'(x) is not 

the A~-'(x) in (8) since it has a relationship to the dual field *F~-'v which is differ

ent to the standard Yang-Mills relation (7) between the potential and the field. 

Furthermore, it has been shown that as in the abelian theory, a chiral doubling 

emerges of the local gauge symmetry arising from a degeneracy in the solution of 

the Euler-Lagrange problem. Thus, starting with a local SU(N) gauge symme

try, we shall arrive at a symmetry of SU(N) x SU(N) where SU(N) represents 

a second SU(N) symmetry carrying a parity opposite to that of the first. State

ments of the results in detail, however, will have to be given in later .sections 

after a fuller development of the technology. 

In this paper, we shall concentrate on the development of the theory and 

the derivation of the equations of motion, the physical consequences of which, 

however, have not yet been fully investigated. For this reason, only a very 

preliminary discussion will be given in the last section on the question whether 

nonabelian monopoles actually occur or are likely to occur in Nature. 

2 The Quantum Theory of Abelian Monopoles 

To set the stage for an attack later on the target problem of monopoles in a 

general Yang-Mills theory, let us first investigate the specially simple abelian 

case. 

We recall that for the classical monopole, we chose: 

(14) 

with F~-'v satisfying ( 4), and 

A~= -m j dT, (15) 

with 

dT = Vd¥2, (16) 

for the action in (1), which was to be extremised under the constraint: 

(17) 

5 



the last being a differential version of the topological condition asserting that 

there is a monopole chargee all along the particle world-path Y(-r). Indeed, in

terpreting the abelian field as the usual Maxwell field, and hence e as a magnetic 

charge, the r.h.s. of {17) is then just the magnetic current. 

Suppose now that our monopole is to be described instead by a wave function 

{fi( :z: ), then we would choose the free particle action as usual to be: 

(18) 

Instead of the constraint {17), we propose the following: 

{19) 

in which we have just substituted for the classical current in (17) the quantum 

current. 

This last equation requires some care in its interpretation in that it is still 

supposed to be a topological condition defining the monopole charge, albeit in 

a differential form. Hence, if we were to integrate (19) over a finite volume, we 

would still expect to obtain, for the monopole charge contained in that volume, 

always some discrete quantised value, say 47ren for n an integer, which it will not 

be in general if {fi( :z:) is a continuous wave function. For this reason, we believe 

that a fully consistent interpretation will be obtained only when one regards 

;fi(:z:) as a quantised field, so that the integral of the quantity on the right of (19) 

will give 47re times the number of particles inside that volume, which will then 

be discrete for any volume. In this paper, however, we shall work only with the 

first quantised theory. 

To find the equations of motion, we have now to extremise ( 1) under the 

constraint ( 19) with respect to the field variables A~-' ( :z:) and the particle vari

ables {fi( :z: ). As explained in the introduction, direct variations with respect to 

A~-'( :z:) are difficult because of patching. A useful tactic that we have learned in 

the classical case is to adopt instead of A~-'( :z:) as field variables the field tensor 

F~-'v( :z: ), which, being gauge invariant, is also patch independent. The beauty in 

doing so is that, by virtue of the Poincare lemma, the constraint {17) that we 

wish to impose ensures that, except at the monopole position, F~-'v is a gauge field 

derivable from a gauge potential as per ( 4), thus removing exactly the intrin

sic redundancy in F~-'v( :z:) which would otherwise be inadmissible as alternative 

variables. We propose now to adopt the same tactic also in the quantum case. 
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At first sight, the efficacy of such a tactic may appear dubious. We know 

already from the Bohm-Aharonov experiment that F~-'11 is inadequate to describe 

the electromagnetic interactions of a charged particle in quantum mechanics 

which require the explicit introduction of a gauge potential. It seems thus fool

hardy to give up A~-'( x) in favour of F~-'11 ( x) as variables in trying to derive the 

laws of motion of a magnetic monopole which we expect to behave just as the 

dual of the electric charge. On closer examination, however, this is soon seen 

not to be the case. The wave function .,"fi(x) describing the monopole, which 

though carrying a magnetic charge is electrically neutral, is actually invariant 

under the usual gauge transformations rotating the phase for which A~-' acts as 

the connection or parallel transport. What one needs, therefore, for describing 

the Bohm-Aharonov type of phase effects for .,"fi( x) will not be A~-' but presum

ably some other potential A~-' bearing the same relation (5) to the dual field *F~-'11 
as A~-' bears to the original Maxwell field F~-'11 • We are therefore not losing out 

in giving up A~-'( x) in favour of F~-'11 ( x) as variables - the only question is how, 

in solving the variational problem for the equations of motion, a dual potential 

will be recouped to take its place. As we shall see, this will occur in a natural 

manner in consequence of a degeneracy in the solution. 

In terms of F~-'11 ( x) and .,"fi( x) as variables, the variational problem then be

comes very easy. Introduce for each component ofthe constraint (19) a Lagrange 

multiplier .X~-'(z ), one forms the auxiliary action: 

which is to be extremised under all variations of F~-'11 (z) and .,"fi(z). Extremising 

A' w.r.t. F1111(z), we obtain: 

(21) 

and w.r.t . .,"fi(z ): 

( i8~-''Y~-' -m ).,"fi( z) = 47reA~-'( z )'Y~-'.,"fi( z ). (22) 

The first equation (21) says that: 

(23) 

or that *F~-'11 is a gauge field derivable as per ( 5) from a potential: 

(24) 
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while the second (22) also reduces in terms of A into a familiar form: 

(25) 

Indeed, as anticipated in the introduction, these equations are just exactly the 

dual of the standard Maxwell and Dirac equations for an electric charge moving 

in an electromagnetic field. 

In spite of its simplicity, the above derivation has two very interesting features 

both of which have, as we shall see, parallels in the nonabelian case. First, 

although we have started by eliminating the gauge potential A~ as variables, a 

new quantity A~ has emerged in the form of the Lagrange multiplier -'~, which 

couples obligingly to the field and the ·particle wave function in exactly the 

manner that a gauge potential should. Second, although we have formulated the 

variational problem entirely in terms of Fl-'11 and .(fi both of which are invariant 

under the original gauge transformations (12), a new local gauge symmetry 

(13) has arisen by virtue of the degeneracy in the solution of the Euler-Lagrange 

problem. This new symmetry can be seen directly in the equations of motion (23) 

and (25), or else in the auxiliary action (20) as follows. Under the transformation 

(13), A' in (20) acquires three new terms, the first from the transformation of 

the wave function ;fi( x) in the particle action (18), which cancels with another 

coming from the constraint term due to the change in the Lagrange multiplier 

,\'"'( x) multiplied by the current. Finally, there is the term: 

(26) 

coming again from the variation in ,\~( x) in the constraint term. Integrating 

(26) by parts w.r.t. 8~.~, one easily sees from the antisymmetry of *F~~.~(x) in its 

indices that this term vanishes, implying thus the invariance of A' in total. As 

we shall see, an invariance of the constrained action will also be obtained in a 

quite analogous fashion in the nonabelian theory. 

3 Formulation of the N onabelian Theory 

The first step is to write down explicitly the free action (1 ). For the field, the 

standard Yang-Mills action is: 

(27) 
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which is considered as a functional of the gauge potential AlA( x) through (7). 

However, in the presence of monopoles, AIA(x) will have to be patched, and to 

avoid the difficult problem of variations with respect to such patched AlA( x ), we 

seek again to replace them as field variables by patch-independent quantities. 

The field tensor adopted for the abelian theory will no longer be suitable in the 

nonabelian case since F~A., is here only gauge covariant, not gauge invariant, and 

hence still patch-dependent. For this reason, techniques were developed in which 

the problem was recast in a loop space formulation entirely in terms of patch

independent loop variablesl7l. Since these techniques have already been applied 

with success to solve the problem for the classical nonabelian monopolel6l, we 

are tempted to adopt them here also for the quantum case. 

The tactic employs as field variables the quantities: 

(28) 

where ~(C) is the Dirac nonintegrable phase factor or Wilson loop. For each 

parametrised loop passing through a reference point P0 = {en: 
(29) 

we define a phase factor ~(C) as: 

(30) 

where P. denotes ordering with respect to s, say from right to left, and FIA( Cis ), 
defined for each C and s, is its logarithmic loop derivative. Thus geometrically, 

FIA( Cis) may be interpreted as a sort of loop space connection giving the change 

in the phase of~( C) in moving from point to neighbouring points in loop space. 

In terms of ordinary space-time variables, FIA(Cis) takes the form: 

(31) 

where by definition: 

(32) 

Using (31), the Yang-Mills action can then be written as: 
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where 

J se ... = /IT tte(s') ... , 
•' 

(34) 

and N is a normalisation constant: 

(35) 

This is the form of A~ we need in terms of F,.. ( C Is) as variables. 

Next we turn to the free action of the particle carrying the monopole charge. 

Our experience with the abelian case suggests that we again represent the par

ticle by a wave function -J;(x) and specify the action again by (18). The actual 

form of the wave function, however, requires a closer scrutiny. In analogy to the 

abelian theory, -J;(x), though carrying a monopole charge, is- say in chromody

namics - "colour neutral", and should not therefore transform under the usual 

"colour" gauge transformations. However, we have seen in the section above 

that as the theory develops, the wave function of the abelian monopole picks 

up a transformation with respect to a new gauge symmetry, behaving then as 

a charged representation of that symmetry. So, in a similar manner, we expect 

that in the nonabelian theory, the wave function of a monopole may also pick 

up a transformation with respect to a new gauge symmetry and behave as a 

representation of that symmetry, neither of which properties however are we yet 

ready to specify until we have first dealt with the constraint defining the charge 

of the monopole. 

We turn now to that crucial constraint under which the free action (1) is to 

be extremised to give interactions between the field and the monopole. We have 

learned from earlier work[6),[71 that this is most naturally expressed in loop space, 

which is fine, since we already had the intention above of working in loop space 

in any case. We have learned further that the constraint can be stated either 

in a global version in terms of the loop space holonomy, or else in a differential 

form in terms of the loop space curvature, defined as:1 

1In ref. [6] and [7], a G,.v(C; s, s') was defined depending on two points s, s' on the loop C. 
This is actually unnecessary since for s f. s', the quantity represents merely the holonomy eil 
over a loop E in parametrised loop space which corresponds only to a reparametrisation of the 

zero surface at the loop C. Because eil is by definition independent of the parametrisation of 

E, G,.v( C; s, s') is then automatically zero when s I s'. 
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The two approaches are equivalent and can be used alternatively depending 

on convenience. In the present case, our aim is to generalise the analogous 

constraint (19) for the abelian theory, which was in the differential form in 

ordinary space-time. This suggests that we employ here also a differential version 

of the constraint, but now in loop space. 

To see what specific form this constraint should take, let us recall the anal

ogous constraint for the classical casef6l: 

(37) 

where K(Cis) takes values in the gauge Lie algebra. In terms of ordinary space

time variables, 

where D~ is the ordinary covariant derivative: 

D~ = 8~- ig[A~(x), ], (39) 

and <Pc(s1 ,s2 ) as defined in (32) is an element of the gauge group, being the 

parallel "phase" transport from s1 to s 2 • One sees then that for the abelian 

theory, where K(Cis) = 1, the constraint (37) reduces simply to (17). For 

the nonabelian theory, (38) does not, strictly speaking, apply on the monopole 

world-path, since A~ which occurs in the covariant derivative D~ does not exist 

there. Nevertheless, accepting (38) at face value, we may rewrite (37) similarly 

as: 

(40) 

with: 

(41) 

In analogy to (17), one may then interpret the r.h.s. of ( 40) as the nonabelian 

monopole current, and gK(r) as some sort of effective monopole charge. Notice 

that in contrast to the original topological monopole charge defined as a ho

motopy class of the gauge group, this new effective charge gK is an element of 

the gauge Lie algebra. Both charges are conserved, but whereas the topological 

charge is conserved simply by virtue of continuity, the effective charge gK is 

conserved due to the specific form of the dynamics as defined by the constrained 

action principle, and will for this reason be referred to as the Noether charge in 

what follows. 
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Suppose now we proceed to the quantum case. We would be tempted then, 

as in the abelian theory, to replace the classical current on the right of ( 40) by 

a quantum current, say: 

(42) 

where Ti represent the generators of the gauge Lie algebra. The quantum 

"monopole current" on the right of ( 42) would transform like an element of 

the algebra as it should if the monopole wave function .(fi( x) transforms like a 

representation of the algebra and Ti are matrices representing the generators 

in that representation. This suggestion is however not quite correct since, the 

monopole being colour neutral, its wave function .(fi should not transform at all 

under the usual Yang-Mills gauge transformations U, and if it does transform 

as a representation of the gauge algebra, it should do so only under a new type 

of, say, U -transformations. Hence, as it stands, the l.h.s of ( 42) is covariant but 

the r.h.s. invariant under U-transformations, while under U -transformations, 

the l.h.s. is invariant but the r.h.s. covariant. 

\Ve can correct the above discrepancy in ( 42) as follows. Introduce at each 

space-time point x two local frames for the gauge Lie algebra, one transforming 

under U- and the other under iT-transformations. Let w(x) be the matrix which 

transforms from the U-frame to the U-frame at x. Then simultaneously under 

a U -transformation: 

'1/J(x) ---t (1 + igA(x))'l/J(x), (43) 

and a U -transformation: 

,f(x) ---t (1 + igA(x)){y(x), (44) 

the matrix w(x) will transform as: 

w(x) ---t (1 + igA(x))w(x)(1- igA(x)). (45) 

Instead of ( 42), we then write: 

(46) 

which will now have correct transformation properties under both U- and iT
transformations, being covariant under the first and invariant under the second 

type of transformations. 
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Returning now to loop space, we then write in analogy to (37) the defining 

constraint for the monopole charge as: 

G,.w( Cls) = -411'g I d4u,.wpo-{ .,b(x )!lc(s, O)"YP7if!c1
( s, o).,b(x)} 

XTide~~s) c54(x- e(s)), (47) 

where 

!lc(s,O) = w(e(s)) ~c(s,O) (48) 

is the operator for parallel phase transport from the U -frame at the reference 

point eo = e(o) = e(211') to the u -frame at e( s) along the loop c = {e( s )}. 

The constraint (47) is then what we wish to impose on variations in the dy

namical variables when extremising the (free) action to deduce the (interacting) 

equations of motion of the field-monopole system. 

Both the action and the defining constraint for the monopole have now been 

expressed in term of the patch-independent loop variables F~(Cis) suitable for 

our purpose. These variables, however, have one great disadvantage in that, be

ing labelled by the parametrised loops C as well as points on them as denoted by 

the parameters, they are much more numerous than the conventional variables 

A~( x) which are labelled only by points in space-time. Since A~( x) are known 

already to be sufficient for a full description of the Yang-Mills field, this means 

that the loop variables must be highly redundant, and before they can be used 

exclusively to reformulate the theory, this redundancy has to be removed by 

imposing the appropriate infinite number of constraints on them. The beauty in 

the present problem, as also in the parallel problem in the classical case[61, is that 

the constraints required for removing the redundancy are exactly the conditions 

( 4 7) that we wish to impose in any case for dynamical reasons. That this is so 

has been demonstrated in ref.[7). The situation is then closely analogous to the 

abelian case in the preceeding section where the constraint (17) on F~v guaran

tees via the Poincare lemma that the gauge potential A~(x) exists everywhere 

except at the monopole position, which allowed us then to employ the redun

dant set F~v( x) as field variables instead of All( x ). Similarly, for the nonabelian 

theory, it can be shown that there is an extended Poincare lemma which asserts 

that the conditions (37) or ( 4 7) on Fll( C is) guarantee that a potential All( x) 
bearing the appropriate relations (28) and (30) to Fll(Cis) exists everywhere 

except at the monopole position, thus again removing the redundancy from the 

loop variables. 

13 



With the question of redundancy then resolved, we can now formulate our 

problem as follows. The equations of motion are to be derived by extremising 

the action: 

-(47r.&)-1 I se fo 2
1f dsTr(F#J(Cis)F#J(Cis))(de(s)/ds)- 2 

-j d4x~(x)(i8#J-y#J- m)~(x) (49) 

with respect to the variables F!J( Cls) and ~( x ), under the constraint ( 4 7). 

4 Chiral Doubling of Gauge Symmetry 

In the process of specifying the constraint defining the monopole charge in the 

preceding section, we were led to the conclusion that the wave function ~( x) 

describing the monopole should belong to some representation of the gauge 

algebra, but transforming under transformations other than, and in some sense 

dual to, the usual Yang-Mills gauge transformations. This is intriguing, and 

we think nontrivial, since a monopole charge was originally defined only as a 

homotopy class of the gauge group, having thus no apparent similarity to a 

source charge of the theory which is labelled by a group representation. The 

assertion that now a monopole also belongs to a group representation means 

the theory has acquired a more dual symmetric appearance than it at first 

possessed. Thus, for example, we could put the monopole wave function ~( x) 
in chromodynamics into a fundamental triplet representation, in which case it 

would look almost dual to a quark which is also in a triplet. A hint that such 

a state of affairs may obtain was already apparent in the classical nonabelian 

theory where the monopole was found to obey equations almost dual to those for 

a source, and where, in addition to the original topological charge, the monopole 

was seen to acquire through the invariance of the dynamics a conserved N oether 

charge gK(r) taking values in the gauge algebra. It now begins to look that 

also in the quantum theory, the dynamics may also end up with a near dual 

symmetry. 

However, what we have found so far would not mean too much if the a
transformations under which the monopole wave function ~(x) transforms as 

a representation do not constitute a symmetry of the dynamical system, and 

it is now our purpose to investigate whether such a symmetry indeed exists. 

We are encouraged to believe that this may be the case by our experience in 
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the quantum abelian theory of section 2 where the fJ -symmetry appears as a 

degeneracy in the solution to the Euler-Lagrange problem while extremising the 

action. However, it should be stressed that whereas the abelian theory is known 

to be dual symmetric which made a U -symmetry an inevitable consequence of 

the ordinary U -symmetry, the nonabelian theory has no dual symmetry so that 

the discovery of a fJ -symmetry for nonabelian theory would be far from trivial 

and ought by no means to be taken for granted. 

Let us first remind ourselves how various quantities in the theory transform 

under U- and fJ -transformations. Consider first U- transformations, i.e. ordinary 

Yang-Mills gauge transformations. The loop variables F~,( Cls) we have adopted 

to describe the field are by construction invariant under U -transformations up 

to a constant (i.e. x- independent) phase rotation at the reference point eo. 
This last rotation is trivial to handle, and in what follows it will be ignored -

in other words, we shall henceforth restrict ourselves for convenience to only 

those gauge transformations which leaves the phase at the reference point eo 
invariant. It follows then that Gw(CJs) occurring in (47) which is defined in 

terms of F11(0Js) is also U-invariant. Next, the monopole wave function ;J,(x) 

is also invariant under U -transformations, the monopole being colour neutral. 

Finally, the factors Oc(s,O) which occur in the constraint (47) are also invariant 

under U for although ~c(s,O) in (48) transforms under U by a phase rotation 

at e( s ), thus: 

cltc(s,O) ~ {1 + igA(e(s))}cltc(s,O) (.50) 

this is cancelled in Oc(s,O) by an inverse transformation in w(x), as per (45). 

Hence, the whole variational problem as formulated in the preceding section is 

invariant under U-transformations, from which we conclude that the dynam

ics of monopoles must, not surprisingly, also have the usual Yang-Mills gauge 

symmetry. 

Next, under fl-transformations, we want ;J,(x) to transform as (44) and w(x) 
as ( 45). The transformation laws of the other quantities under fJ have yet to be 

specified, and the idea is, if possible, to choose them such as to exhibit an overall 

symmetry. In principle, we could make the field variable F11 ( GJs) transform 

under fJ, but we would rather not do so. From our experience in the abelian 

theory, we anticipate the final symmetry to be a chiral doubling of the original 

U -symmetry, namely U x U, so that the wave function 1/J( x) of a source which 

carries no monopole charge should not transform under a fJ -transformation just 

as the monopole wave function is invariant under U. If so, for consistency, the 
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Yang-Mills gauge potential AJ..&(x), and hence also FJ..&(C!s) defined in terms of 

it through (28) and (30) should also be U-invariant. From this, it follows that 

~c(s,O) is iT-invariant too, and that !lc(s,O) defined in (48) should transform 

as: 

!lc(s,O) ~ {1 + igA(e(s))}!lc(s,O). (51) 

This leaves the r .h.s. of ( 4 7) U -invariant as it should, since we have already 

specified that FJ..&(Cis), and hence also GJ..&..,(Cis) to be invariant under U. 

Applied to the action A0 in (49), we obtain that under the U-transformation 

(44): 

{52) 

the action acquires an additional term. Now, in the conventional formulation 

of the theory for a Yang-Mills source, such an increment of the matter action 

under a U-transformation also occurs with ~(x) here replaced by the source 

wave function 1/J( x ). There, this extra term is cancelled by another coming from 

the interaction term in the action analogous to (11) due to the transformation 

of the gauge potential AJ..&(x). Here, we have no interaction term in the action, 

whose function has now been usurped by the constraint defining the monopole 

charge. Hence, the effect of the increment in the action (52) will have to be 

balanced by one from the constraint itself. This was the case in abelian theory 

{section 2), where it was the Lagrange multiplier .A"'( x ), playing the role of a dual 

potential A"'(x), which transforms under U so as to maintain overall invariance. 

Therefore, we expect that also in the present case, we shall have to look for 

a transformation in the Lagrange multiplier for the constraint to balance the 

variation (52) in the action. 

Introduce therefore the Lagrange multipliers L~-'11 ( C; s ), one for each of the 

constraints in ( 4 7) and form the auxiliary action: 

A'= A0 + j h'CdsTr(L"'..,(C;s){GJJ..,(Cis)- JJJ..,(Cis)}), (53) 

where J"'..,( Cls) is just the r.h.s. of ( 47): 

JJJv(Cis) = -471',9 J d4 u"'vpu{-J;(x)!lc(s,O)!PTi!lc1 (s,O)~(x)}ride~~s) h'4(x-e(s)). 
(54) 

The equations of motion are now to be obtained by extremising A' w.r.t. un

constrained variations of FJJ(Cis) and -J;(x). We know already that under U

transformations, both the action ( 49) and the constraint ( 4 7) are invariant so 

that LJJv( C; s) can be left invariant too. Our aim then is to seek further an 
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appropriate U-transformation of L~J"'(C; s) so as to leave A' also invariant under 

ti -transformations. 

We propose that under the transformation ti in ( 44) L~J"'( C; s) should trans-

form as: 
fJ -LIJ"'( C; s) --+ LIJ"'( C; s) + ~LIJ"'( C; s ), (55) 

where: 

A.LIJ"'(C· ) = _!_ IJIIp<To-1 ( O) hA( e( s)) o ( O) del7( s) 
L.l 's R f uc s_' c5eP( s) uc s_' ds ' (56) 

and R is a normalisation constant to be specified later. In the formula (56), 

the factor Oc( s_, 0), as indicated by the symbol s_ ,. is to be taken as the value 

approached from below in s. This means (for t: > 0): 

Oc(s_, 0) = lim Oc(s- t, 0). 
0!-+0 

The reason for this will be apparent later. 

Let the change in A' under ti of ( 44) be represented by: 

where: 

~A~= g I d4x~(x)81JA(x)-y~J~(x), 
~A~=- I hCdsTr(6LIJ"'(C;s)JIJ"'(Cis)), 

~A~= I hCdsTr(~LIJ"'(C;s)GIJ"'(Cis)). 
Then substituting into ~A~ the change ~LIJv(C;s) given in (56), we have: 

~A'= 47rglhCd 1Jva/3~Z(t( )) P hA ~Z(t( ))de13 (s)de
17

(s) 
2 R st:IJ"'IXTE '~' '- s 'Y c5ea(s)'~' '- s ds ds ' 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

where we notice that, apart from the factors def3(s)/ds and de17(s)/ds which 

depend on the tangent to the loop Cat X= e(s), the rest of the integrand is a 

function only of the space-time point X = e( S ), and can therefore be taken OUt 

of the integral over C. The integral can thus be easily performed by averaging 

over all directions of the tangent to the loop C at that point: 

(63) 

17 



giving for (62): 

~A~=-~1 I d4 x(;fi(x)8,}t(xh"';fi(x)) I oCds(de(s)/ds)2o4(x- e(s)). (64) 

Choosing the normalisation constant R in (56) to be: 

(65) 

ensures that ~A~ will exactly cancel in (58) the increment ~A~ from the free 

action A0
• 

For the whole A' in (53) to be invariant under iT-transformations, we now 

want ~A~ to be zero. That this is indeed the case can be seen as follows. We 

first show that the loop space curvature G"'"(Cjs) can be written as: 

where: 

(67) 

Pt means ordering w.r.t. t, increasing in our convention from right to left, and 

for C as given in (29), one defines: 

One sees that by construction, Ct varies, for t = 0 --+ 1r, from the zero loop at 

the reference point eo for t = 0 to Ct = C for t = 1r. Hence, if we choose to 

call the path traced out by Ct in loop space :E, (which means of course a surface 

swept out by Ct in ordinary space-time), the quantity E>(t2 , tt) in (67) is just 

the parallel transport from t 1 to t 2 along the path :E in loop space. Now, it is 

not hard to see that: 

(69) 

for any t', for, since C., = C , the derivative is with respect to the upper end

point of the integral in t. Alternatively, one can obtain (69) by writing: 

(70) 

in the notation of ref.[7], then using the relation there: 

(71) 
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to express 0( 1r, t') as: 

(72) 

Hence we have: 

{ se:(s) 8(7r, t')} e-t(7r, t') = -{~-t(G) se:(s) ~(G)}, (73) 

which, from the definition (28) of F~(CJs), is (69) as desired. Similarly, we have: 

8(1r,t') se:(s) e-\7r,t
1

) = -igF~(CJs). (74) 

Applying (69) and (74) to the r.h.s of (66), one then easily obtains the result 

G~v( G; s) as claimed. 

Substituting (56) and (66) into (61), we obtain: 

- ' _~I ~vpu { -1( )SA(e(s)) ( )deu(s) 
ilA3- R SCdse Tr ne s_,O seP(s) ne s_,o ds X 

lim se s( ) {e-l/2(7r,7r- e'){F~(CJs)gAV- Fv(GJs)gA~}0 1 12 (7r,7r- e')}}' (75) 
lf

1-+0 A s 

with n(s_,O) defined as in (57). Assuming next that both the limits f---+ 0 and 

e1 ---+ 0 can be taken outside the integral, we obtain, on integrating by parts 

w.r.t. e(s ): 

- , _ . 1 1 { -1( ~vpu S
2A(e(s)) ( )deu(s) 

LlA3- lim - SCdsTr ne s- e,O)e se ()se ( )ne s- e,O d X 
lf,lf

1-+0 R A s p s s 

e-l/2(7r,7r- e'){F~(CJs)gAV- Fv(GJs)gA~}01 /2(7r,7r- e')}' (76) 

which by contracting indices with 9Av and gA~ in the second factor gives two 

terms with factors of the form: 

(77) 

both of which vanish by symmetry. We conclude therefore that .6.A; is indeed 

zero, or that our monopole-field system as embodied in the action A' of (53) 

admits fJ -transformations as a gauge symmetry. 

We note that the arguments presented in the preceding paragraphs, though 

considerably more elaborate, are basically very similar to those for the abelian 

theory given at the end of section 2. We are thus led to the very intriguing and 

rather surprising result that although there is no dual symmetry in the Yang

Mills theory and monopoles start out there as very different objects from sources, 

the theory nevertheless experiences a chiral doubling of the gauge symmetry in 

close analogy to the dual symmetric abelian case. 
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5 Equations of Motion 

According to the formulation of section 3, the equations of motion of the monopole

field system are to be obtained by extremising the action (49) w.r.t. the field 

variables F11 ( 0 Is) and the particle wave function ;p( x) under the constraint ( 4 7). 
Equivalently, they are obtained by extremising the auxiliary action (53) w.r.t. 

unconstrained variations of the same variables. 

In A' of (53), only the following two terms depend on the wave function ;p(x ): 

A~=- I d4 x;p(x)(i8111
11

- m);p(x)- I 60dsTr(L~"'(O;s)J11,.,(0Is)), (78) 

with J~~.~(Ois) as given in (54). Varying then A~ w.r.t. ;p(x) and putting the 

coefficient equal to zero, one obtains as one of the equations of motion: 

(79) 

with: 

- ) I c pq ) -1 de"'( s) 4( c )) A11(x =47r hOdsf.~-'"'PuOcs,O)L (O;sOc(s,O) ds 6 x-es. (80) 

One sees that equation (79) is exactly the dual of the ordinary Yang-Mills equa

tion for a colour source moving in a gauge field described by a potential A~( x ). 

A new space-time local quantity A11 ( x) which we may call the dual potential has 

emerged to take the place of the ordinary potential A~(x), and this A~(x) is 

indeed given in terms of the Lagrange multiplier L~-',.,( 0; s) as we anticipated. 

Moreover, under the iT-transformation (44) , it is easily shown using (56) and 

(51) that A~-'(x) transforms as: 

(81) 

exactly as a gauge potential should, and leaves therefore the equation (79) in

variant. The equation is invariant also of course under U-transformations. 

Next, the terms of A' in (53) depending on the field variables F~-'(0\s) are: 

A~ = -(47rNt1 I hOdsTr(F~-'(C\s)F~-'(C\s))(de(s)/ds)-2 

+I hOds Tr(L~-'"'( 0; s )G~-',.,( 0\s )). (82) 

Substituting (66) into the second term of (82), and integrating by parts w.r.t. 

o(A( s) before taking the limit f. 1 ---+ 0, we obtain: 

A~ = -(47rNt1 I hOds Tr(F~-'(0; s)F~-'(0; s))(de(s)jdst 2 

-I hOdsTr [ (he:(s)L~-'"'(O;s)) (F~-'(0\s)g.x,.,- F,.,(Cis)g.x~-')].(83) 
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Varying the above expression w.r.t. F~( Cls) and putting the variation equal to 

zero, we obtain another of the required equations of motion as: 

- (de(s))
2 

s F~(Cls) = -(47rN) a:;- sev(s)L~v(C;s) (84) 

As for the other equation (79) the equation (84) is also invariant under both U

and U -transformations, as can be seen in the second case by using (56) with due 

care in taking the limit €-+ 0 only after performing the differentiation w.r.t. e(s) 
as was specified above. Notice that we have actually two equivalent forms (36) 

and (66) for the loop space curvature G~v(Cls), either of which can in principle 

be used in the derivation above. However, had we used (36) instead we would 

have obtained a form of the equation of motion which is not explicitly covariant, 

and more work would have been necessary to arrive at a covariant form. 

Together then with the constraint equation (47), the equations (79) and (84) 

represent the complete set of equations governing the motion of our monopole

field system, and all the equations have been shown to be invariant or covariant 

under both U- and iT-transformations. We have therefore already achieved the 

prime objective we have set ourselves at the beginning. 

These equations, however, are unfortunately a little unwieldy in that they 

are expressed in terms of unfamiliar field variables in loop space, the physical 

significance of which is a little hard to appreciate. We seek therefore to recast 

the equations, if possible, into a more transparent form in terms of more familiar 

space-time local variables, as was done with the corresponding classical equations 

in ref[6] leading to interesting conclusions. We have already done so for two of 

the equations, namely (79), where the field appears only in terms of the space

time local "dual potential" A~(x), and (47), which was shown to be equivalent 

to the space-time local equation ( 46). We shall try to do the same now also for 

the remaining equation (84). 

We note first that by the antisymmetry of L~v( C; s) in its indices tt and v, 

the equation (84) implies the Polyakov equation[8l: 

(85) 

which is just Yang-Mills equation written in loop space notation. Indeed, if we 

substitute for F~(Cls) the formula (31) and using the fact deducible from (32) 

that: 

(86) 
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we have instead of (85) 

(87) 

which is to hold for all C and s, and hence for all dev ( s) / ds. This will be true 

if and only if the Yang-Mills equation: 

(88) 

is satisfied for all x. 

More generally, to write the original equation (84) in terms of ordinary space

time local variables, we write it first as: 

We can then rewrite (89) as: 

F~'v( e( s)) de~~ s) = (211' N) ( d~~s)) 
2 

~J'VPU <I>c( s, 0 )O(;l ( s, 0) X 

{ 6e~(s) {nc(s,O)*Lpu(C;s)11(;1 (s,O)}- [17v(e(s)),Oc(s,O)'"Lpu(C;s)0(;1 (s;O)J} 

x Oc(s,O)<I>(;1 (s,O), (90) 

with: 

(91) 

and: 

(92) 

which by the definition ( 48) of Oc ( s, 0) and the ordering convention in the 

definition (32) of <I>c(s,O) is a local quantity depending only on the point e(s), 

explicitly expressible in fact as: 

(93) 

Hence, multiplying both sides of (90) by ( deuc s )/ ds )64
( X- e( 8 )) and integrating 

w.r.t. C and s, we obtain, using (80) and ( 48): 
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Equivalently, we can rewrite {94) as: 

{95) 

with: 

(96) 

being the covariant derivative w.r.t. the connection ?J~J(x). Both equations (94) 

and (95) involve only quantities local in ordinary space-time, and either can be 

taken as the third equation of motion in addition to ( 79) and ( 46). However, 

because of the complications of patching, their meaning is subject to the same 

reservations as were mentioned in the derivation of ( 46) in section 3. 

The equation (94) or (95) is covariant w.r.t. U-transformations since on the 

r.h.s. only w(x) and w-1 (x) transform under U in accordance to (45). Under U, 
however, the l.h.s. is invariant but the r .h.s. does not seem to be an invariant 

quantity. This would be surprising if it were true since the equations were 

derived from (84) which was shown already to be invariant. The reason for this 

apparent discrepancy is that the fj- transformation on L~Jv ( C; s) has been defined 

in loop space with a certain limiting convention which is not easily represented 

in ordinary space-time local notation. When handled with care, however, the 

correct transformation properties will obtain, as can be seen as follows. Starting 

from the formula (80) for A~J(:z:), we deduce using (51) and (55) that the change 

in A~J ( x) under the fj -transformation ( 44) is given by: 

LiA~J( x) = ig[A( x ), A~J( x )] + lim j h'C dsf~Jvpufaf3puOc( s, 0)001 
( s - f, 0) 

E--+0 

(97) 

On letting f ---+ 0, this yields the standard transformation law for A~J( x) as 

exhibited in (81). Consider next the derivative 8~JAv(x). Usually, one would 

expect that under a U-transformation, the change in 8~JAv(x) would just be 

aiJLiAv( X). However' this is not what obtains if one applies the rule of taking 

first the derivative before taking the limit f ---+ 0 as stipulated above. It can 

easily be seen from {97) that one obtains instead: 

(98) 

with an extra term. With this extra term in the transformation of the derivative 

of A~J(:z: ), it can then easily be checked that the equations (94) and (95) are indeed 

invariant under fj -transformations. The occurrence of an extra term in the 
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transformation of the derivative of A~( x) presumably means that the equation 

(95) and its iT-transformation which were originally defined in loop space are 

not really local in space-time in the usual sense. Their true significance in space

time language and the mathematical structure underlying them have yet to be 

clearly understood. 

Nevertheless, being much simpler than their loop-space counterparts, the 

local-seeming equations (79) and (95), together with the original constraint 

equation ( 46) are likely to be of use for a first exploration of monopole-field 

dynamics. For example, by comparing (79) with the corresponding equation for 

a Yang-Mills source, which is of the same form, one deduces that the monopole 

wave function ~ is coupled to the 'dual potential' A~ in exactly the same way 

that a source wave function '1/J is coupled to the ordinary potential A~, though 

with a coupling g instead of a coupling g. The equation ( 46), on the other hand, 

though seemingly also the dual of the usual Yang-Mills equation: 

(99) 

is in fact quite different in structure in that the covariant derivative Dv in ( 46) 

is still defined as (39) in terms of the ordinary potential AJ.' and coupling g just 

as in (99), not the 'dual potential' A~ and coupling g as one would expect for 

exact duality. Further, the equation (95), which may be regarded as the dual 

equivalent of (7) in giving the 'dual field' *F~v in terms of the 'dual potential' 

A~, involves in addition the potential A~ and the coupling g, spoiling thus again 

exact dual symmetry. At a preliminary level, therefore, it would appear that a 

primary difference between the dual and standard Yang-Mills theories is in the 

gauge-boson self-coupling. Apart from duality, the gauge-boson's coupling to 

matter is similar in the two cases, but its self-coupling is not. In the standard 

theory there is just one coupling constant coupling the gauge-boson both to 

matter and to itself, whereas in the dual theory, the gauge-boson couples to 

itself with one coupling constant g, but couples to matter with another g which 

is related to g via the Dirac quantisation conditionf1l, which for the S0(3) theory 

reads as follows: 

gg = n/4. (lOO) 

This difference in coupling is probably the first signature to look for when asking 

the practical question whether monopole interactions as deduced above do or do 

not occur in nature. 
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