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Abstract 

A comparison ofthe calculation of neutron reflectivity profiles A(Q) by opticaJ matrix methods and a 
multilayer method, based on the kinematic approximation, has been made. The latter method 
provides a fast simple route to calculating R(Q) and may be used with confidence for systems of 
total thickness < 200 A for a scattering length density difference ~P of the order of 1 .0 x 1 o-s A -2. 

For thicker layers the approximation is poor and the opticaJ matrix method must be used for an 
accurate evaluation of such reflectivity data over a wide Q range . 

1. Introduction 

The specular reflection of neutrons is now being extensively applied to a range of problems for the 
characterisation of thin films and multilayers [ 1]. 

To date, the majority of reflectivity data has been evaluated by model fitting [2,3] using calculation 
based on the optical multilayer methods (4]. This approach provides a particularly convenient 
method for calculating exactly reflectivity profiles for any given discrete density profile, and where 
surface and interfacial imperfections can be easily included. However for a large number of layers, 
as can be often encountered in multilayer samples, the method can consume large amounts of 
computing time and there Is a strong incentive to find a more efficient algorithm. 

Tidswell et al. [5] and Lucas [6] have devised a more efficient formalism based on the kinematic 
approximation and this approach has been recently applied to the analysis of organic monolayers 
on silicon [5] and the photodissolution of silver in chalcogenide glasses [6]. Although, more 
recently Thomas et al. [8-1 0] have demonstrated the great value and advantages of the kinematic 
approximation in the analysis of surfactant monolayer absorption. Its inadequacies are also well 
known. However the method has attractions for the efficient calculation of reflectivity for systems 
with a large number if layers, in which absorption and interfacial effects are conveniently included. 

In this report we evaluate the extent to which this method can be applied to the study of solid films 
and make recommendations to its use. 

The neutron refractive index at the boundary between two media is defined as 

where k1 and ko are the neutron wavevectors, 27r/'A., inside and outside the medium. n can be 
written as 
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n = ktfko (1) 

where k1 and ko are the neutron wavevectors, 27r/'k, inside and outside the medium. n can be 

written as 

n = 1 - AA.2 + iCA. (2) 

Where A = Nb/27r and C = Ncraoof47r, with N the atomic number density, b the bound coherent 

scattering length and crabs the absorption cross-section and X. the incident wavelength. In general 
the effects of absorption are negligible, and its influence on the reflectivity profiles is described in 

detail elsewhere [11]. 

2. The Optical Matrix Method 

The optical multilayer matrix methods have been used extensively to evaluate neutron reflection 

data, and a particularly convenient method is that of Abeles [4]. A characteristic matrix per layer is 
defined in terms of Fresnel coefficients and phase factors ; derived in optical terms from the 

relationship between electric vectors in successive layers. the characteristic matrix per layer is then 

l-exp(i/l~ 1) 

r mexp(- ifim-1) 

rmexp(ifim-1) -J. 

exp(- ifim-1) 
(3) 

where ~m = (27r/'k)nm dm sin em (optical path length in the film), Fresnel coefficient rm = (Pm-1-

Pm) I (Pm-1 + Pm). and Pm= nmsin em. For N layers the elements of the resulting matrix MN = 

[M1][M2]. .. [MM+ 1] gives the reflectivity 

(4) 

lt is now possible, following Cowley and Ryan [7] to introduce a roughness or diffuse interface at 

each boundary of the form originally developed by Nevot and Croce [12] such that. 

'm = ( Pm-1 -Pm ) exp[- O.S(QmQm-1 < a > 2)] 
Pm-1 +Pm 

where Om = 2ksinem and <a> is the root mean square roughness 
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3. Kinematic Approximation 

Following Als-Nielsen [13] the reflectivity from a real surface can be written in the kinematic 
approximation in terms of the scattering length density profile normal to the interface 

R(Q) = Rf.Q) I cp(Q) 12 (6) 

(7) 

and Rf(Q) is the Fresnel reflectivity for a perfectly sharp interface. 

This approximation has been generalised by lidswell et al. [5] to produce an expression for the 
reflectivity of N layers with different densities and interfacial widths, 

N 
R(Q) = Rf.Q)II:[(p;- Pi+t)!Po]e.xp[-iQD;]e.xp[-Q2a2i+tf2]1 2 (8) 

i = 0 
where PJ = N1b1, and j = 0 represents the substrata (so p0 is the density of the substrata), Di is the 
distance from the semi-infinite substrata (00 = 0) to the interface between the ith and (i + 1 )st 

layers. The thickness of the ith layer is Lt then D1 = I Lt. 

The effects of refraction at each interface can also be readily accommodated by substituting for the 

001 term in equation 8 001 = I01Lj where 01 = (0
2

- 021c)~ and o1c is the critical wave vector for 
the jth layer. 

Furthermore, the effect of absorption at each interface can be incorporated by multiplying the 
terms in sum of equation 8 by the attenuation factor 

e.xp[(- I:(N;a abs L;/sinfJ)) (9) 

with N1o1
8 bs the atomic number density in layer multiplied by the neutron absorption 

cross-section for I. 

4. Discussion 

Extensive calculations have been made in order to provide a detailed comparison between the two 
methods of calculation. 

Figure 1 illustrates the use of the kinematic approximation to reproduce the calculation of Pershan 
et al (see figure 4c in reference 5). 

In figure 2 it is shown that, providing the region of total reflection is avoided, the kinematic 
approximation agrees well with the optical matrix method for the reflectivity from the interface 
between two bulk media at higher values of Q. 
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In figure 3 the validity of the kinematic approximation is explored for different film thicknesses and 
for a constant contrast between the film and substrata. For thicknesses < 1 ooA the agreement 
with the optical matrix calculation is good over a wide 0 range. For a thickness of 1 ooA there is 
already some discrepancy at lower values of Q (see figure 3c). For thicknesses > 1 ooA the 
discrepancy becomes progressively larger and extends to higher Q values: such that for films > 
500A the deviations are most marked. 

In figure 4 the effect of varying the contrast between the film and substrata for a fixed film thickness 
is explored. For a thickness as great as 500A there can still be reasonable agreement between the 
kinematic approximation and the optical matrix calculation provided the contrast between the film 
and substrata is small (ie the film is a small perbutation). 

In figure 5 the effect of not including refraction between the layers is investigated. lt is clearly 
important in the kinematic approximation to include the effects of refraction (see figures 5 b ,c for the 
case of multi layer structures). Furthermore it is important to note in this case that the kinematic 
approximation agrees well with the exact calculation in the region of the first order Bragg peak for 
these multiple bilayers, and only deviates at lower Q in the region of total reflection. 

In the kinematic approximation the effects of adsorption can be included approximately in the form 
of a attenuation factor (see equation 9). whereas in the exact optical matric calculation it is included 
as the imaginary component of the refracture index. As described in detail elsewhere (11) the 
interference pattern is changed as the adsorption cross-section increases and the effect is most 
prominent in the region of total reflection. Hence it is difficult to make a meaningful comparison in 
this region of Q using the kinematic approximation. 

5. Summary 

We have made a comparison of reflectivity profiles calculated by the full optical matrix and 
kinematic approximation methods. The kinematic approximation provides a rapid and simple way 
to calculate R(Q) profiles, but can only be used with confidence for systems with relatively small 
number of thin layers. lt is important to include the effects of refraction in the calculation. lt is 
evident that the inclusion of adsorption in an effective attenuation factor is not in general a good 
approximation. For more complicated systems, it is necessary to use the existing optical matrix 
method (3]. Within these restrictions the kinematic method will enable R(Q) profiles to be 
calculated in 1/4 to 1/5 the cpu time of the corresponding optical matrix method. 
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Figure Captions : 

Legend: Nbs,a- scattering length density of substrata, air ; cr1,a surface roughness at film/substrata 

and film/air interface. d11ayer thickness in A. No instrumental effects included ie. ~e = 0. 

1) Comparison with previous work. 1 <t>(O) 12 vs. Q for a system of three discrete layers on a 
substrata (see ref 5 figure 4c and table 1). Refraction effects included. 0 (substrata) -crystalline 

Si; 1 - Si02. 2- interface; 3- alkyl tails; 4- air. d1 = 16.8A, d2 = 0.7A, d3 = 23.5A. Nb1 = 

1.895x 10-5 A-2• Nb2 = 2.467x 10-5 A-2• Nb3 = 0.848x 1 o-5 A-2. O'Q1 =; 1.0 A, 0'12 = 1.0A, 0'23 

= 3.2 A. 034 = 2.4 A. 

2) R(Q) profiles for a single sharp interface. e = 1.5° A= 0.5- 15A Nbs = Nbl = 0.21x10-5 A-2 

Nba = 0 ;cr1 = cr5 = 0. kinematic (+),matrix(-). 

3) Effect of varying layer thickness on R(Q} at constant contrast. Refraction effects included. e = 

1.5° A= 0.5- 15A Nbs = 0.21x1o-s A-2 Nbl = 0.50x1o-5 A-2 Nba = 0 ;cri= as= 0. 

kinematic ( +}, matrix (-}. 
a) dl = 20A 
b) dl = 40 A 
c)(i} dl = 1 ooA and (ii} discrepancies at low Q 
d)(i) dl = 200A and (ii) low Q 

e) dl = sooA 
f) dl = 1 oooA. 

4) Effect of varying contrast at constant layer thickness on R(Q). Refraction effects included. d = 

sooA. Nbs = 0.21 x 1o-sA-2cr =as= o. A= o.s -1sA. e = 1.5°. kinematic(+) matrix(-) 

a} Nbi/Nbs = 0.5 
b) Nbi/Nbs = 0.95 

c) Nbi/Nbs = 1.5 
d) Nbi/Nbs = 2.83 see also figure 3 e 

5) Effect of refraction at each interface on R(Q} as calculated by kinematic method. e = 1.5° A= 
o.s- 1sA Nbl = o.sox1o-s A-2 Nbs = 0.21x1o-s A-2 Nba = o 

Single layer 

a) dl = 500 A ;cri = as = 0 ( +} refraction included (-)no refraction effects. see also figure 3e 

10 X bilayers d1 = d2 = soA 0'1 = 0'2 = cra = sA Nba = 0.0 

kinematic refraction included (+)kinematic no refraction effects(~) matrix calculation(-) 

b) Nb1 = 0.1x1o-s A-2, Nb2 = 1.0x1o-s A-2 

c) Nb1 = o.sx1o-s A-2, Nb2 = 0.4x1o-s A-2 

computing time for b} and c) kinematic calculation is a factor of two faster than matrix calculation. 
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