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Projected Krylov methods

for saddle-point systems
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ABSTRACT

Projected Krylov methods are full-space formulations of Krylov methods that take place

in a nullspace. Provided projections into the nullspace can be computed accurately, those

methods only require products between an operator and vectors lying in the nullspace. In

the symmetric case, their convergence is thus entirely described by the spectrum of the

(preconditioned) operator restricted to the nullspace. We provide systematic principles for

obtaining the projected form of any well-defined Krylov method. Equivalence properties

between projected Krylov methods and standard Krylov methods applied to a saddle-point

operator with a constraint preconditioner allow us to show that, contrary to common belief,

certain known methods such as MINRES and SYMMLQ are well defined in the presence of

an indefinite preconditioner.
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1 Introduction

We consider the solution of the saddle-point problem[
Q AT

A

] [
x∗ + xF

y∗

]
=

[
a

b

]
(1)

for some fixed xF, where all data is real and Q may be unsymmetric. Such saddle-point

systems arise throughout computational science (Benzi et al., 2005). Typical applications

arise in conservative fluid flow, structural engineering and constrained optimization. The

problem scale often precludes a direct factorization of the matrix in (1). Certain applications

give rise to a symmetric saddle-point system, including optimization and the study of

laminar fluid flow. A typical approach in such cases is to employ a Krylov method for

symmetric indefinite systems, e.g., MINRES or SYMMLQ (Paige and Saunders, 1975),

combined with an appropriate preconditioner (Elman et al., 2005).

In this paper we propose a family of iterative methods working implicitly in the nullspace

of A, requiring only operator-vector products with Q, and possibly its transpose, as well as

one or more projections of a vector into the nullspace of A per iteration. For this we only

require that Q be available as an operator but it must be possible to compute projections

into the nullspace of A accurately.

Our main contribution is to provide systematic principles to derive a projected variant

from any well-defined Krylov method. This is made possible by working at the level

of the basis construction processes upon which those methods are built. An additional

contribution is to provide equivalence relations between projected Krylov methods and

classic Krylov methods applied directly to (1) with a so-called constraint preconditioner.

Our approach involves a sequence of key steps. We first reduce the saddle point problem

to an equivalent one in the null space of A and then transform (precondition) the result. We

next apply an appropriate Krylov method to the resulting preconditioned, reduced system.

The effects of the preconditioner on the method are then considered in the un-preconditioned

reduced space, and finally the iteration is moved back from the null space via a constraint

preconditioner into its original full-space setting. Our framework is closely related to the

nullspace method—see (Benzi et al., 2005, Section 6) and references therein—but differs

from it in that we only use the data of (1). In particular, we do not require that a basis for

Null(A) be computed.

An interesting consequence of our framework is to establish that well-known methods

such as MINRES and SYMMLQ applied to (1) are well defined in the presence of an

indefinite preconditioner. This is at variance with the commonly-issued warnings (e.g.,

Elman et al., 2005, p.287 Greenbaum, 1997, p.121, and van der Vorst, 2003, p.85) that

those methods require definite preconditioners.

In Section 2, we examine a number of well-known Krylov-subspace methods for saddle

point systems. Specifically, in Section 2.1, we show how methods may be constructed to

reflect the saddle-point structure, in Section 2.2, we detail the bases used and how standard

methods appear when moved into the subspace defined by such structure, and in Section 2.3
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we return these methods back into the original space. In Section 2.4 we show that our

construction is equivalent to applying standard methods with a constraint preconditioner.

We illustrate this equivalence on the MINRES method in Section 3 by showing that a

positive definite preconditioner is not required when applying the method to saddle-point

systems. We briefly examine the spectral implications of our preconditioners in Section 4,

consider other variants in Section 5, and conclude in Section 6.

1.1 Related Research

In optimization contexts, where Q is symmetric, (1) may be interpreted as the first-order

optimality conditions of the quadratic program

minimize
x+xF

−aT(x+ xF) + 1
2
(x+ xF)TQ(x+ xF) subject to A(x+ xF) = b, (2)

where y are the Lagrange multipliers associated with the equality constraints. It is well

known, see, e.g. Gould (1985), that (2) possesses a unique solution if and only if Q is

positive definite on the nullspace of A. Based on this, Gould et al. (2001) devised the

projected conjugate gradient method, a variant of the standard conjugate gradient algorithm

applied to Q and restricted to exploration of the nullspace of A—see also Polyak (1969),

Coleman (1994), Lukšan and Vlček (1998) and Perugia and Simoncini (2000). Benzi et al.

(2005, Section 6) describe and provide numerous references on the nullspace method, which

requires the computation of a basis for Null(A). Numerical challenges quickly accumulate

as desirable properties for this basis, such as sparsity and good conditioning, typically

come at high expense. As it turns out, it is possible to avoid computing a basis for the

nullspace of A altogether and formulate the entire algorithm in terms of projections into

this nullspace and operator-vector products with Q. One way to compute projections

efficiently when A is available as an explicit matrix is to perform a one-time factorization of

a symmetric indefinite matrix of the form (1) where Q is replaced by a simpler operator such

as (but not restricted to) the identity. In many applications, performing this factorization is

realistic and cost effective; for example, one may choose the (1,1) block so that a convenient

Schilders’ factorization (Dollar and Wathen, 2006) may be employed.

Orban (2008) applies the same principles as those provided by Gould et al. (2001) to

specific Krylov methods for unsymmetric systems with the solution of fluid flow problems

in mind. He focuses on methods not requiring products with the transpose operator.

1.2 Terminology and Notation

We refer to the quantities Q, A, x, etc., of (1) as full-space quantities. Throughout the

paper, they are typeset in italicized bold Roman font. Whenever we work explicitly in

the nullspace of A, we refer to corresponding quantities as reduced-space quantities and

typeset them in italicized Roman lightface font, e.g., Q, A, x. We precondition reduced-

space quantities and refer to them as preconditioned-space quantities. They are typeset in
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italicized bold sans-serif font, e.g., Q, A, x . The Euclidian norm and its associated inner

product are denoted ‖ · ‖ and 〈·, ·〉, respectively, throughout.

2 Saddle-Point Problems

Throughout the paper, our working assumption is the following:

Assumption 2.1 The coefficient matrix of (1) is nonsingular.

Benzi et al. (2005, Theorem 3.4) provide necessary and sufficient conditions for Assump-

tion 2.1 to hold. In particular, if H = 1
2
(Q+QT) denotes the symmetric part of Q, and if

we assume that H is positive semi-definite and A has full row rank, then

• (1) is nonsingular if Null(H) ∩ Null(A) = {0}, and

• Null(Q) ∩ Null(A) = {0} if (1) is nongingular,

but the reverse implications do not hold in general. The above conditions are sufficiently

general to encompass numerous applications of interest, including optimization and the

solution of the discretized Navier-Stokes equations. We refer the interested reader to (Benzi

et al., 2005) for more details. At least in theory, it is possible to ensure that A has full

row rank by way of preprocessing. In some cases, regularization is preferred and consists

in giving a nonzero value to the (2, 2) block of (1). In §5, we explain how the methods

presented in the next sections apply to such a regularized system.

Suppose that xF satisfies AxF = b; as we will see, finding such a value is easy in the

framework we develop. Substituting into (1), x∗ and y∗ satisfy[
Q AT

A

] [
x∗
y∗

]
=

[
c

0

]
(3)

where c := a−QxF. Our aim is thus to solve (3).

Let Z be any full-rank matrix whose columns span the null-space of A, i.e., such that

AZ = 0. (4)

Then necessarily from the second block of (3), x∗ = Zx for some x, in which case the first

block gives QZx∗ +ATy∗ = c and hence from (4),

Qx∗ = c where Q := ZTQZ and c := ZTc. (5)

Notice that if we define

r := c−Qx−ATy and r := c−Qx,

it follows immediately from (4) that residuals are transformed according to

r = ZTr. (6)
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regardless of the value of y.

Let G be a symmetric positive-definite approximation to Q, and suppose that we may

write G = LLT as necessary. We will consider the central-preconditioned variant

L−1QL−T(LTx∗) = L−1c (7)

of (5). If we define

Q := L−1QL−T, c := L−1c and x∗ = L−Tx∗, (8)

the system (7) may be expressed compactly as

Qx∗ = c .

Here, residuals are transformed according to

r = c −Qx = L−1(c−Qx) = L−1r.

2.1 Krylov-Subspace Methods

Let SL and SR be given subspaces of equal dimension, say k, and let the columns of SL and

SR be bases for these spaces. We say that a subspace approximation x to the solution x∗
of the generic linear system Qx∗ = c is a Petrov-Galerkin approximation (Bruaset, 1995,

Saad, 2003, Ch. 6 & 7, van der Vorst, 2003, Ch. 4) if

x = SRz where ST
LQSRz = ST

L c ,

and we see that such methods find x ∈ SR such that

r = c −Qx ⊥ SL.

Within this broad framework there are a number of choices that have proven to be

successful in the development of iterative methods. First, consider some space S of dimension

k, and an associated matrix S whose columns form a basis of S. If we set SR = SL = S,

then we get what is known as a (Ritz-)Galerkin method.

An alternative is to set SL := QS, SR := S, say, which gives a minimum-residual

approximation. Here

STQTQSz = STQTc ,

or equivalently

x = Sz where z = arg min
z

‖QSz − c‖.

Finally, if we set SL = QTS and SR = S, then the equation we wish to satisfy becomes

STQQTSz = STc ,
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and hence we get a minimum-error approximation, where

x = QTSz where z = arg min
z

‖QTSz − x∗‖.

Note that in all of these special examples of Petrov-Galerkin methods we choose the

spaces such that SL = BSR for some matrix B. Such processes are termed balanced

projection methods (Bruaset, 1995, §3.1).

Given a trial space SR, we can now apply one of the recipes above to construct a test

space SL and derive an appropriate iterative method; we simply need to identify a suitable

trial space. In this context it has proved useful to consider the pair of Krylov spaces of

dimension k,

Kk = Span
{
Qic

}k−1
i=0

and KT
k = Span

{
(QT)id

}k−1

i=0
,

for specified d for which 〈c , d〉 6= 0. We focus on the aforementioned approximations to x∗
as k increases.

For reasons of numerical stability we prefer orthogonal bases for Kk and KT
k if possible,

and may generate them by the Arnoldi (1951) process. In particular, let V ◦k and W ◦k be

orthogonal basis matrices of K and KT respectively. Then the corresponding columns v ◦i
and w ◦i satisfy

QV ◦k = V ◦k+1Hk+1,k and QTW ◦k = W ◦k+1Rk+1,k, (9)

where the k + 1 by k matrices Hk+1,k and Rk+1,k are upper Hessenberg, v ◦1 = c/‖c‖ and

w ◦1 = d/‖d‖.
An alternative is to use a bi-orthogonal pair of basis matrices Vk and Wk for the Krylov

spaces Kk and KT
k for which, in exact arithmetic,

QVk = Vk+1Tk+1,k, W T
k Vk = Dk, and W T

k QVk = DkTk,k, (10)

the leading k-by-k portion Tk,k of the k + 1-by-k matrix Tk+1,k is tridiagonal, and Dk

is diagonal. This alternative is riskier and may break down, but when Q is symmetric,

breakdown will not occur if c = d and then Vk = Wk, Dk = I and Tk,k is symmetric

(van der Vorst, 2003, §7.1).

With the Galerkin approximation approach, we may choose Sk = Kk and use (9) in

which case

xk = V ◦k zk where Hk,kzk = β1e1, (11)

Hk,k is the leading k-by-k portion of the upper Hessenberg Hk+1,k and β1 = ‖c‖; this is the

FOM method (Saad, 1981, Algorithm 3.2).

Equally, we may instead use a Petrov-Galerkin approach with SL = KT
k and SR = Kk

and use (10), which gives

xk = Vkzk where Tk,kzk = β1e1 (12)

and is the basic Bi-CG method (Fletcher, 1976) in the unsymmetric case and equivalent

to CG (Hestenes and Stiefel, 1952) when Q is symmetric. FOM requires that all of Vk be
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stored, while Bi-CG/CG only require recent vi—a so-called short-term recurrence—since

the solution to (12) may be updated rather than recomputed when k increases because Tk,k
is tridiagonal. Although methods based on bi-orthogonalization might seem at first sight to

require products with Q and its transpose, this is not necessarily the case. In particular

both the basis matrix Vk and tridiagonal Tk,k may be found by interlaced pairs of products

with Q, and this leads to the CGS method (Sonneveld, 1989).

For the minimum-residual approximation approach, choosing Sk = Kk and using (9)

gives

xk = V ◦k zk where HT
k+1,kHk+1,kzk = β1H

T
k+1,ke1, (13)

which gives the GMRES method (Saad and Schultz, 1986). This simplifies when Q is

symmetric since then Hk+1,k is tridiagonal and then the resulting MINRES method of Paige

and Saunders (1975) again only requires recent vi. Alternatively, one can simply replace

V ◦k by the non-orthogonal Vk from (10) and compute

xk = Vkzk where TT
k+1,kTk+1,kzk = β1T

T
k+1,ke1; (14)

this QMR method (Freund and Nachtigal, 1991) minimizes the so-called quasi-residual

rather than the residual.

Finally, for the minimum-error approximation, the choice Sk = KT
k with d = c and

using (9) gives

xk = W ◦k zk where zk = Rk+1,kpk and RT
k+1,kRk+1,kpk = β1e1;

interesting methods based on this include SYMMLQ (Paige and Saunders, 1975), SYMMBK

(Chandra, 1978) and CG when Q is symmetric in which case

xk = V ◦k zk where zk = Tk+1,kpk and TT
k+1,kTk+1,kpk = β1e1; (15)

Notice that each of the possibilities (11)–(15) depends entirely on its basis matrix V ◦k
or Vk, the corresponding Hessenberg or tridiagonal matrix Hk+1,k or Tk+1,k, and the norm

of the initial right-hand side, β1. Thus we shall concentrate on general Krylov methods for

which

xk = V ◦k zk or xk = Vkzk,

or, in terms of the un-preconditioned variables,

xk = V ◦k zk or xk = Vkzk,

where

V ◦k = L−TV ◦k and Vk = L−TVk (16)

and zk is computed by any means from appropriate data Hk+1,k, Tk+1,k and β1; we shall

formally denote the algorithm used to compute zk as

zk = Θk(Tk+1,k, β1) or zk = Θk(Hk+1,k, β1), (17)

as appropriate, for some vector valued function Θk of dimension k.
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2.2 Computing Suitable Bases

The other main ingredient in our development is to recall how the bases we mentioned

above are computed. We start by considering methods for Q as given by (8). We then

derive the corresponding iteration for the data Q and its preconditioner G. In the next few

sections, we state processes in a format suitable for direct implementation. We leave until

§2.3 a detailed discussion on how these computed bases may be applied in the full space to

solve (3).

2.2.1 Orthogonal Bases and the Arnoldi Process

The Arnoldi process to compute V ◦k and Hk,k−1 for Q and c from (8) may be summarised

as Algorithm 2.1.

Algorithm 2.1 Arnoldi Process for V ◦k and Hk,k−1

Require: Q, c and x0
1: Set v ◦1 = c −Qx0 . Initial Krylov vector

2: h1,0 =
√
〈v ◦1 , v ◦1 〉 . Initial residual norm

3: if h1,0 6= 0 then

4: v ◦1 = v ◦1 /h1,0

5: k = 1

6: while hk,k−1 6= 0 do

7: v ◦k+1 = Qv ◦k . Compute next Krylov vector

8: for i = 1, . . . , k do . Modified Gram-Schmidt

9: hi,k = 〈v ◦i , v ◦k+1〉
10: v ◦k+1 = v ◦k+1 − hi,kv ◦i
11: hk+1,k =

√
〈v ◦k+1, v

◦
k+1〉 . Residual norm

12: if hk+1,k 6= 0 then

13: v ◦k+1 = v ◦k+1/hk+1,k

14: k = k + 1

After each pass through the while loop, Algorithm 2.1 ensures that

QVk = Vk+1Hk+1,k (18)

= VkHk + hk+1,kvk+1e
T
k , (19)

where Hk is k-by-k upper Hessenberg and Hk+1,k is Hk with the extra row hk+1,ke
T
k .

In order to formulate corresponding algorithm involving un-preconditioned quantities,

we apply changes of variables suggested by (8) and (16). All transformations in the next

few sections will follow the same principle.

Principle 2.1 1. Basis vectors transform according to v◦k = L−Tv ◦k . Because of (8),

each assignment of v ◦k in preconditioned space has the form v ◦k = L−1u for some

vector u. Thus, we obtain v◦k by solving the preconditioning system Gv◦k = u for v◦k.
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2. Inner products of the form 〈v ◦k , v ◦i 〉 become 〈u, v◦i 〉, again because of (8), where u is

the vector defined as in the first principle.

Applying the above principles to Algorithm 2.1, we obtain Algorithm 2.2 in which

everything is expressed in reduced (un-preconditioned) space.

Algorithm 2.2 Preconditioned Arnoldi Process for V ◦k and Hk,k−1

Require: Q, G = GT � 0, c and x0
1: u = c−Qx0
2: Solve Gv◦1 = u for v◦1 . Initial Krylov vector

3: h1,0 =
√
〈u, v◦1〉 . Initial preconditioned residual norm

4: if h1,0 6= 0 then

5: v◦1 = v◦1/h1,0

6: k = 1

7: while hk,k−1 6= 0 do

8: u = Qv◦k and Solve Gv◦k+1 = u . Compute next Krylov vector

9: for i = 1, . . . , k do . Modified Gram-Schmidt

10: hi,k = 〈u, v◦i 〉
11: v◦k+1 = v◦k+1 − hi,kv◦i
12: hk+1,k =

√
〈u, v◦k+1〉 . Preconditioned residual norm

13: if hk+1,k 6= 0 then

14: v◦k+1 = v◦k+1/hk+1,k

15: k = k + 1

When Q is symmetric the Arnoldi process simplifies to the symmetric Lanczos process.

This variant and its reduced-space formulation is described in Appendix A.

2.2.2 Bi-Orthogonal Bases and Lanczos Bi-Orthogonalization

In the interest of space, processes in preconditioned space, i.e., applied directly to Q and c ,

are stated in Appendix A. Henceforth, we only state the result of applying Principle 2.1 to

those processes.

The Lanczos (1950) bi-orthogonalization process computes Vk, Wk and the corresponding

Tk,k as described in (10). When applied to Q and c , we obtain Algorithm A.3, which is a

special case of Saad (2003, Algorithm 7.1) and Golub and van Loan (1996, (9.4.7)).

Upon defining the (unsymmetric) tridiagonal matrix

Tk :=


t1,1 t1,2
1 t2,2 t2,3

1 t3,3
. . .

. . . . . . tk−1,k
1 tk,k

 , (20)
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we see that Algorithm A.3 is characterized by the identities

QVk = VkTk + vk+1e
T
k (21a)

QTWk = WkT
T
k + tk,k+1wk+1e

T
k . (21b)

Applying Principle 2.1 to Algorithm A.3, we obtain Algorithm 2.3 formulated in terms

of reduced-space quantities and the preconditioner G.

Algorithm 2.3 Preconditioned Lanczos Bi-Orthogonalization for Vk, Wk and Tk

Require: Q, QT, G = GT � 0, c and x0
1: Set v0 = w0 = 0, t0,1 = t1,0 = 1

2: Set s = c−Qx0. Set w1 such that 〈s, w1〉 = 1.

3: Solve Gv1 = s for v1 . Initial Krylov vectors

4: k = 1

5: while tk−1,k 6= 0 do

6: s = Qvk and u = QTwk

7: Solve Gvk+1 = s and Gwk+1 = u . Compute next Krylov vectors

8: tk,k = 〈s, wk〉
9: vk+1 = vk+1 − tk,kvk − tk−1,kvk−1

10: wk+1 = wk+1 − tk,kwk − wk−1 . Bi-orthogonalization

11: tk,k+1 = 〈s, wk+1〉
12: if tk,k+1 6= 0 then

13: wk+1 = wk+1/tk,k+1

14: tk+1,k = 1

15: k = k + 1

An alternative to Algorithm A.3 is the variant given by Chan et al. (1998) and Freund

et al. (1993). When applied to Q and c from (8) it may be stated as Algorithm A.4.

An advantage of this variant is, as we will see in the next section, that it may be easily

reformulated so as to avoid operator-vector products with QT altogether.

In Algorithm A.3, the choice of off-diagonal entries of Tk+1,k+1 was arbitrary; any

pair tk+1,k and tk,k+1 satisfying tk+1,ktk,k+1 = 〈vk+1,wk+1〉 suffice. The choice of setting

sub-diagonal entries to 1 is interesting because this form happens to coincide with the form

of the tridiagonal matrix generated by Algorithm A.4. In Algorithm A.4, the differences

with Algorithm A.3 are that the three-term recurrences for vk+1 and wk+1 have the same

form, and that the process is characterized by the identities

QVk = VkTk + vk+1e
T
k (22a)

QTWk = WkTk + wk+1e
T
k , (22b)

in which there are no occurences of T T
k . It is not difficult to establish that Algorithm A.4

indeed generates bi-orthogonal vectors. The line of proof is identical to that of Saad (2003,

Proposition 7.1).
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Theorem 2.1 If Algorithm A.4 does not break down before step m, then the families of

vectors {v1, . . . , vm} and {w1, . . . , wm} are bi-orthogonal in the sense that 〈vi, wj〉 = 0

if and only if i 6= j.

As a consequence of (22) and Theorem 2.1, we have, in exact arithmetic,

W T
k QVk = VkQ

TWk = DkTk, Dk = diag(δ1, . . . , δk),

and DkTk is clearly still tridiagonal.

Once again, we may apply Principle 2.1 to Algorithm A.4 to obtain Algorithm 2.4.

Algorithm 2.4 Preconditioned Variant of the Lanczos Bi-Orthogonalization Process for

Vk, Wk and Tk

Require: Q, QT, G = GT � 0, c and x0
1: Set v0 = w0 = 0 and δ0 = 1

2: Set s = c−Qx0 and w1 such that δ1 := 〈s, w1〉 6= 0

3: Solve Gv1 = s for v1 . Initial Krylov vectors

4: k = 1

5: while δk 6= 0 do

6: s = Qvk and u = QTwk

7: Solve Gvk+1 = s and Gwk+1 = u . Compute next Krylov vectors

8: tk,k = 〈s, wk〉/δk
9: tk−1,k = δk/δk−1

10: vk+1 = vk+1 − tk,kvk − tk−1,kvk−1
11: wk+1 = wk+1 − tk,kwk − tk−1,kwk−1 . Bi-orthogonalization

12: δk+1 = 〈s, wk+1〉
13: k = k + 1

Note that, as with the Arnoldi process, when Q is symmetric, both Algorithm 2.3 and

2.4 reduce to the symmetric Lanczos process stated as Algorithm A.2.

2.2.3 Transpose-Free Bi-Orthogonal Bases

An annoyance of the Lanczos bi-orthogonalization process is the need to form products

with both the operator and its transpose. Fortunately, the transpose may be avoided at

the cost of a pair of extra operator-vector products and a more complicated recurrence to

obtain Tk+1,k (Brezinski and Redivo-Zaglia, 1998; Chan et al., 1998). Our version follows

from Algorithm A.4 and is stated as Algorithm A.5.

In practice, scaled versions of this basic recurrence may be preferred to avoid computa-

tional over- and under-flow (Chan et al., 1998). The reduced-space variant of Algorithm A.5

is stated as Algorithm 2.5 on the following page.

At line 3 of Algorithm 2.5, a possible choice for w and wG are wG := v1 and w = G−1wG.
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Algorithm 2.5 Preconditioned Transpose-Free Lanczos Bi-Orthogonalization Process for

Vk

Require: Q, G = GT � 0, c and x0
1: Set v0 = u0 = 0 and δ0 = 1

2: Set y = c−Qx0 and solve Gv1 = y for v1 . Initial Krylov vector

3: Set w and wG := Gw such that δ1 := 〈v1, wG〉 6= 0

4: k = 1

5: while δk 6= 0 do

6: Solve Gs = Qvk for s, tk,k = 〈s, wG〉/δk and tk−1,k = δk/δk−1
7: uk = s− tk,kvk − tk−1,kuk−1
8: Set d = uk − tk−1,kuk−1 and solve Gs = Qd for s

9: vk+1 = s− tk,kd+ t2k−1,kvk−1 . Compute next Krylov vector

10: δk+1 = 〈vk+1, wG〉
11: k = k + 1

2.3 Iteration in the Full Space

We are now in a position to describe how all of the Krylov methods we have considered in

the null space of A may actually be applied in the original (full) space. Recall that in the

full space we have

x∗ = Zx∗, Q = ZTQZ, and c = ZTc,

in which case we have

xk = Zxk = ZV ◦k zk or xk = Zxk = ZVkzk.

Consider also a preconditioner of the form

G := ZTGZ,

where G satisfies the following requirement.

Requirement 2.1 The matrix G is symmetric and positive definite on Null(A).

Such a requirement on G clearly implies that G is symmetric, positive definite. But while

choosing G itself to be positive definite will suffice, this is far from necessary and indeed

undesirable if, as is common for constrained optimization, Q is indefinite.

2.3.1 Orthogonal-Basis Methods

Consider first iterates generated according to xk = Zxk = ZV ◦k zk by the Arnoldi process.

We now apply the following principle to express Algorithm 2.2 in terms of full-space

quantities.

Principle 2.2 1. Basis vectors transform according to v◦k = Zv◦k. Because of (5), each

assignment of v◦k in the reduced space has the form (ZTGZ)−1u for some u of the

form u = ZTu. Thus, we obtain v◦k = Z(ZTGZ)−1ZTu.
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2. Inner products of the form 〈u, v◦k〉 become 〈ZTu, (ZTGZ)−1ZTu〉 = 〈u,v◦k〉.

At first sight, Principle 2.2 appears to suggest that full-space algorithms depend explicitly

on Z. However our choice of G ensures that the crucial operator

PG := Z(ZTGZ)−1ZT (23)

has properties akin to those of an orthogonal projector into the nullspace of A. More

precisely, PGG is an oblique projector into Null(A).

We summarize a few immediate properties of PG in the following result.

Theorem 2.2 Let PG be defined as in (23) where G satisfies Requirement 2.1. Then

1. PGGPG = PG and (PGG)2 = PGG

2. PGx = 0 for all x ∈ Range(AT)

3. PGGx = x for all x ∈ Null(A)

4. ZTGPG = ZT and ZTG(I − PGG) = 0

5. PGGZ = Z.

A consequence of the above is that finding Z is unnecessary as it is easy to show

(Gould et al., 2001) that v◦k = PGu may instead be computed by solving the constraint

preconditioned (Keller et al., 2000) saddle-point system[
G AT

A

] [
v◦k
yk

]
=

[
u

0

]
. (24)

For the coefficient matrix KG of (24) to be a constraint preconditioner, all that is needed

is that G satisfies Requirement 2.1 or, equivalently, that KG be nonsingular and have

precisely as many negative eigenvalues as A has linearly independent rows.

Typically, constraint preconditioners are obtained and used by factorizing—either

explicitly (Keller et al., 2000) or implicitly (Dollar et al., 2007)—KG; this has the further

advantage that the required initial value xF may be found by solving[
G AT

A

] [
xF

y0

]
=

[
g

b

]
(25)

for arbitrary g—usually, g = 0 or g = a.

Applying Principle 2.2 to Algorithm 2.2, we derive the class of Krylov methods for

(3) described by Algorithm 2.6 on the following page. We note that although formally

we may express methods using Algorithm 2.6, an actual implementation will usually be

more streamlined. In particular, the estimate of the solution may often be expressed more

succinctly using quantities computed elsewhere in the algorithm. We give an example of

this in Section 3.
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Algorithm 2.6 Arnoldi-Based Projected Krylov Methods for (3)

Require: Q, PG, c and x0

1: u = c−Qx0

2: Compute v1 = PGu . Initial Krylov vector

3: h1,0 =
√
〈v1,u〉 . Initial preconditioned residual norm

4: if h1,0 6= 0 then

5: v1 = v1/h1,0

6: x1 = V ◦1 Θ1(H1,0,h1,0) . Initial solution estimate

7: k = 1

8: while hk,k−1 6= 0 do

9: u = Qvk
10: Compute vk+1 = PGu . Compute next Krylov vector

11: for i = 1, . . . , k do . Modified Gram-Schmidt

12: hi,k = 〈vi,u〉
13: vk+1 = vk+1 − hi,kvi

14: hk+1,k =
√
〈vk+1,u〉 . Preconditioned residual norm

15: if hk+1,k 6= 0 then

16: vk+1 = vk+1/hk+1,k

17: xk+1 = V ◦k+1Θk+1(Hk+1,k,h1,0) . Update solution estimate

18: k = k + 1

Observe that Algorithm 2.6 (and those that will follow) only aim to find x∗ satisfying

(3) and not y∗. One way to obtain the complete solution is to compute an estimate of the

y∗ component of the solution only once a good approximation to x∗ has been found. To do

so, suppose that x has been obtained as an estimate of x∗. We may then compute

y∗ = arg min
y∈Rm

‖ATy − (c−Qx)‖N (26)

for some appropriate norm ‖ · ‖N . If G were positive definite, the norm ‖ · ‖
G

−1 would be

suitable, and y∗ may be found by solving[
G AT

A

] [
w∗
y∗

]
=

[
c−Qx

0

]
involving the matrix KG used in (24). The same is true using the dual to the semi-norm√
〈s,Gs〉 defined on the manifold As = 0 under the more general Requirement 2.1 on G

(see Conn et al., 2000, §2.2, and Gould et al., 2001, §6).

2.3.2 Bi-Orthogonal-Basis Methods

We now turn to iterates generated by xk = Zxk = ZVkzk, i.e. a solution algorithm based

on the bi-orthogonal basis computed by Algorithm 2.3 or 2.4. Following arguments similar
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to those used for Arnoldi-based algorithms, the analogue of Algorithm 2.6 for the class of

projected Krylov algorithms for (3) based on Lanczos bi-orthogonalization may be stated

as Algorithm 2.7. The variant based on Algorithm 2.3 appears as Algorithm A.6. Note

Algorithm 2.7 Lanczos-Based Projected Krylov Methods for (3)

Require: Q, QT, PG, c and x0

1: Set v0 = w0 = 0 and δ0 = 1

2: Set s = c−Qx0 and w1 such that δ1 := 〈s,w1〉 6= 0

3: Compute v1 = PGs for v1 . Initial Krylov vectors

4: Compute the solution estimate x1 = V1Θ1(T1,0, t1,0)

5: k = 1

6: while δk 6= 0 do

7: s = Qvk and u = QTwk

8: vk+1 = PGs and wk+1 = PGu . Compute next Krylov vectors

9: tk,k = 〈s,wk〉/δk
10: tk−1,k = δk/δk−1
11: vk+1 = vk+1 − tk,kvk − tk−1,kvk−1
12: wk+1 = wk+1 − tk,kwk − tk−1,kwk−1 . Bi-orthogonalization

13: δk+1 = 〈s,wk+1〉
14: Compute the solution estimate xk+1 = Vk+1Θk+1(Tk+1,k, t1,0)

15: k = k + 1

that for each k, Algorithm 2.7 makes the implicit assignment tk+1,k = 1.

2.3.3 Transpose-Free Bi-Orthogonal Methods

Finally, we remain with iterates generated by xk = Zxk = ZVkzk, but now consider the

case where Vk is calculated by the transpose-free Algorithm 2.5. Applying Principle 2.2,

we have derived a transpose-free variant of Algorithm 2.7, stated as Algorithm 2.8 on the

following page.

At line 3 of Algorithm 2.8, note that the choice of wG is irrelevant because the algorithm

computes inner products between wG and vectors lying in the nullspace of B. Therefore,

for any such vector v, we have 〈v, wG〉 = 〈v, w〉. A typical choice is w := v1.

2.4 Constraint-Preconditioned Variants

In this section we establish equivalence relationships between the projected Krylov processes

of §2.3 and the standard preconditioned processes of §2.2 applied to (3) with a constraint

preconditioner of the form (24). Note that we temporarily ignore the fact the constraint

preconditioner is indefinite and thus flout conventional wisdom; we simply write what the

preconditioned processes would be if it were to be employed.
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Algorithm 2.8 Transpose-Free Lanczos-Based Projected Krylov Methods for (3)

Require: Q, PG, c and x0

1: Set v0 = u0 = 0 and δ0 = 1

2: Set y = c−Qx0 and compute v1 = PGy . Initial Krylov vector

3: Set wG and w = PG(fswG such that δ1 := 〈v1,wG〉 6= 0

4: Compute the solution estimate x1 = V1Θ1(T1,0, t1,0)

5: k = 1

6: while δk 6= 0 do

7: Compute s = PG(Qvk), tk,k = 〈s,wG〉/δk and tk−1,k = δk/δk−1
8: uk = s− tk,kvk − tk−1,kuk−1
9: Set d = uk − tk−1,kuk−1 and compute s = PG(Qd)

10: vk+1 = s− tk,kd+ t2k−1,kvk−1
11: δk+1 = 〈vk+1,wG〉
12: Compute the solution estimate xk+1 = Vk+1Θk+1(Tk+1,k, t1,0)

13: k = k + 1

2.4.1 Orthogonal-Basis Methods

Suppose Algorithm 2.2 is initialized with a starting guess of the form (x0,y0) for which

x0 ∈ Null(A). Line 1 of Algorithm 2.2 reads

u =

[
c

0

]
−
[
Q AT

A

] [
x0

y0

]
=

[
c−Qx0 +ATy0

0

]
because Ax0 = 0 so that the initial Krylov vector is given as the solution of[

G AT

A

] [
v1,x
v1,y

]
=

[
c+Qx0 +ATy0

0

]
and this shows that v1,x is identical to the vector v1 given at line 2 of Algorithm 2.6 since

the term ATy0 does not impact the component v1,x of the solution—see the second property

of Theorem 2.2. In particular, v1,x lies in the nullspace of A. At line 3 of Algorithm 2.2,

we compute

h1,0 =

√
〈v1,x, c−Qx0 +ATy0〉+ 〈v1,y,0〉 =

√
〈v1, c−Qx0〉,

which is identical to h1,0 computed at line 3 of Algorithm 2.6.

Assuming now that vk,x lies in the nullspace of A and coincides with vk, we establish

by recursion that vk+1,x also lies in the nullspace of A and coincides with vk+1.

The vector u computed at line 8 of Algorithm 2.2 is

u =

[
Q AT

A

] [
vk,x
vk,y

]
=

[
Qvk,x +ATvk,y

0

]
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and the first component of u is u+ATvk,y, where u is computed at line 9 of Algorithm 2.6.

Next, vk+1 is given as the solution of[
G AT

A

] [
vk+1,x

vk+1,y

]
=

[
u+ATvk,y

0

]
.

This shows that vk+1,x = vk+1. Moreover, Avk+1,x = 0.

Finally, Algorithm 2.2 computes

hi,k = 〈vi,x,Qvk,x +ATvk,y〉+ 〈vi,y,0〉 = 〈vi,x,Qvk,x〉 = 〈vi,u〉 = hi,k,

where we used the fact that Avi,x = 0 for all i ≤ k. Similarly, we can show that

hk+1,k = hk+1,k. We have established the following result.

Theorem 2.3 Algorithm 2.2 applied to (3) with an initial guess of the form (x0,y0)

satisfying Ax0 = 0 and using the constraint preconditioner (24) generates Krylov vectors

vk = (vk,x, vk,y) such that at each iteration k, vk,x is the Krylov vector vk generated

by Algorithm 2.6 with initial guess x0 at iteration k. The temporary vector u has the

form (u+ATw,0) for some vector w, where u is the corresponding temporary vector

generated by Algorithm 2.6. In addition, the Hessenberg matrix generated is identical to

that generated by Algorithm 2.6.

In exact arithmetic, the advantage of Algorithm 2.6 over Algorithm 2.2 with a constraint

preconditioner is in terms of memory requirements. The vectors u and vk generated have

size n while the vectors u and vk of Algorithm 2.2 have size n + m. The advantage of

Algorithm 2.2 with constraint preconditioner is that the subvectors vk,y may be used to

recur approximations to the y segment of the solution of (3). Depending on how the

application of PG is implemented, however, the same approximations may be obtained and

recurred in Algorithm 2.6.

The above equivalence applies to all Krylov methods deriving directly from the Arnoldi

process, including GMRES and FOM, but also to methods deriving directly from the sym-

metric Lanczos process, including the conjugate gradient method, MINRES and SYMMLQ.

This illustrates the point that in the special context of the constraint-preconditioned

symmetric Lanczos process and with a suitable initial guess, MINRES with the indefinite

preconditioner (24) is a well-defined Krylov method.

Example: Projected GMRES Standard GMRES performs m iterations of Algo-

rithm 2.1 to obtain Vm+1 and Hm+1,m, and then computes an approximation xm+1 in

the m+ 1-st Krylov subspace xm+1 := Vm+1zm+1 by solving the linear least-squares problem

minimize
zm+1

‖h1,0e1 −Hm+1,mzm+1‖2. (27)

The preconditioned and projected GMRES algorithms are based on Algorithms 2.2 and

2.6, respectively. Besides Algorithm 2.6, the details of the projected GMRES algorithm
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are standard. The constraint-preconditioned GMRES algorithm defines its (m + 1)-st

approximation as [
xm+1

ym+1

]
= Vm+1zm+1 =

[
Vx,m+1zm+1

Vy,m+1zm+1

]
.

From Theorem 2.3 and (27), it is clear that the xm+1 defined by the projected variant

coincides with the xm+1 defined by the constraint-preconditioned variant.

2.4.2 Bi-Orthogonal-Basis Methods

As in §2.4.1, we establish a formal equivalence between Algorithm A.6 and Algorithm 2.3

applied to the augmented system (3) with the preconditioner (24). Suppose the latter is

initialized with c = (c,0) and x0 = (x0,y0) such that Ax0 = 0. We first compute

s =

[
c

0

]
−
[
Q AT

A

] [
x0

y0

]
=

[
s−ATy0

0

]
.

During initialization, we thus have v1,x = PG(s −ATy0) = PG(s) = v1. Suppose Algo-

rithm 2.3 selects w1 such that Aw1,x = 0.

Assume that for iterations 1 through k−1, each vk and wk is such that Avk,x = Awk,x =

0. During the k-th iteration, Algorithm 2.3 computes

s =

[
Q AT

A

] [
vk,x
vk,y

]
=

[
Qvk,x +ATvk,y

0

]
=

[
s+ATwk,y

0

]
and

u =

[
Q AT

A

] [
wk,x

wk,y

]
=

[
Qwk,x +ATwk,y

0

]
=

[
u+ATwk,y

0

]
before solving the preconditioning systems[

G AT

A

] [
vk+1,x

vk+1,y

]
=

[
sx
0

]
and

[
G AT

A

] [
wk+1,x

wk+1,y

]
=

[
ux
0

]
.

In other words, vk+1,x = PGsx = PG(s+ATwk,y) = PGs = vk+1. Similarly, wk+1,x = wk+1.

Moreover, Avk+1,x = Awk+1,x = 0 before the computation of tk,k.

In Algorithm 2.3,

tk,k = 〈s, wk〉 = 〈sx, wk,x〉 = 〈s+ATwk,y,wk〉 = 〈s,wk〉,

which is the same tk,k computed by Algorithm A.6. Similarly, we see that the two algorithms

compute the same tk+1,k. By recursion, we have established the following result.
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Theorem 2.4 Algorithm 2.3 applied to (3) with an initial guess of the form (x0,y0)

satisfying Ax0 = 0 and using the constraint preconditioner (24) generates Krylov vectors

vk = (vk,x, vk,y) and wk = (wk,x, wk,y) such that at each iteration k, vk,x and wk,x are the

Krylov vectors vk and wk generated at iteration k of Algorithm A.6 with initial guess x0

and using w1 = w1,x chosen so that Aw1 = 0. The temporary vectors s and u have the

form (s+ATvk,y,0) and (u+ATwk,y,0), where s and u are the corresponding temporary

vectors generated by Algorithm A.6. In addition, the tridiagonal matrix generated is

identical to that generated by Algorithm A.6.

A consequence of Theorem 2.4 is that for any Krylov method deriving from the Lanczos

bi-orthogonalization process, the x component of iterates generated by an appropriately

initialized constraint-preconditioned variant of this method will coincide with the iterates

generated by the projected variant of this method. Among others, this conclusion applies

to the two-sided Lanczos method for linear systems, the bi-conjugate gradient algorithm

(Bi-CG) and the quasi-minimum residual method (QMR).

2.4.3 Transpose-Free Bi-Orthogonal Methods

Proceeding exactly as in §2.4.2, a result identical to Theorem 2.4 can be established about

Algorithms 2.4 and 2.7, and similar conclusions can be drawn about iterative methods

deriving from those processes, including corresponding variants of QMR and Bi-CG.

Note that Theorems 2.3, 2.4 and the corresponding result for transpose-free bi-orthogonal

method generalize results of Rozlozńık and Simoncini (2002), who restrict their attention

to the case where Q is symmetric and positive definite.

3 Example: Projected MINRES

In this section, we consider the specific example of the projected MINRES algorithm, in

which approximate solutions xk = Vkzk are chosen so as to minimize the norm of the

residual rk := c−Qxk in the norm defined by G−1. Recall that c = ZTc, Q = ZTQZ and

G = ZTGZ is positive definite. The quantity minimized by the projected MINRES at

each iteration may thus be written

‖rk‖2G−1 = 〈rk, (ZTGZ)−1rk〉. (28)

We now establish directly that standard MINRES applied with a constraint preconditioner

also minimizes (28), and therefore that MINRES with the indefinite preconditioner (24) is

a well-defined Krylov method.

Theorem 2.3 guarantees that with appropriate initial conditions, the approximate

solution (xk,yk) generated at the k-th iteration of the constraint-preconditioned MINRES

is such that xk ∈ Null(A). Consider the residual

rk :=

[
c

0

]
−
[
Q AT

A

] [
xk

yk

]
=

[
c−Qxk −ATyk

0

]
.
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It is tempting to claim that it is this residual that is minimized in the norm defined by

the inverse of the preconditioner (24). Unfortunately, the preconditioner is indefinite. The

appropriate interpretation of this claim is to consider the seminorm associated to the

preconditioner and defined by

‖rk‖2[G] := 〈rk, sk〉 where

[
G AT

A

] [
sk
tk

]
=

[
rk
0

]
, (29)

i.e.,

‖rk‖2[G] = 〈c−Qxk −ATyk, sk〉 = 〈c−Qxk, sk〉. (30)

Note that ‖rk‖[G] measures deviation of rk from the range space of AT and vanishes if

and only if rk is orthogonal to the nullspace of A. In effect, ‖ · ‖[G] defines a norm on the

nullspace of A. Such seminorms have been used in optimization contexts (Conn et al.,

2000). Observe from (29) that sk ∈ Null(A) and therefore, sk = Zsk for some sk. The first

block equation of (29) premultiplied by ZT then yields

sk = (ZTGZ)−1ZT(c−Qxk) = (ZTGZ)−1rk.

Introducing this expression of sk into (30), we finally obtain

‖rk‖2[G] = 〈ZT(c−Qxk), sk〉 = 〈rk, (ZTGZ)−1rk〉 = ‖rk‖2G−1 ,

which coincides with (28). On substituting rk = ZTrk in this last identity, we also see that

‖rk‖2[G] = 〈rk,Z(ZTGZ)−1ZTrk〉 = 〈rk, PG(rk)〉 = ‖PG(rk)‖22.

We conclude that the projected MINRES algorithm minimizes the Euclidian norm of the

projected residual. Since the spaces over which this quantity are minimized are the same in

both methods (Rozlozńık and Simoncini, 2002), projected MINRES and standard MINRES

applied with a constraint preconditioner are equivalent in exact arithmetic.

Similar conclusions can be drawn about the projected SYMMLQ algorithm, which is

also well defined in the presente a constraint preconditioner.

3.1 Implementation considerations

As with the projected conjugate gradient method, the numerical stability of both projected

MINRES and standard MINRES applied with a constraint preconditioner is dependent

on keeping the components xk in the nullspace of A. While this is always true in exact

arithmetic, the accumulation of rounding errors can quickly give xk a non-negligible

component in the range of AT which may cause the method to break down.

To help to ameliorate this effect Gould et al. (2001) suggest that the constraint pre-

conditioner be applied exactly, which is achieved by not only solving the preconditioned

system with a direct method, but by applying one (or more) steps of iterative refinement

to the appproximate solution obtained. This was suggested in the context of projected CG,

but the technique is still worthwhile here.
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Example 3.1 We take the matrix and preconditioner formed in MATLAB by the com-

mands:

1 n = 100; m = 75;

2 Q = rand(n,n);

3 Q = Q + Q’ + 5*eye(n);

4 A = rand(m,n);

5 K = [Q A’; A zeros(m,m)];

6 G = diag(abs(diag(Q)));

That is, we consider a random saddle point matrix with a diagonally dominant leading

block and take the constraint preconditioner where G is the positive diagonal matrix whose

nonzero entries coincide with those of Q.

Example 3.1 is chosen so that the approximate leading block G is a good approximation

of the actual Q. In the next example this is not the case.

Example 3.2 Here we modify the matrix from Example 3.1 by setting Q = Q - 5 *

eye(5), and taking the equivalent (1, 1) block in the constraint preconditioner.

We apply projected MINRES (denoted PPMINRES) and standard MINRES with a

constraint preconditioner to the linear systems described in Examples 3.1 and 3.2. The

algorithms are applied both with and without a step of iterative refinement. The results

are reported as convergence curves in Figure 1.

(a) Diagonally dominant leading block (b) Random symmetric leading block.

Figure 1: Convergence curves for MINRES and PPMINRES. The number in brackets

denotes the number of steps of iterative refinement used. The vertical dashed line shows

where the algorithm would converge in exact arithmetic.

From Figure 1, we see that—as was the case with projected CG (Gould et al., 2001)—it

is advisable to apply these methods with iterative refinement. Our experiments suggest that

a single step of iterative refinement is sufficient. If the (1, 1) block of the preconditioner is
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a good approximation to Q, then it seems that standard MINRES alone does very well.

However, when the approximation is not so good, as in Example 3.2, this becomes the

worst-performing method in terms of maximum attainable accuracy.

4 Eigenvalue Bounds and Convergence

The convergence of Krylov subspace methods is known to be strongly linked to the

clustering of the eigenvalues of the preconditioned system. If the matrix and preconditioner

are symmetric, then the eigenvalues tell the whole story (Paige and Saunders, 1975). For

non-symmetric matrices well clustered eigenvalues do not guarantee rapid convergence, as

famously demonstrated by Greenbaum et al. (1996), but they often do in practice—see,

e.g., Pestana and Wathen (2011). Nachtigal et al. (1992) illustrate that the convergence of

GMRES depends on the eigenvalues, not the singular values, of the operator.

In exploring the convergence of the proposed methods, it is therefore instuctive to

consider the generalized eigenvalue problem[
Q AT

A

] [
x

y

]
= λ

[
G AT

A

] [
x

y

]
. (31)

The following theorem was proved by Keller, Gould, and Wathen (2000) in the symmetric

case and generalized by Cao (2002) to the non-symmetric case. Note that the statement of

Theorem 2.1 by Keller, Gould, and Wathen assumes symmetry of Q and G, but this fact

is not needed in the proof.

Theorem 4.1 Suppose that A is m-by-n and has full row rank. Then the generalized

eigenvalue problem (31) has

• an eigenvalue at 1 with multiplicity 2m, and

• n−m eigenvalues defined by the generalized eigenvalue problem

ZTQZx = λZTGZx.

This result is unsurprising, given the close relationship between solving (3) with a

constraint preconditioner and solving the reduced problem (5) described in the preceeding

sections.

When ZTQZ is unsymmetric, the non-unit eigenvalues will, in general, be complex and

we are unable to apply an interlacing theorem to tie these eigenvalues to the eigenpencil

(Q,G). Fortunately, when ZTQZ is symmetric, but possibly indefinite, we can say more.

First, note that in this case—since Requirement 2.1 implies that ZTGZ is symmetric

positive definite—the eigenvalues are all real (Keller et al., 2000). Also, in this case Keller,

Gould, and Wathen also show that the eigenvalues of the generalized eigenvalue problem of

Theorem 4.1 interlace the generalized eigenvalues, which satisfy Qx = λGx. Therefore,
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provided that G is a good approximation to Q, the eigenvalues satisfying (31) will be well

clustered and we can expect good convergence of a projected Krylov method.

5 Discussion

We have considered the families of processes that form the basis of the great majority of

Krylov methods. There are other types of processes that also possess projected variants

although they do not strictly qualify as Krylov methods. An example is the tridiagonalization

process described by Saunders et al. (1988) on which the iterative methods USYMLQ and

USYMQR are based. Initialized with v0 = w0 = 0 and arbitrary unit vectors v1 and w1,

this process generates sequences {vk} and {wk} according to

tk+1,kvk+1 = Qwk − tk,kvk − tk−1,kvk−1, (32a)

tk,k+1wk+1 = QTvk − tk,kwk − tk,k−1wk−1, (32b)

where tk,k := 〈vk, Qwk〉 and the off-diagonal elements tk+1,k and tk,k+1 are chosen to

normalize vk+1 and wk+1. On rearranging the above, the process is characterized by the

identities

QWk = VkTk + tk+1,kvk+1e
T
k

QTVk = WkTk + tk,k+1wk+1e
T
k ,

where Tk is a k-by-k tridiagonal matrix with positive off-diagonal elements. It is possible to

show that both sequences {vk} and {wk} are orthonormal and they are mutually conjugate

in the sense that 〈vj, Qwk〉 = 〈wj, Qvk〉 = 0 for k < j−1 (Saunders et al., 1988, Theorem 1).

The above relations differ considerably from (21) and (22) but are reminiscent of the Golub

and Kahan (1965) bidiagonalization process. Though the above process does not generate

Krylov spaces but somewhat larger spaces, it is possible to derive a projected variant

applicable directly to (3) in the same way as in §2.3.

Certain saddle-point systems, such as those arising from the discretization of stabilized

Navier-Stokes flow problems, have the form[
Q AT

A −C

] [
x∗
y∗

]
=

[
a

b

]
,

where C is typically symmetric and positive semi-definite (Elman et al., 2005). Assuming

more generally that C may be decomposed as EDET where D is nonsingular, and

introducing w := −DETy as suggested by Dollar et al. (2007), such systems may be

equivalently reformulated Q AT

D−1 ET

A E

x∗w∗
y∗

 =

a0
b

 .
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The latter system has the form (1) and the methods proposed in this paper are applicable.

An instructive way to summarize the difference between projected and constraint-

preconditioned Krylov methods is that projected methods use the preconditioner

[
I 0

] [G AT

A

]−1 [
I

0

]
.

This expression of the projected preconditioner effectively extracts the leading block of the

inverse of constraint preconditioned, which is indeed a projector into Null(A).

Finally, we note that it appears as if A must be available as an explicit matrix to

factorize (24). There are other ways to compute projections. One of them is to solve a linear

least-squares problem of the form (26) using an appropriate metric, which only requires

A to be available as an operator. It remains important however that such projections be

computed accurately and this can mean that an iterative solver must be supplied with

stringent stopping conditions.

6 Outlook

In most programming languages, it is possible to implement projected Krylov methods

non intrusively, i.e., without modifying the underlying Krylov method, by specifying an

appropriate preconditioner—be it a function or an abstract object—that performs the

projection, the iterative refinement but also the residual update. One language where this

is not possible is Matlab, the limitation being due to Matlab’s passing arguments by value

and not by reference.

We have only considered saddle-point systems in which, in PDE parlance, the “gradient”

and “divergence” terms are adjoints of one another. In optimize-then-discretize approaches

to solving certain PDE-constrained optimization problems, we encounter saddle-point

problems of the form [
Q BT

A

] [
x∗
y∗

]
=

[
c

0

]
, (33)

where Q, as before, may be unsymmetric. Variants of the approach described in the present

paper may be employed to solve (33). We leave the study of such variants for future work.
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Appendix Appendix A Preconditioned-Space Processes

and Variants

This section contains the symmetric Lanczos, unsymmetric Lanczos and transpose-free

variants formulated in preconditioned space. In addition, it contains the unsymmetric

Lanczos process discussed by Chan et al. (1998) and Freund et al. (1993).

A.1 The Symmetric Lanczos Process

When Q is symmetric in Algorithm 2.1, Hk+1,k is tridiagonal and the resulting simplified

procedure is the symmetric Lanczos process, summarised as Algorithm A.1.

Algorithm A.1 Lanczos Process for V ◦k and Tk−1,k

Require: Q, c and x0
1: Set v ◦0 = 0 and v ◦1 = c −Qx0 . Initial Krylov vector

2: t1,0 =
√
〈v ◦1 , v ◦1 〉 . Initial residual norm

3: if t1,0 6= 0 then

4: v ◦1 = v ◦1 /t1,0

5: k = 1

6: while tk,k−1 6= 0 do

7: v ◦k+1 = Qv ◦k . Compute next Krylov vector

8: tk,k = 〈v ◦k , v ◦k+1〉
9: v ◦k+1 = v ◦k+1 − tk,kv ◦k − tk,k−1v ◦k−1 . Modified Gram-Schmidt

10: tk+1,k =
√
〈v ◦k+1, v

◦
k+1〉 . Residual norm

11: if tk+1,k 6= 0 then

12: v ◦k+1 = v ◦k+1/tk+1,k

13: k = k + 1

Algorithm A.1 is characterized by the identities

QVk = Vk+1Tk+1,k (34)

= VkTk + tk+1,kvk+1e
T
k , (35)

where Tk is k-by-k upper triangular and Tk+1,k is Tk with the extra row tk+1,ke
T
k .
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Applying the principles of §2.2.1 to Algorithm A.1, we obtain Algorithm A.2.

Algorithm A.2 Preconditioned Lanczos Process for V ◦k and Tk−1,k

Require: Q, G = GT � 0, c and x0
1: Set v◦0 = 0, u = c−Qx0 and solve Gv◦1 = u for v◦1 . Initial Krylov vector

2: t1,0 =
√
〈u, v◦1〉 . Initial residual norm

3: if t1,0 6= 0 then

4: v◦1 = v◦1/t1,0

5: k = 1

6: while tk,k−1 6= 0 do

7: Set u = Qv◦k and solve Gv◦k+1 = u for v◦k+1 . Compute next Krylov vector

8: tk,k = 〈u, v◦k〉
9: v◦k+1 = v◦k+1 − tk,kv◦k − tk,k−1v◦k−1 . Modified Gram-Schmidt

10: tk+1,k =
√
〈u, v ◦k+1〉 . Residual norm

11: if tk+1,k 6= 0 then

12: v◦k+1 = v◦k+1/tk+1,k

13: k = k + 1
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A.2 The Lanczos Bi-Orthogonalization Process

The Lanczos (1950) bi-orthogonalization process as described in (10) and applied to Q and

c leads to Algorithm A.3. This is a special case of Saad (2003, Algorithm 7.1) and Golub

and van Loan (1996, (9.4.7)).

Algorithm A.3 Lanczos Bi-Orthogonalization Process for Vk, Wk and Tk

Require: Q, QT, c and x0
1: Set v0 = w0 = 0, t0,1 = t1,0 = 1

2: Set v1 = c −Qx0 and w1 such that 〈v1,w1〉 = 1. . Initial Krylov vectors

3: k = 1

4: while tk−1,k 6= 0 do

5: vk+1 = Qvk and wk+1 = QTwk . Compute next Krylov vectors

6: tk,k = 〈vk+1,wk〉
7: vk+1 = vk+1 − tk,kvk − tk−1,kvk−1
8: wk+1 = wk+1 − tk,kwk − wk−1 . Bi-orthogonalization

9: tk,k+1 = 〈vk+1,wk+1〉
10: if tk,k+1 6= 0 then

11: wk+1 = wk+1/tk,k+1

12: tk+1,k = 1

13: k = k + 1

The variant described by Chan et al. (1998) and Freund et al. (1993) is given as

Algorithm A.4.

Algorithm A.4 Variant of the Lanczos Bi-Orthogonalization Process for Vk, Wk and Tk

Require: Q, QT, c and x0
1: Set v0 = w0 = 0 and δ0 = 1

2: Set v1 = c −Qx0 and w1 such that δ1 := 〈v1,w1〉 6= 0 . Initial Krylov vectors

3: k = 1

4: while δk 6= 0 do

5: vk+1 = Qvk and wk+1 = QTwk . Compute next Krylov vectors

6: tk,k = 〈vk+1,wk〉/δk
7: tk−1,k = δk/δk−1
8: vk+1 = vk+1 − tk,kvk − tk−1,kvk−1
9: wk+1 = wk+1 − tk,kwk − tk−1,kwk−1 . Bi-orthogonalization

10: δk+1 = 〈vk+1,wk+1〉
11: k = k + 1
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A.3 Transpose-Free Lanczos Bi-Orthogonalization Process

It is straightforward to obtain a transpose-free variant of Algorithm A.4 that we state as

Algorithm A.5.

Algorithm A.5 Transpose-Free Lanczos Bi-Orthogonalization Process for Vk

Require: Q, c and x0
1: Set v0 = u0 = 0 and δ0 = 1

2: Set v1 = c −Qx0 and w such that δ1 := 〈v1,w〉 6= 0 . Initial Krylov vector

3: k = 1

4: while δk 6= 0 do

5: Set s = Qvk, tk,k = 〈s ,w〉/δk and tk−1,k = δk/δk−1
6: uk = s − tk,kvk − tk−1,kuk−1
7: Set d = uk − tk−1,kuk−1 and s = Qd

8: vk+1 = s − tk,kd + t2k−1,kvk−1
9: δk+1 = 〈vk+1,w〉

10: k = k + 1
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A.4 Projected Lanczos Bi-Orthogonalization Process

The analogue of Algorithm 2.6 for the class of projected Krylov algorithms for (3) based

on the Lanczos bi-orthogonalization Algorithm 2.3 may be stated as Algorithm A.6.

Algorithm A.6 Lanczos-Based Projected Krylov Methods for (3)

Require: Q, QT, PG, c and x0

1: Set v0 = w0 = , t0,1 = t1,0 = 1

2: Set s = c−Qx0. Set w1 such that 〈s,w1〉 = 1.

3: Compute v1 = PG(s) . Initial Krylov vectors

4: Compute the solution estimate x1 = V1Θ1(T1,0, t1,0)

5: k = 1

6: while tk−1,k 6= 0 do

7: s = Qvk and u = QTwk

8: Compute vk+1 = PG(s) and wk+1 = PG(u) . Compute next Krylov vectors

9: tk,k = 〈s,wk〉
10: vk+1 = vk+1 − tk,kvk − tk−1,kvk−1
11: wk+1 = wk+1 − tk,kwk −wk−1 . Bi-orthogonalization

12: tk,k+1 = 〈s,wk+1〉
13: if tk,k+1 6= 0 then

14: wk+1 = wk+1/tk,k+1

15: tk+1,k = 1

16: Compute the solution estimate xk+1 = Vk+1Θk+1(Tk+1,k, t1,0)

17: k = k + 1


	RAL-P-2013-006-cover.pdf
	RAL-P-2013-006-report.pdf
	Introduction
	Related Research
	Terminology and Notation

	Saddle-Point Problems
	Krylov-Subspace Methods
	Computing Suitable Bases
	Orthogonal Bases and the Arnoldi Process
	Bi-Orthogonal Bases and Lanczos Bi-Orthogonalization
	Transpose-Free Bi-Orthogonal Bases

	Iteration in the Full Space
	Orthogonal-Basis Methods
	Bi-Orthogonal-Basis Methods
	Transpose-Free Bi-Orthogonal Methods

	Constraint-Preconditioned Variants
	Orthogonal-Basis Methods
	Bi-Orthogonal-Basis Methods
	Transpose-Free Bi-Orthogonal Methods


	Example: Projected MINRES
	Implementation considerations

	Eigenvalue Bounds and Convergence
	Discussion
	Outlook
	Appendix Preconditioned-Space Processes and Variants
	The Symmetric Lanczos Process
	The Lanczos Bi-Orthogonalization Process
	Transpose-Free Lanczos Bi-Orthogonalization Process
	Projected Lanczos Bi-Orthogonalization Process





