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Introduction

Despite the theoretical and experimental efforts done so far, the physics of ice and water still

presents a very difficult challenge for physicists. Due to the key role played by water and ice

in the biological systems and planet dynamics, a full understanding of the water molecule in

all its phases is highly desirable.

Many other common liquids, as blood or milk, are mainly composed of water. Although

a number of investigations have been carried out in the last century, water and ice present

behaviors that are not or not fully understood or at least considered anomalous. A typi-

cal example is the water maximum density at a temperature higher than the triple point

temperature (T = 4◦ C, at ambient pressure, see figure 1). Anomalous behaviors of water,

with respect to a simple liquid (simple in the sense that does not present a high molecular

interaction and it is well described by simple thermodynamic models), for example, are more

than 60 [1], and they are a consequence of the microscopic structure of water molecule that

can form very strong and directional bonds, named hydrogen bonds.

Figure 1: An example of a water anomaly: the density at ambient pressure as a function of

the temperature shows a maximum at T = 4◦ C [2].

In this work we will describe three neutron scattering experiments on water and ice.

Two of them have been done using DINS (Deep Inelasyic Neutron Scattering), and carried

out on polycrystalline and mono-crystalline ice at 271 and 130 K, respectively. The DINS

1



INTRODUCTION 2

experiments allow us to measure the momentum distribution and the mean kinetic energy of

a target, that in the present case is the water proton.

The third experiment, carried out by INS (Inelastic Neutron Scattering), has been per-

formed at 271 K on ice and, over a wider range of temperature (269-300 K), on water .

Liquid water below the melting point (T = 273.15 K) is called supercooled water and it is a

metastable phase.

In this thesis the data acquisition and data analysis will be discussed. It is important to

note that this work introduces new steps in the data analysis that allow us to obtain new

physical information such as the mean force experienced by the proton in the analyzed system

[3].

In the following sections, after a short introduction on the water molecule, we will describe

the addressed problems and we will summarize the state of the art of this kind of measurement.

Finally we will give a description of the experiments done.

The water molecule

The chemical and physical properties of water and ice are due to its molecular structure. The

oxygen atom has an external electronic configuration (2s22p4) that shows two atomic orbitals

with one electron each. The superposition of two 1s orbitals of two hydrogen atoms (either

with one electron each) with each other produces the two σ bonds of the water molecule

(figure 2).

Experimental measurements show that the angle between the bonds of the hydrogens is

105◦ [4], and not 90◦, as expected from from the perpendicularity of the p orbitals. This is due

to the repulsion of the partially positively charged hydrogens, and to the hybridization sp3

among the two O–H bonds and the two lone pairs of the oxygen atom. So the partial positive

and negative charges are at the maximum distance with each other, forming a structure that

is approximatively tetrahedral (the tetrahedron angle is 109.5◦ and the discrepancy is due to

the charge distribution within the molecule).

Water possesses an asymmetric distribution of the electric charge: the oxygen atom is

electronegative and it strongly attracts the bonding electrons, so that the center of the nega-

tive charge distribution corresponds approximatively to the oxygen. The center of the positive

charges is instead on the bisector of the O-H-O angle at a distance from the oxygen that is

very close to the H-O distance.

As a consequence water molecule has a dipole moment that has direction and sign going

from the mid point of the segment joining two hydrogens to the oxygen. For free molecules

this dipole moment has been determined experimentally to be (6.186 ± 0.001)×10−3 Cm [5],
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Figure 2: Left side: electronic structure and covalent bonds of the water molecule. Right side:

tetrahedral structure around a central molecule.

value very close to more recent ab initio theoretical calculation [6].

Thanks to the dipole moment molecules interact, but, in the case of water, attractive

forces assume strength and directionality that cannot be explained only with the presence

of a dipole moment or unpaired charges. Such bonds, a mixture between covalent and ionic

bonds, are named hydrogen bonds (H-bonds).

Hydrogen bond is a particular case of dipoles interaction and it was proposed as being

responsable for the binding of molecules in water in 1929 by Latimer and Rodebush [7]. It

is now known to account for the tetrahedral bonding of molecules in ice. It is a permanent

dipole versus permanent dipole bond in which a hydrogen with a covalent bond with a very

electronegative element (O, N or F ) is involved. The electronegative element attract electrons

acquiring a partial negative charge (δ−) and leaving hydrogen with a partial positive charge

(δ+).

H-bond forms when the relatively high positive charge of hydrogen is located very close to

an electronic doublet of a functional group, that binds the hydrogen so it is named acceptor.

The group in which the hydrogen is covalently bonded is named donor. For example, in the

OH group there is a partial negative charge in O and a positive one in the H, so the OH is

partially polarized (permanent dipole). If this group meets another polar group, for example

a carbonyl group, an electrostatic interaction generates.

Water molecule can form 4 H-bonds with 4 other molecules: two of them are acceptors,

in the region of the hydrogens, and two are donors, thanks to the two lone pairs. These 4
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bonds, when hybridized sp3, generate a tetrahedral structure (see fig. 2) that is very easy

to measure in the solid state [8], where each hydrogen atom is shared between two oxygen

atoms.

In water there is a strong directional bond between an oxygen and a hydrogen atom

that belongs to another molecule [9]. The ice, the stable solid state of water below 273 K at

ambient pressure, is the best example of how water molecules can form a network of hydrogen

bonds. Each molecule has four first neighbors and behaves as donor for two of them and as

acceptor for the others. The result is that each molecule is surrounded by 4 molecules at the

vertex of a regular tetrahedron and all the molecules form a opened web, bonded together

by th H-bonds. When ice melts at ambient pressure the loss of this long range order causes

a rise of the density of 9%.

The binding energy of the H-bond, around few kJ , is smaller than ionic or covalent ones,

but larger than the Van der Waals forces. The low value of melting latent heat with respect to

the sublimation heat is an evidence of the fact that most H-bonds persist in liquid phase. As

a consequence in the liquid phase, even very close to the evaporation point, the tetrahedral

symmetry is preserved at short range.

Ice Ih

In principle ice should be a material easier than water to understand, because the molecules

are arranged on a regular lattice. However, the ice with which we are familiar (ice Ih) is just

one of at least 13 crystalline phases which have been observed under different conditions of

pressure and temperature. The crystal structures of ice Ih, and many of the other phases are

unusual because, although the molecules lie on a regular crystal lattice, a certain amount of

disorder is present in their orientations. This feature introduces a whole series of distinctive

properties, of which the most significant are the electrical polarizability and conductivity.

Ice can be described as a protonic semiconductor [10] and the theory of its electrical prop-

erty is now well developed. The effort to reach a deeper understanding is relevant to more

complicated systems in which proton transfer takes place along hydrogen-bonded chains in

biological structures.

Ice is an important material both in our environment and as one of the simplest crystalline

materials. It has many distinctive properties and moreover its structure is simple enough to

be accessible to serious theoretical treatment. Great progress has been made in understanding

the properties of ice, but the task is far from being complete.

Ice Ih is the normal form of ice obtained by freezing water at atmospheric pressure (or

by direct condensation from water vapor above ≈ 171 K). The number I was assigned by
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Tammann [11] following his discovery of the first of the high pressure phases of ice, and the

h is commonly added to distinguish this normal hexagonal phase from a metastable cubic

variant called ice Ic.

The phase diagram for the equilibrium between ice Ih and the liquid and vapor phase is

illustrated in figure 3.

Figure 3: Schematic phase diagram of water at low pressures (not to scale).

The triple point, where the three phases are in equilibrium is, by definition, at 273.16

K, and the corresponding pressure is 611.7 Pa. The negative slope of the melting curve is a

consequence of the fact that water expands on freezing, causing, for example, floating of ice

on water.

The basic structure of ice Ih is well established to be that proposed by Pauling [12]

and illustrated in figure 4. The oxygen atoms, shown by the open circles, are arranged on a

hexagonal lattice with a structure named wurtzite (the hexagonal form of ZnS). Each oxygen

atom has four nearest neighbors at the corners of a regular tetrahedron. The hydrogen atoms,

shown as the dark spot, are covalently bonded to the nearest oxygen to form H2O molecules,

and these molecules are linked to one other by hydrogen bonds, each molecule offering its

hydrogens to two other molecules and accepting hydrogen bonds from another two. The

essential feature of the Pauli model is that there is no long range order in the orientation of

the H2O molecules or of the hydrogen bonds.

When ice condenses from the vapor it usually forms single crystals. These have a variety

of shapes, including beautiful snow flakes, platelets, and less commonly needles depending

on the conditions [13, 14]. These crystals reveal the hexagonal symmetry of the lattice of ice

and, in accordance with standard crystallographic convention, the hexagonal axis is denoted
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Figure 4: The crystal structure of ice Ih. The white and the black circles represent the O and

H atoms, respectively. The white lines represent the H-bonds.
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as c-axis or [1000] in the Miller-Bravais notation appropriate for hexagonal structures. Under

most conditions crystal growth is more rapid in directions perpendicular to the c-axis.

Figure 5: A layer of the ice structure projected on the (101̄0) plane.

When liquid, water freezes in such a way that the single crystals are nucleated initially,

and these may be attached to the walls of the container or float on the surface. A few isolated

nuclei form, lying on the surface with the c-axes vertical, and these grow across the surface

and then downward, thus forming columnar grains whit their c-axis parallel. If ice is initially

formed more rapidly, the surface is covered with a solid mass of randomly oriented grains

and, as these spread into the liquid, the grains, which grow perpendicular to the c-axis, grow

most rapidly and predominate over the others. As a result a sheet of ice growing from a free

surface, as in a lake or at sea, will usually come to consist of long grains running perpendicular

to the surface with their c-axis approximately horizontal.

For many experiments single crystals are required. Crystals of good quality can be cut

from large-grained columnar ice [15]. At one time it was common to use large crystals which

could be piked up from glaciers, Mendenhall Glacier in Alaska, as an example [16]. Single

crystal can be formed in the laboratory simply by cooling an open vessel containing water

under controlled conditions [17] [18], or much more quickly and stably if surface cooling is

achieved by rapid evaporation from the surface under reduced pressure [19]. Single crystal
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have also been grown by variants of the Czochralski technique in which a cooled seed crystal

is gradually lifted from the liquid held at 0 ◦C, but the highest quality crystals are produced

by growing the ice through a capillary into a wider glass tube. The most stable conditions

for growth are obtained when the ice forms above the liquid as in the Sapporo technique [20].

This method requires a seed crystal, and, because the expansion on freezing, it cannot be

used with the water in a sealed container. These problems do not arise in the Birmingham

technique where the ice grows from the bottom [21]. As the growth tube is lowered into the

column of cold antifreeze, polycrystalline ice is first formed in the nucleation bulb, and the

ice then grows as a single crystal through the twisted capillary into the main part of the

tube. However, in this method the liquid is unstable against convection and the temperature

distribution has to be carefully controlled to eliminate a gradient in the upper part of the

tube.

Figure 6: System for the growth of high quality single crystal of ice. a) Sapporo technique in

which the crystal is raised from the liquid; b) Birmingham technique in which the growth tube

is lowered into cold antifreeze.

Measurement of momentum distributions

Since the early development of X-ray Compton scattering, the realization that the target

atom in the systems necessarily contains bound electrons, which cannot be stationary, led

to the interpretation that Compton scattered beams were Doppler broadened due to the
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motion of the target electrons [22]. Du Mond (1929) used the novel Fermi-Dirac distribution

function to predict the line shape for beryllium samples [23]. His results possibly constitute

the earliest direct evidence for the validity of the Fermi-Dirac statistics for the electron gas.

Thus, for target electrons possessing a probability density distribution n(p), the Compton

profile, J(pz), where z is the direction of the scattering vector, is the projection of n(p) along

the scattering vector.

In isotropic systems n(p) depends only on the magnitude of p, and it can be shown that

[24]:

J(pz) = 2π

∫ ∞

|y|
pn(p)dp , (1)

and hence that

n(p) = − 1

2πpz

dJ(pz)

dpz

∣

∣

∣

∣

pz = p . (2)

The latter expression for the momentum distribution in terms of the derivative of the Comp-

ton profile is originally due to Du Mond [23].

The possibility of measuring momentum distribution of bounded atoms within the impulse

approximation was proposed in 1964 by Ivanov e Sayasov [25]. Instead, a DINS experiment

on monoatomic samples was proposed by Hohenberg and Platzmann in 1966 [26], to measure

the mean kinetic energy of superfluid 4He, to have a direct evidence of the Bose condensate.

In their work they enhanced the possibility of interpreting the data in a simple way thanks to

the Impulse Approximation (I.A.), that holds if the exchanged wave vector of the incoming

neutrons is large enough. For this reason DINS had his major development in the eighties,

when high flux epithermal neutrons sources (neutrons with an energy around 1 eV) became

available.

The impulse approximation consists, in fact, in neglecting the internal binding energies of

a sample and considering the interaction between an incoming neutron and a target nucleus

as a two free particle scattering event. To reach this regime high exchanged energies (typically

E > 1 eV ) and wave vector (q > 30 Å−1) are needed.

Early studies were addressed to test the use of DINS as a method for directly observing

the postulated Bose-Einstein condensate in superfluid 4He [27, 28, 29, 30, 31]. The ad-

vent of pulsed neutron sources, with an high flux in the epithermal region, has made DINS

experiments feasible [32, 33, 34, 35, 36]. As a result, over the last 20 years, a number of

experiments of the neutron Compton profile have been successfully performed and the single-

particle short-time dynamics has been studied in a large number of systems in a wide range

of thermodynamic states. These include hydrogen bonded systems [37, 38], metal hydrides

[39, 40, 41, 42], catalysts [43], glasses [44, 45], amorphous materials [46], quantum fluids and

solids [46, 47, 48, 49, 50, 51, 52].



INTRODUCTION 10

This technique is based on measurements that provide information on the system over very

short spatial range (r ≤ 1 Å) and very short time scale (t ≤ 10−15s). In this regard, it is not

too difficult to understand how DINS relates the scattering cross section to the momentum

distribution, whose variance is related to the mean kinetic energy of the target particle. As

an example, let us imagine an ideal gas, made of non interacting monoatomic particles, with

a Gaussian distribution of momenta and let us suppose to perform a DINS experiment on

such a system. With the knowledge of all the neutrons kinematic variables before and after

the scattering, it is possible to obtain the exchanged momentum and energy. In this case

what is measured is a cross section that can be expressed as a delta function, representing

the energy conservation, times a term that takes into account the velocity distribution of the

target particles, leading to a Doppler broadening of the delta function. In other words it is

possible to measure the momentum distribution of the system.

To better illustrate the strength of this technique it is useful to report some results

obtained in the simple case of a monoatomic system, that has a remarkable interest for

quantum mechanics: helium [53]. 4He is very close to an ideal system because of its low

mass and the accurate knowledge of his interatomic interactions. It is well known that at a

temperature of Tλ = 2.17 K 4He undergoes a transition signaled by a specific heat anomaly,

whose characteristic shape has led to the name λ point being given to the temperature at

which it occurs. This temperature marks the transition between two different forms of liquid

4He. Above the lambda point, helium behaves like a low-viscosity low-density liquid. Below

the transition temperature helium is capable of being viscous and nonviscous at the same

time, a contradiction which is the essence of the two-fluid model [54].

According to this model, helium in the superfluid phase behaves as if it were a mixture

of two liquids: one, the normal fluid, possessing an ordinary viscosity, and the other, the

superfluid, being capable of frictionless flow, passing obstacles and flowing through narrow

channels. In the Andronikashvili experiment performed in 1946 [55] a pile of equally spaced

thin metal discs were suspended by a torsion fiber in order to be able to perform oscillations

in liquid helium. It confirmed the prediction that the superfluid fraction would have no effect

on the torsion pendulum and it showed that helium is almost entirely superfluid below 1

K. In 1938 London suggested that the lambda point marked the onset of a Bose-Einstein

condensation. The condensate was associated with the superfluid fraction of helium below

the lambda point, while the normal component corresponds to the elementary (thermal)

excitations of the whole system. Miller [56] pointed out that inelastic neutron scattering

measurements, with high exchanged wave vector, would allow a derivation of N0
N , the relative

number of particles in the condensed state. Following the Honemberg and Platzmann idea,

the first experimental results, in the high q regime, were obtained by Cowley and Woods [57],
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using rotating crystals and triple axis spectrometers with wave vector transfers extending

up to 10 Å−1. Their results provided the first experimental estimate of the condensate

component: (17 ± 10) % at finite temperature (1.1 K).

With the advent of spallation neutron sources, large fluxes of neutrons in excess of 1 eV

became available, allowing measurements at larger wave vector transfer, where data inter-

pretation can be more easily described in terms of the IA framework. Two types of neutron

spectrometers [58] were used with this aim, both employing the time-of-flight technique:

• the direct-geometry chopper spectrometers, allowing measurements with wave vector

transfers up to about 30 Å−1;

• inverse-geometry filter-resonance spectrometers where the wave vector transfer extends

up to 250 Å−1 [59].

Figure 7: Mean kinetic energy of 4He as a function of the temperature, around the transition

temperature. Square [60] and circles [61] are obtained by measurements carried on VESUVIO

spectrometer at ISIS neutron spallation source, one of the spectrometer used in this work.

Triangles refer to Monte Carlo simulation [62]. The step at T= 2.17 K indicates the transition

between the superfluid and the normal phase.

These measurements yield to a condensate fraction f = 0.088 ± 0.003 [61], in very good

agreement with more recent results [63].

The first experimental study of the density and temperature dependence of the momentum

distribution in the superfluid phase (T =1.5 K) for low exchanged wave vector (range from 5 to

7 Å−1) was performed by Mook [66]. However, this experiment was not exhaustive, because



INTRODUCTION 12

Figure 8: Measurements of the liquid 4He mean kinetic energy at some temperatures and

densities. [46, 64, 65] Equal symbols correspond to equal density: n = 44.7 nm−3 (squares),

n = 37.9 nm−3 (high vertex triangles), n = 33.1 nm−3 (low vertex triangles), n = 22.5 nm−3

(rombs), n = 13.8 nm−3 (circles), n = 10.4nm−3 (stars); the line represents the classical

behavior. Larger density gives rise to a larger excess of mean kinetic energy.
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the density behavior of the n(p) was analyzed in terms of the changes of the condensate

fraction only, neglecting the important localization effects induced by the reduction of the

molar volume. In this respect the work by Herwig [67], simplified the scenario measuring

the 4He in the normal phase. Their results assessed an almost quadratic density dependence

of 〈Ek〉 , in good agreement with path integral Monte Carlo theoretical predictions [68].

Systematic studies of liquids 4He have been undertaken on the MARI spectrometer at ISIS,

up to a wave vector transfer of the order of 25 Å−1. These employed a new analysis technique,

which simultaneously determined the momentum distribution and the final-state effects [69]:

single-particle momentum distributions of normal liquid 4He and superfluid 4He have been

investigated in this way [70, 71, 72]. A detailed review of these measurements is provided in

the book of H. R. Glyde [73], and in Ref. [74].

In figure 8 one can compare the mean kinetic energy, with the same quantity calculated

within the classical theory: 〈Ek〉 = 3/2kbT . An excess of mean kinetic energy due to quantum

effects is visible and this excess increase for higher densities [61, 60, 62]. A similar relation

between mean kinetic energy and density has been also observed for 3He, a system which

represents an almost ideal Fermi liquid (o solid), as well the unique available in nature. No

measures on 3He has been done in solid phase before 2001, except for some neutron diffraction

experiments, due to its high neutron capture cross section for thermal neutrons. Thanks to

the DINS technique, in 2001 the mean kinetic energy was measured [75] in a high density

liquid phase and in two densities solid state, with two different crystalline structures and

molar volumes, ν = 18.75 cm3/mole, for fcc structure and ν = 20.1 cm3/mole for bcc.

Figure 9 shows that experimental data are in a good agreement with simulation [76] and

〈Ek〉 increase with density. In very general terms one can state that this correlation is a

direct consequence of the Heisenberg principle: if the volume in which a particle can move is

decreased, then the spatial extension of his wave function is decreased too, so the fluctuation

of the wave function in momentum space increases and this gives rise to a higher mean kinetic

energy.

It has to be stressed how DINS is sensitive to the atomic masses of the sample and allows

us to distinguish among the contribution of different isotopes. In figure 10 a spectrum from

a DINS experiment on a mixture of 3He and 4He is reported. 3He and 4He peaks are

well separated, as well as the aluminum peak due the container. From these measures it

is possible to conduct an independent analysis on the contribution of these two isotopes.

This feature makes DINS very effective for the study of many molecular systems in which

isolating the contribution of different atomic masses is desirable [53]. In the case of water,

hydrogen has a mass that is at least 16 times smaller than the mass of oxygen and of the

material of the container, so the hydrogen peak is well separated from the other peaks. Also
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Figure 9: Mean kinetic energy as a function of the molar volume: black circles represent

experimental value, white circles are DMC (Diffusion Monte Carlo) [76]. The temperature

is kept fixed: the kinetic energy increases as the molar volume is decreased, showing a direct

correlation between 〈Ek〉 and the density.

the cross section of hydrogen is four time larger than other elements so the DINS is the

best experimental technique for studying the momentum distribution of hydrogen in many

systems.

Momentum distribution is sensitive to the local environment of the particles (the proton

in case of water) and this is because the position and momentum operators do not commute.

The equilibrium position of a proton, corresponding to the minimum of the potential in

which the particle stays, can be measured, for example, by diffraction. The knowledge of the

momentum distribution, however, can reveal what kind of potential the proton feels around

its equilibrium position. For example, a proton in an harmonic potential has a Gaussian

momentum distribution. In general the extraction of the potential from the momentum

distribution is simply obtained by inverting the Schroedinger equation [77]:

V (~R)− E =
h̄2

2M
Ψ−1∇2Ψ , (3)

where Ψ(R) and Ψ(p) are Fourier transforms of each other, and the latter is obtained from

|Ψ(p)|2 = n(p). The phase ambiguity in extracting the momentum-space wave function from

n(p) is not a problem for inversion-symmetric potentials, since Ψ(p) can always be chosen to

be real. It should be noted that the technique, at least in its simplest form, is restricted to

systems in which all atoms of the species under study have identical chemical environments.
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Figure 10: DINS experiment performed on a sample made by a mixture of 4He with 35%

of 3He. The response of a detector placed at θ = 78◦ with respect to the incoming neutrons

is shown for energy and exchanged wave vector spectrum (upper panel) and TOF spectrum

(lower panel), showing the clear separation among the recoil peaks of the different atomic

masses.
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If they do not, the Compton profile will be a superposition of contributions from different

environments. Although the spatial wave function can be obtained from momentum distri-

bution, there is a very important difference between DINS and diffraction in the sampled

time scales: diffraction gives informations of the spatial distribution over a long time, while

momentum distribution sample very short time scale. For this reason one can distinguish

with a DINS experiment a coherent proton tunneling from an induced thermal jump [78].

An extreme case of an anharmonic potential is one with two minima, such as might be

expected for a proton in a hydrogen bond [79, 80]. A useful model for illustrating the results

expected for a double-well potential is to assume a ground state consisting of two shifted

Gaussian of equal amplitude in one dimension:

Ψ(x) = e−
(x−a)2

2σ + e−
(x−a)2

2σ . (4)

Figure 11: Model wave functions for an atom in a double-well potential as defined in the

equation 4. The wave function is the sum of two Gaussian components of width σ, centered

a distance 2a apart. Solid line: a/σ = 0.25; dashed line: a/σ= 0.6; dotted line: a/σ = 1. As

the width of the two Gaussian component enlarges or, equivalently, the distance 2a decreases,

the wave function tends to a Gaussian function. As a consequence the measured momentum

distribution could be indistinguishable from a Gaussian function. As an example the wave

function with a/σ = 1 would give a momentum distribution resembling a Gaussian with

larger tails, as in the case of water around the maximum density temperature [81]. Instead,

the peculiar behavior of the supercooled water, reported in figure 14, can be associated to a

wave function with a clear separation between its two maxima.

This function is plotted in figure 11 for selected values of the ratio a/σ. For the largest

value of a/σ the potential consists of rather isolated harmonic wells, which gradually merge
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Figure 12: The Neutron Compton Profile, J(y), corresponding to the two-Gaussian model

wave function, with a/σ= 0.6.

as a/σ is reduced. For a ≤ σ, the potential is more accurately described as a single harmonic

well with a shallow bump in the center, and the wave function is a single non-Gaussian peak.

The Compton profile, J(y) = e−σ2y2 cos2 ay, is plotted in figure 12 for an intermediate

value a/σ. It includes an oscillatory factor, representing interference between wave functions

localized in the two wells, and the overall shape is far from Gaussian. The number of oscil-

lations in each half-width of the Gaussian envelope is roughly a/σ, so for weak anisotropy

(a/σ ≤ 1) the deviations from Gaussian form are less pronounced. This simple model may be

extended to the case where the double-well potential, as in a typical hydrogen bond, is not

symmetric. It is found that the asymmetry suppresses somewhat the oscillatory component

in the wings of the Compton profile, which no longer goes to zero at its minima.

Previous studies on water samples in various thermodynamical conditions, ice, super-

cooled and supercritical water, depict a remarkable and anomalous variation of the n(p),

especially when water is supercooled. The mean kinetic energy in this case is found to be

much higher with respect to ice at the same temperature [82].

Another recent study [81] investigated the possibility that an increase on the density

could also give an increase of 〈Ek〉 . In that study a DINS experiment where performed on

the VESUVIO spectrometer for temperatures at about the maximum density of the water (≈
277 K). The results are reported in figure 13. This figure shows the temperature dependence of

proton’s 〈Ek〉measured in both stable and metastable phases of bulk water in the temperature

range from 269 to 300 K, along with the calculated 〈Ek〉 , Ec. The temperature dependence

of Ec in the stable water phase, shown in figure 13 as a thin solid line, has been derived in

Ref. [83]. The calculation takes into account the optical vibrational frequencies of ice and
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water in different phases, available in the literature, assuming the harmonic approximation

and the decoupling between the degrees of freedom of translation, rotation (libration), and

internal vibrations.

Figure 13: Water proton mean kinetic energy 〈Ek〉 as a function of temperature for supercooled

water (triangles) [82], stable water (circles) [81], ice (square) [84]. The data above 293 K

for liquid stable water are from Ref. [85]. The thin solid line corresponds to the calculated

〈Ek〉 [86]. The solid and dashed lines are guides for the eye. In the inset, 〈Ek〉 data in the

stable liquid phase (circles and right axis) are reported in comparison with the density of water

(line plus solid triangles and left axis) as a function of temperature.

While data for water [87] above 293 K, including supercritical states, are satisfactorily

described by the Ec behavior, data around the temperature of maximum density and in the

supercooled phase show an excess of proton mean kinetic energy. Data could confirm the

original hypothesis of the possible link between the anomalous temperature dependence of

water density and the temperature dependence of 〈Ek〉 , as it has already been observed in
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helium [64, 88], but not in the whole temperature range. Indeed, and in contrast with earlier

report, [82] 〈Ek〉 shows two maxima instead of one: the first at 277 K and the other in the

supercooled phase in the range of 269-271 K, with an excess of 〈Ek〉 of about 3 kJ/mol (30

meV ) and 12 kJ/mol (120 meV ), respectively, with respect to Ec.

The peculiar temperature dependence of 〈Ek〉 , suggests that two distinct mechanisms

may be considered below and above the melting temperature. As a matter of fact the excess

of 〈Ek〉 in the stable water phase is moderate and its temperature dependence follows that of

density, showing a maximum at the same temperature (see inset in figure 13). A correlation

between density and 〈Ek〉 , as measured by DINS, has already been observed in helium and

explained in that case by using a harmonic model for the fluid. The anomaly of 〈Ek〉 versus
T above 273 K may be explained as a further evidence for water structural anomalies, which

manifest through the existence of a maximum of density and transport properties in the

stable water phase [89]. Within this hypothesis the maximum of 〈Ek〉 at 277 K, shown in

figure 13, may be an indirect manifestation of the competition between zero point energy,

E0, and thermal fluctuations, which has been proposed as the quantum origin of the density

maximum [90]. We notice, however, that quantum effects are not necessarily required to

explain the existence of a maximum of density in water [91].

On the other hand the huge increase of 〈Ek〉 in the metastable state of water could be

directly related to the likely delocalization of protons along the H-bond, as shown by the

shape of the radial proton momentum distribution 4πp2n(p) of figure 14.

The radial momentum distribution of the proton measured below 273 K shows a peak

at low-p (≈7 Å−1), and a shoulder at high-p (≈17 Å−1), indicating a delocalization of the

proton over a distance ∆d = 2π /∆p) ≈ 0.6 Å from the equilibrium position. The presence

of a shoulder at high p in the radial momentum distribution could, indeed, be ascribed to

the coherent delocalization of the protons over two sites of a double well potential [79] felt

by the proton along the H-bond direction between two water molecules. We notice that

〈Ek〉 in the supercooled phase is comparable with the H-bond energy (≈ 20 kJ/mol) and

∆d is compatible with the width of the fluctuations of the H-bond length (width of the first

intermolecular peak of the oxygen-hydrogen radial distribution function) and the oxygen-

oxygen distance in supercooled water [92, 93].

Vibrational Neutron Spectroscopy

Vibrational spectroscopy with neutrons is a spectroscopic technique in which the neutron is

used to probe the dynamics of atoms and molecules in solids. The most common methods

for studying molecular vibrations are the well established optical techniques of infrared (IF)
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Figure 14: Radial proton momentum distribution for water in different phases: supercooled

water [82] and stable water [81]. The different behavior of the momentum distributions at

different temperatures is remarkable. The dotted line is the momentum distribution of the

water at room temperature and it is a Gaussian function. The momentum distribution of

water above 0 ◦C and close to the maximum density temperature (4 ◦C) has a clear larger

tail. In the supercooled phase a secondary maximum appears. This effect can be explained

with the proton in a double well potential.
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and Raman spectroscopy (RS) [94].

Regarding our work, the main difference between optical spectroscopy and INS is that the

latter is very sensitive to hydrogen atom vibrations, while Raman or infrared spectroscopy

is mostly sensitive to heavier atoms because of the number of their electrons. Neutron

incoherent cross section of hydrogen is instead uniquely high, making hydrogen ten times

more visible than any other atom. Measured INS spectra are straightforwardly related to

the atomic displacements of the scattering atom, which can be often obtained from simple

classical dynamics. Any complication arising from electro-optical parameters are avoided: as

an example optical selection rules are not accounted for in an INS spectra where all vibration

are active, and in principle measurable. Therefore some peaks that are visible with neutron

spectroscopy vanish in Raman or infrared spectra.

The band positions and intensities of most molecular system can be accurately calculated

using modern ab initio computational methods. This is especially valuable since these meth-

ods are a well established part of the modern approach to understand molecular structure

and dynamics.

INS spectrometers cover the whole molecular vibrational range (16-4000 cm−1). The lower

energy range (below 400 cm−1) is readily accessible, whereas difficult to reach for the IR and

Raman spectroscopies. With modern instrumentation, like the SEQUOIA spectrometer at

SNS, the quality of INS spectra approaches that of infrared and Raman spectra obtained

from the same system in the same condition.

In an INS experiment we observe how the intensities of neutron scattering varies with

the energy transfer and momentum transfer. The spectrum is in neutron energy loss, where

energy is transferred from the incident neutrons to the scattering atoms.

The atoms are embedded in the molecule and can only gain or loss energy in the vibra-

tional quanta characterized by the molecular structure. Thus INS gives an easy and direct

access to the knowledge of the vibrational spectrum of a molecule. Furthermore many other

physical quantities can be calculated from neutron vibrational spectra, such as the density

of vibrational state (DOS) as we will describe in the chapter 5.

The first extensive study about the vibrational spectrum of water and ice, with an incident

energy larger than the excitation of the stretching mode (around 420 meV ), was done by

Harling in 1969 [95], at T = 268 K for ice and T = 299 K for water. The experiment

was carried out with a monochromatic neutron beam, coupled with a TOF spectrometer, or

analyzer. In that experiment, the neutron incident energies was set at three values ≈ 150, 300

and 600 meV , with an energy resolution of 21 meV , for the 600 meV energy value. As we will

see in chapter 2 the resolution of the actual experiment carried on the SEQUOIA spectrometer

is improved by at least a factor 2. Each value of the neutron incident energy allow us to
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distinguish among the different vibrations, that is rotation, libration and stretching.

In figure 15 and 16 the vibrational spectrum of water measured by Harling is shown. In

his work he introduced new variables α and β, instead of E or ω and ~q. These variables are

related to the usual variables in the following way:

{

α = ~q
mkBT

β = E1−E0
kBT ,

(5)

where ~q is the exchanged wave vector, E0 is the incident energy and E1 is the neutron

energy after the scattering. In the figures 15 and 16, the triangles represent the energy

resolution. The spectrum recorded at 15◦ shows a peculiar line shape which is attributed

to several contributions related to the symmetric and asymmetric stretching modes. The

structure observed is considerably wider than the spectrometer resolution and it is therefore

not significantly distorted by instrumental resolution. In figure 15 the cross section of the

water at 15◦ exhibits a double peak structure with maxima at about 450 and 530 meV .

The assignments done by Harling of the spectra shown in fiures 15 and 16, are summarized

in table 1.

T [K] El [meV ] ∆El [meV ] Eb [meV ] ∆Eb [meV ] Es [meV ] ∆Es [meV ]

299 ≈ 64 206 23 ≈ 450

≈ 530

268 88 ≈ 58 206 ≈ 41 ≈ 427 ≈ 79

≈ 485

≈ 531

Table 1: Energies of the vibrational modes in ice and water measured by Harling [95] and

shown in figures 15 and 16. El, Eb and Es represent libration, bending and stretching energies

respectively.

The energy values shown in table 1 are larger than other recent results obtained both with

neutron spectroscopy [96] both with optical spectroscopy (see for example Ref. [97]). The

discrepancy could be attributed to the lack of data reduction and correction for the multiple

scattering.

A more accurate result for ice Ih can be found in Ref. [96], were instead a correction of

the data from multiple scattering were done. In that work an Ih ice sample was measured

with an incident energy of ≈ 600 meV . This work was entirely devoted to the measure of the

vibrational density of states at T = 20 K, in order to reduce contribution from multiphonon

and to the effects due to the Debye-Waller factor. The data were collected at small scattering

angles to minimize the momentum transfer and obtain a more accurate DOS.
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Figure 15: Double differential scattering cross sections for water with initial energy 608 meV

[95] for different detection angles. In the lower plot, the arrows indicate the peaks associated

to the stretching mode (E ≈ 450) and to a secondary peak due to the combination of the

stretching mode with another mode (probably libration mode) (E ≈ 530). The triangle is an

estimation of the width of the peak associated to the stretching.
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Figure 16: Double differential cross sections for ice with initial energy 616 meV [95]. In the

lower plot, the lines indicate the peaks associated to the stretching mode (E ≈ 427) and to a

secondary peak due to the combination of the stretching mode with another mode (E ≈ 485),

appearing at lower energy with respect the liquid water. The triangles are an estimation of

the width of these two peaks. Another peak arises in the case of ice at E ≈ 531.
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Data were obtained in absolute scattering function by means of standard background

subtraction and normalization from the scattered intensities of the sample, empty container

and vanadium calibration [98].

Figure 17: Scattering function S( ~Q,E) at various scattering angles from [96]. The center

of the peak, associated to the stretching mode appears at a lower energy with respect to the

Harling measurement. Dashed line is the evaluation of the multiple scattering.

In figure 17 the dynamical structure factor, also named in the literature scattering func-

tion, is reported for various angles. The dashed line represents the multiple scattering eval-

uation with a phenomenological model that we will use in our INS experiment. That model,

described by authors in a subsequent work [99], consists in considering the multiple scattering

as a double scattering process (thus neglecting higher scattering orders) in which a double

scattered neutron undergoes two subsequent 90◦ scattering events. At this angle ~q is so large

that we can consider the scattering being dominated by single scattering events. The double

scattering process is thus a self convolution of the scattering function at 90◦ and it is well

represented by:

S(E) = Ae−b(E−E0)2 , (6)

where E0 is the incident energy. In this framework the sample is treated as an infinite slab,

with which it is possible to calculate the fraction of multiple scattering [100], whose calculated
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value is about 28%.

Once the data reduction done, the INS allows the extraction of the vibrational DOS as

reported in figure 18 for the energy range associated to the stretching vibrational mode.

Figure 18: Density of vibrational states of ice Ih, derived by Andreani [96], in the energy

range of the stretching mode.

Accurate measurements of the DOS in the stretching energy region are very important

to check the reliability of theoretical predictions. In a recent work [101] this quantity has

been evaluated by means of PICPMD (Path Integral Car Parrinello Molecular Dynamics)

that represents nowadays the most accurate simulation method to calculate the dynamical

behavior of the proton. However this simulation underestimates the stretching energy, giving

a value of ≈ 3000 cm−1, corresponding to 375 meV , very far from 417 meV of the work of

Andreani [96], even for a relative simple system like ice Ih.

The experiments

Three experiments have been performed in water and ice under various conditions. Two of

them are DINS experiments, with a samples of polycrystalline ice Ih and monocrystalline

oriented ice at 271 K and 130 K at fixed temperature, respectively. These two experiments

have been performed at VESUVIO spectrometer at the ISIS spallation neutron source (UK).

The third experiment is an INS experiment performed on water in a range of temperature

from supercooled region (269 K) to room temperature and ice at T = 271 K. This experiment

has been performed at the SEQUOIA spectrometer at SNS in the ORNL, Tennessee (USA).
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DINS on ice

Although the behavior of 〈Ek〉 or n(p) as a function of the temperature has been measured

in recent years and despite many theoretical effort nobody had been able to explain and

reproduce the behavior of water.

In the case of ice Ih, things seems to go better thanks to the fact that ice is an or-

dered system, and ice disorder seems to have small contribution to the simulated momentum

distribution.

As stated above, momentum distribution is a physical quantity that is sensitive to the

environment of the protons, so in principle one can extract informations on the potential felt

by the protons. However, DINS only allows us to access to a spherically averaged momentum

distribution and the usual DINS data analysis [53] does not provide any attempt to obtain

directional information.

Another limit of the DINS is the discrimination between two effects that certainly al-

ter the momentum distribution with respect an ideal 3-dimensional harmonic oscillator: the

anisotropy and the anharmonicity of the proton potential. As an example the second fea-

ture in the momentum distribution of supercooled water [82] and confined water [102] was

attributed to quantum tunneling between the two wells of an anharmonic one-dimensional

potential. It is not clear, however, to what extent the dynamics of an interacting many-body

system can be reduced to that of a single proton along a bond. For instance, it has been

pointed out that anisotropy can mimic features of a spherical distribution that one might

associate to anharmonicity in a 1D model, [103] and yet so far there has been no conclusive

study of this issue.

To interpret experiments in confined and supercooled water, the unknown details of the

molecular structure are a severe source of difficulty. However, even in the simpler case of ice

Ih, it is not clear whether the full understanding of the physic could be achieved by simple

model potentials, and how anharmonicity, anisotropy, and structural disorder influence the

momentum distribution.

The discrimination between these two effects could in principle be obtained in two ways

by DINS:

• making an experiment with very good statistics;

• making an experiment with a controlled and known geometry.

In the first case the statistics on data should be good enough to discriminate between a

different model of parametrization of the momentum distribution, in which we reconstruct

the n(p) following a physical model consisting in a product of three harmonic momentum

distributions.
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This is the case of the first DINS experiment. Once allocated 5 days of beamtime at

the ISIS spallation source, we planned to measure ice Ih at only one temperature slightly

below the freezing point: T = 271 K. This value of the temperature has been chosen in order

to have a direct comparison with the supercooled water at the same temperature. This is

because the supercooled water exhibits a peculiar momentum distribution, see figure 14 and

shows the absolute maximum of 〈Ek〉 as a function of the temperature among the whole set

of thermodynamical point that have been measured.

The momentum distribution and the 〈Ek〉 of ice was already measured at T = 269 K

[84] at the VESUVIO spectrometer in 2004. The authors found an energy (≈ 130 meV ) in

accordance with the semi-classical behavior reported in figure 13. However, this value should

not be considered reliable due to the lack of data reduction [104]. The result of the present

measurement will confirm this hypothesis.

Figure 19: Symmetric water hexamer adsorbed on Pt(111) showing the 0.7 Å vertical buckling

of the O atoms of water. Adapted from the data of Ref. [105].

In the second case we want to sample the momentum distribution only along particular

directions. The sample is an ice film grown on a Pt (111) surface substrate. The ice film was

obtained by adsorbing water vapor on Pt(111) at 130 K [106, 107, 108]. During the deposition

the water reconstructs first layer, forming an incommensurate bulk ice (0001) film, oriented

to the metal surface. Multilayer clusters coexist with the first layer and do not cover the

surface until the film is more than ≈ 50 layers thick. Cluster growth is limited by nucleation



INTRODUCTION 29

of new layers. Growth of thick films proceeds rapidly at screw dislocations to form cubic ice

[109]. To perform a neutron spectroscopy the thickness of the film should be macroscopic,

so all the properties that arise from the interaction of the ice film with its substrate are

negligible with respect to that of the bulk ice.

Cubic ice, denoted as ice Ic, is a metastable variant of Ice Ih in which the Oxygen atoms

are arranged in the cubic structure of a diamond rather than on the hexagonal lattice of

ice Ih. Every molecule forms four hydrogen bonds with its nearest neighbors as in ice Ih,

and the densities are virtually identical, but if the (0001) layers of ice Ih are stacked in

the sequence denoted by ABABAB..., cubic ice has the stacking sequence ABCABC... The

relation between these two structures is the same as that between Face Centered Cubic (FCC)

and Hexagonal Close Packing in metals (HCP). In general ice Ih is formed at T = 150 K,

and cubic ice between 130 and 150 K.

The second DINS experiment was then carried out at T = 130 K. As we will explain in

chapter 4 the directional information will be extracted by selecting DINS data at constant q

values. As the value of q increases the momentum distribution is sampled in the direction of

the c-axis, analogous to the c-axis of the ice Ih and corresponds to crystal growth direction.

INS in water and ice

The third experiment described in this work has been carried out by the INS technique. The

sample is pure water at various temperatures and phases reported in table 2.

The supercooled water is obtained thanks to an Aluminum can with an internal Teflon

coating that prevents the transition of water into ice for temperatures slightly below the

freezing point. A polycrystalline ice was also measured at T = 271 K. Ice was obtained by

cooling down water inside the can and waiting for the transition, that is clearly marked by

a sudden increase in the temperature due to the release of heat during the transition. The

incident energy was fixed to E0 = 800 meV .

The aim of this experiment is to track the behavior of the vibrational spectrum as a

function of the temperature, searching for hints which that could help us to explain the

anomalous behavior of the mean kinetic energy of water in this temperature range.

The anomalous structures appearing in the momentum distribution of the supercooled

water are supposed to originate from the modification of the shape of the potential along

the H-bonds, that could allow a coherent tunnelling of the proton between two minima of a

double well potential. So the increase of the proton mean kinetic energy is reflected in the

behavior of the potential along H-bond in all the temperature range. In other words, if the

potential along the H-bond gives rise to the stretching mode in the vibrational spectrum, one

would in principle observe discrepancies in the stretching mode.
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Temperature [K] Phase

271 Ice Ih

269 supercooled water

271 supercooled water

273 supercooled water

274 stable water

275 stable water

276 stable water

278 stable water

280 stable water

285 stable water

290 stable water

296 stable water

Table 2: Set of temperatures and phases of H2O recordered in the inelastic neutron experiment

carried on the SEQUOIA spectrometer at SNS. The study of the evolution of the stretching

vibrational mode requires data at several temperatures and in different phases (solid, liquid,

liquid supercooled).

A rigorous data analysis of an INS experiment requires a data reduction that takes into

account multiple scattering ( not negligible in our data) and multiphonon corrections (that one

usually minimizes performing experiments at very low temperatures). An accurate multiple

scattering correction for the whole energy range requires the development of a Monte Carlo

simulation, that would have been beyond the scope of this thesis. In contrast, the multiple

scattering correction limited to the higher part of the energy range can be performed by

a simple model tested in previous work by our group [99]. The multiphonon contribution

cannot be minimized by lowering the temperature, being fixed for physical reasons. However,

as we will see in the chapter devoted to the data analysis, the density of vibrational states is

obtained as the low q limit of the dynamical structure factor. In this limit the multiphonon

contribution is negligible.

For these reasons we will focus our attention on the O-H stretching of ice and water.

Personal contribution

Usually an experimental work is carried on by a team of scientist, and this is the case. For

sake of clarity my personal contribution to the single parts of this study is reported in table

3.
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Experiment Proposal Sample / Can preparation Measurements Data Analysis

DINS on Ice Ih ν ν ν ν

DINS on Ice Ic ν

INS on H2O ν

Table 3: This table shows the personal contribution of the author of this thesis to this work.

Where the symbol ν does not appear the contribution should be considered negligible. The

submission of the proposal for the INS on H2O has been done by my research group in Tor

Vergata, as the sample preparation and the measurements. The DINS on ice Ic (also named

Oriented ice experiment) has been proposed by the group of Tor Vergata and of the Prof.

Andrew Hodgson (University of Liverpool). The latter also provided to the sample preparation.

Synopsis

In the first chapter of this thesis the theoretical background of the adopted spectroscopic

techniques will be presented. The second chapter will be devoted to the description of the

experimental set up used for the experiments. A particular attention will be dedicated to

the main difference between SEQUOIA and VESUVIO spectrometers: they are both based

on the TOF technique, but the former is a direct while the latter is an inverse geometry

spectrometer. Chapters from 3 to 5 will contain the data analysis of each experiment: DINS

on polycristalline Ice Ih, DINS on single crystal Ice Ic, and INS on water and ice in chapters

3,4, and 5, respectively. Finally in chapter 6 the results of all three experiments will be

presented and discussed.

The choice of organizing the results of three different experiments in the same chapter is

due to the fact that this work should be read as a unique big experiment aiming at a deeper

comprehension of the physics of water and ice. In this regard the author would like to give

an overview of results that could be used to arrange together all pieces of this huge puzzle.
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Theory of neutron scattering

In this chapter the theoretical framework of the experimental techniques used in this work will

be reported. First of all we will describe the general features of the neutron as a probe. In the

following sections, a general treatment of the neutron scattering theory and the spectroscopic

techniques will be exposed.

1.1 Neutron as a probe

The discovery of the neutron dates back to the 30’ when J. Chadwick showed that when

beryllium was bombarded with α particles, neutral particles were emitted having a mass

close to the proton mass. The particles were called neutrons and designated by 1
0n:

9
4Be+4

2 He →12
6 C +1

0 n (1.1)

Neutron scattering techniques are a very useful tools for the investigation of matter, with

particular regard to condensed matter, due to the peculiar features of the neutron, as the

mass value, the charge, the spin and the magnetic dipole momentum [110].

mass 939.57Mev/c2

charge 0

spin 1/2

magnetic dipole momentum -1.913 µN

The zero value of the electric charge, for example, allows the neutrons to deeply penetrate

into material. For these reasons neutrons are very good probes for the study of the bulk of

the system. Indeed, in the case of liquids this feature becomes essential for the presence of

the container whose thickness in most cases is comparable to that of the sample.

32
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Neutrons can be also used to study the microscopic magnetic features of a sample such

as magnetic structures and fluctuations thanks to their magnetic moment.

In a scattering event a neutron interacts with the atomic nuclei. The cross section is

indeed insensitive to the electronic cloud and then it is not correlated to the atomic number.

As a consequence lighter atomic nuclei can be revealed with neutrons, still in presence of

heavy atoms.

The De Broglie wavelength of a neutron in thermal equilibrium, with an energy of about

kBT , at room temperature is of few Å, corresponding to an energy of about 25 meV . There-

fore, on the one hand its energy is comparable to the vibrational energy of a molecule, on

the other hand its associated wavelength is very close to the interatomic distance in solids.

For this reason, both dynamical and structural information can be gathered from a neutron

scattering experiment.

The scattering of a neutron without loss of energy is called elastic scattering. If it loses an

amount of energy is indeed called inelastic scattering. If the scattering is elastic the outgoing

neutron wave functions may or may not interfere. Coherent scattering arises when there is

interference among the neutrons scattered from different nuclei of the same type. Coherent

elastic scattering is measured in diffraction experiments and tells us the relative positions of

atoms, molecules or even bigger structures such as nanoparticles or macromolecules. Inco-

herent scattering instead arises when the natural isotopic and spin mixture of the sample

destroys local order and reduces, or completely removes, interference among the scattered

neutrons. In this work we will focus on the inelastic incoherent neutron scattering. In a neu-

tron scattering experiment incoming neutrons can be distinguished by their kinetic energy in

four main categories and are generally named cold neutrons (1 µeV < E < 25 meV ), thermal

neutrons (E ≈ 25 meV ), epithermal neutrons ( 0.5 eV < E < 1 KeV ) and fast neutrons (E

>> 1 KeV).

To the purpose we used two different pulsed neutron sources with two different spectrom-

eters that can work with epithermal neutrons. In two of the three experiments we carried out

a measurement with a technique called Deep Inelastic Neutron Scattering (DINS), allowing

for the evaluation of the momentum distribution of an atomic mass in a sample. In the

third experiment we carried out a measurement by means of the Inelastic Neutron Scattering

technique to measure the vibrational spectrum of a molecule.

1.2 Neutron scattering differential cross section

In a scattering experiment, an incident beam of neutrons with momentum h̄~k and energy E,

after the interaction with the sample, is scattered within the solid angle Ω, with final mo-
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Figure 1.1: Typical geometry of a scattering event.
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mentum and energy equal to h̄~k0 and E0 respectively (see figure 1.1). The incident neutrons

flux Φ is defined as [111]:

Φ =
number of neutrons

area · time
=

number of particles

volume
· velocity. (1.2)

Scattered particles are collected by a detector placed at a distance ~r = ~r(θ, φ) from the

sample: this counts all the neutrons arriving within a solid angle dΩ around Ω(θ, φ). If it can

perform an energy analysis, then we have access to the double differential cross section, that

is the counting rate per unit solid angle and energy interval, normalized to the incident flux:

d2σ

dΩdE′ =
number of neutronswithin dΩ aroundΩ

timeΦdE′ . (1.3)

Instead, if all neutrons are collected without energy analysis, the measured quantity is called

differential cross section and represents the counting rate in Ω:

dσ

dΩ
=

∫

d2σ

dΩdE′ dE
′. (1.4)

The total neutron scattering from the sample is instead:

σ =

∫

d2σ

dΩdE′ dE
′dΩ. (1.5)

A formally correct derivation of the differential cross section requires application of the

scattering theory. Nevertheless in the case of neutrons it can be calculated within the Born

approximation, as the perturbation brought by the scattering event to the incident beam

is so small that the wave function of the neutron-nucleus system can be factorized as the

product of the wave functions of the unperturbed components of the system. This means

in practice that the amplitude of wave function of the neutron scattered by a nucleus is

already very small at a distance from the scattering center of the order of the first neighbor

distance. When this condition is realized, the cross section can be evaluated within the

linear response theory: under the hypothesis that the probe does not appreciably perturbs

the target, the total scattering function from an ensemble of N molecules is the sum of the

scattering functions from the individual nuclei. We can therefore evaluate the cross section

starting from the Fermi’s gold rule for the transition probability between the initial and final

state of the neutron-nucleus system [112].

Let |λ > be the target initial state, Eλ its energy, and |k, s >=|k > |s > the plane wave

function of the incident neutron, with momentum h̄~k and spin ~s. In the absence of magnetic

field the neutron energy is E = h̄2~k2

2mn
, independent on ~s, wheremn is the neutron mass and the

transition probability from the initial state |λ > |k > |s > to the final state |λ′ > |k′ > |s′ >
is:

Wksλ→k′s′λ′ =
2π

h̄
| < ~ksλ|Û |~k′s′λ′ > |2δ(E +Eλ′ − E′ − Eλ), (1.6)
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where Û is the neutron-nucleus interaction potential. The measured quantity however de-

pends on Wks→k′s′ , i.e. the probability associated with the transition between the initial and

final state of the probe, which can be obtained from equation 1.6, after summing over all

the initial and final states of the nucleus (the latter weighted according to their statistical

population, pλ):

Wks→k′s′ =
2π

h̄

∑

λλ′

pλWksλ→k′s′λ′ . (1.7)

If the incident beam contains N neutrons in the state |k, s >, the number of scattered

neutrons in the state |k′ > |s′ > per second is NWks→k′s′ . After integration over all possible

|k′ >, this equals the product of the incident flux times the total neutron scattering cross

section:

Φσtot|s→s′ = N
∑

k′

Wks→k′s′ = NV

∫

d3k′

2π3
Wks→k′s′ . (1.8)

The final energy is E = h̄2 ~k′
2

2mn
, dk′ = mn

h̄2k′
dE′ and ΦV

N = h̄k
mn

, the latter equation gives:

σtot|s→s′ =
V 2

(3π)3
k′

k

m2
n

h̄3

∫

Wks→k′s′dE
′dΩ (1.9)

and the double differential cross section can be expressed as:

d2σ

dΩdE′ =
k′

k

m2
n

(2πh̄2)2

∑

λλ′ss′

pλps < ksλ|Û |k′s′λ′ > |2δ(Eλ′ − Eλ + h̄ω), (1.10)

with h̄ω = E′ − E.

Since the neutron wavelength is of the order of ≈ 10−10 m and the range of the nuclear

forces is of the order of ≈ 10−15 m, neutrons see the atoms as if they were points. As

a consequence the scattering from a single atom can only be isotropic: in practice it is

characterized by a single scalar parameter, b, named scattering length [113]. This means

that the differential cross section can be calculated by replacing Û with the Fermi’s effective

potential:

Û =
∑

α

2πh̄2

mn
bαδ(r − rα), (1.11)

where rα is the time dependent position of the αth nucleus and b may be a complex

number, whose imaginary part represents the absorption of neutrons during the interaction.

In general b depends on the atomic species and on its isotopic state.

The Fermi potential gives the correct value of the scattering from a single bound nucleus,

within the Born approximation. A thermal or epithermal neutron (with energy up to few eV )

cannot indeed excite nuclear transitions (requiring energy of the order of 1 Mev), moreover

the quantum numbers cannot change for a bound atom, hence the element of matrix in 1.10
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becomes: < λλ′ >< k|δ(x)|k′ >= δλλ′

∫

dr3e−i~k·~rδ(r)ei
~k′·~r = δλλ′ . The differential and total

scattering cross section are: dσ
dΩ = |b2| and σ = 4π|b2| respectively.

Let us consider an array of nuclei and let bα be the scattering length of the αth nucleus.

The interaction of the neutron beam with the array is described by: Û(r) = 2πh̄2

mn

∑

α bαδ(~r−
~Rα) and its matrix elements between the initial and final states of the neutron is:

< k|Û |k′ >=
∑

α

bα

∫

d3re−i~k·~rδ(~r − ~Rα)e
i~k′·~r =

∑

α

bαe
i(~k−~k′)·~Rα . (1.12)

If we now define the exchanged wavevector ~q = (~k − ~k′) the double differential cross-section

is:
d2σ

dΩdE′ =
k′

k

∑

λλ′

pλ
∑

ss′

pσ| < λ, s|
∑

α

bαe
i~q·~Rα |λ′, s′ > |2δ(Eλ′ − Eλ + h̄ω). (1.13)

If the nuclei are bound, Û is not an operator and consequently the product < λ|λ′ >

gives a delta function in λλ′; Eλ equals Eλ′ and δ(Eλ − Eλ′ + h̄ω) becomes δ(h̄ω), implying

that there is no energy exchange and k = k′. In this case the differential cross-section is

immediately found to be:

dσ

dΩ
=
∑

σσ′

pσ
∑

αα′

ei~q·(
~Rα−~Rα′ ) < σ|b∗αbα′ |σ >, (1.14)

that is:
dσ

dΩ
=
∑

αα′

ei~q·(
~Rα−~Rα′ ) < b∗αbα′ >, (1.15)

where < b∗αbα′ > represents the average over the nuclear spin states and allows to drop

hereafter the sum over these states. On the other hand the sum over αα′ can be separated

into the sum over α = α′ and the sum over α 6= α′, and being < b∗αbα′ > equal to: | < b > |2

if α 6= α′ and to < |b|2 > α = α′ , we can write:

< b∗αbα′ >= | < b > |2 + δαα′(< |b|2 > −| < b > |2). (1.16)

As a consequence:

dσ

dΩ
= | < b > |2

∑

α

ei~q·
~Rα +N

[

(< |b|2 > −| < b > |2)
]

=

(

dσ

dΩ

)

coh

+

(

dσ

dΩ

)

inc

. (1.17)

From the physical point of view this means that neutrons do not see the array of nuclei

as a crystal with uniform scattering potential, since the scattering length depends on the

isotopic state and on the orientation of the nuclear spin with respect to the neutron spin.

The scattering potential changes from site to site, nevertheless we can define an average

potential, represented by the average scattering length < b > and imagine the array of nuclei

as an average array, giving coherent interference between the scattered neutrons, plus a

random distribution of deviations from the average. These random disordered contributions

to the scattering potential cannot give coherent interference, but contribute to the incoherent

scattering from the sample.
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1.3 Incoherent inelastic neutron cross section

In DINS and INS techniques the scattering from the sample is totally incoherent and with

energy loss of the scattered neutrons. To describe this physical process we need the double

differential cross section.

The matrix element in equation 1.13 can be rewritten in the following form:

| < λ, s|bαei~q·~Rα |λ′, s′ > |2 = b∗α < λ′, s′|ei~q·~Rα |λ, s >∗ bα′ < λ′, s′|ei~q·~Rα |λ, s >, (1.18)

Since the scattering lengths are real and using the propriety < a|O|b >∗=< b|O∗|a >:

bαbα′ < λ, s|e−i~q·~Rα′ |λ′, s′ >< λ′, s′|ei~q·~Rα |λ, s >, (1.19)

The integral expression for the delta function is:

δ(Eλ′ − Eλ + h̄ω) =
1

2πh̄

∫ +∞

−∞
ei

E
λ′

−Eλ
h̄

te−iωtdt. (1.20)

On substituting equations 1.19 and 1.20 into the equation 1.13, we obtain:

d2σ

dΩdE′ =

k′

k

∑

λλ′ss′

pλps
∑

αα′

bαbα′ < λ, s|e−i~q·~Rα′ |λ′, s′ > ×

< λ′, s′|ei~q·~Rα |λ, s >
1

2πh̄

∫ +∞

−∞
ei

E
λ′

−Eλ
h̄ te−iωtdt.

(1.21)

Furthermore e
−iĤt

h̄ |λ, s >= e
−iEt

h̄ |λ, s >, so 1.21 becomes:

d2σ

dΩdE′ =

k′

k

1

2πh̄

∑

λλ′ss′

pλps
∑

αα′

bαbα′ < λ, s|e−i~q·~Rα′ |λ′, s′ > ×

< λ′, s′|e iĤt
h̄ ei~q·

~Rαe
−iĤt

h̄ |λ, s >
∫ +∞

−∞
e−iωtdt.

(1.22)

Summing over the final state λ′ and s′ and using the enclosure relationship, the double

differential cross section becomes:

d2σ

dΩdE′ =

k′

k

1

2πh̄

∑

λs

pλps
∑

αα′

bαbα′×
∫ +∞

−∞
< λ, s|e−i~q·~Rα′ e

iĤt
h̄ ei~q·

~Rαe
−iĤt

h̄ |λ, s > e−iωtdt.

(1.23)
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An operator OH(t) in the so called Heisenberg picture is related to the OS operator in

the Schroedinger picture via the relation OH(t) = eiĤt/h̄OSe
−iĤt/h̄. The main difference

between the Heisenberg and the Schroedinger pictures is that in the former the operators

have an explicit time dependence, while in the latter the time dependence is a feature of the

wave vectors only. However, as a particular case, an operator in the Schroedinger picture can

be viewed as an operator in the Heisenberg picture defined at a particular fixed time. The

choice of the particular time is arbitrary, so we will choose the time t = 0. Following this

ideas the operators in the matrix element of 1.23 can be exchanged with their counterparts

in the Heisenberg picture at the times 0 and t. So the 1.23 becomes:

d2σ

dΩdE′ =
k′

k

1

2πh̄

∑

λs

pλps
∑

αα′

bαbα′

∫ +∞

−∞
< λ, s|e−i~q·~Rα′(0)ei~q·

~Rα(t)|λ, s > e−iωtdt. (1.24)

Now the matrix element in 1.24 is a correlation function of the position of a nucleus at

the time 0 with the position of another nucleus at the time t. However if the scattering is

totally incoherent this correlation function is zero except for α = α′, i.e. a nucleus motion

is not correlated with other nuclei in the system. By integrating the incoherent part of 1.17

we obtain σinc = 4π(< b2 > − < b >2) and defining the thermal average of an operator as

< O >T=
∑

i pi < φi|O|φi > we obtain from 1.24:

d2σ

dΩdE′ =
σinc
4π

k′

k

1

2πh̄

∑

α

∫ +∞

−∞

〈

e−i~q·~Rα′ (0)ei~q·
~Rα(t)

〉

T
e−iωtdt. (1.25)

Let us define the Dynamical Structure Factor, that we will express as a function of the

double differential cross section, since we will handle this function in the data analysis. From

now on we suppress all the labels indicating incoherence:

S( ~Q, ω) =
4π

σ

ki
kf

(

d2σ

dEfdΩ

)

. (1.26)

The dynamical structure factor is also related to the Intermediate Scattering Function:

S( ~Q, ω) =
1

2πh̄

∫

ℑ( ~Q, t)e−iωtdt. (1.27)

1.4 Scattering from vibrating molecules

INS technique samples molecular vibrations. In this section we will derive the dynamical

structure factor of a sample composed of vibrating molecules.

We will express the dynamical structure factor in terms of the internal and external

dynamics of the molecules in the sample. If the molecule consist of Natoms atoms then the

total number of atoms in the system is N = Natoms ×Nmol, where Nmol is the total number
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of molecules. It is useful to treat the contribution of the atoms and molecules separately. We

will indeed focus our attention to the atoms vibrations.

If r(t) is the position of the atom in space, it can be expressed as:

~r(t) = ~uext(t) + ~uint(t), (1.28)

where uext(t) and uint(t) are the position of the molecular center of mass and the position

of the atom with respect to the molecular center of mass, respectively. So the Heisenberg

operator in 1.23 becomes:

ei
~Q·~r(t) = ei

~Q·~uext(t)ei
~Q·~uint(t) (1.29)

and since the Fourier transform of a product of two functions is the convolution product of

the Fourier transformed functions the dynamical structure factor can be written as:

S( ~Q, ω) = Sint( ~Q, ω)⊗ Sext( ~Q, ω). (1.30)

We can write the dynamical structure factor of the intramolecular vibrations only:

Sint( ~Q, ω) =
1

2πh̄

∑

i

∫

〈

ei
~Q·~uint(0)ei

~Q·~uint(t)
〉

T
eiωtdt. (1.31)

It is convenient to develop the total internal atomic displacements into their individual

vibrations in Cartesian components. The displacement, as a function of time, of a particular

atom l is then the sum of the displacements of the atom in each of the internal modes, labelled

ν = 1, 2, ..., 3Natom − 6:

~ul,int(t) =
∑

ν

ν~ul(t) =
1 ~ul,x(t) +

1 ~ul,y(t) +
1 ~ul,z(t) +

2 ~ul,x(t) +
2 ~ul,y(t) +

2 ~ul,z(t) + ... (1.32)

We shall focus on the dynamics of a single atom, suppressing the subscript l, since the

INS experiment subject of this work concerns the hydrogen motion in a water molecule. For

the sake of completeness the dynamics of the molecule could be eventually described as the

sum of its atoms taken individually.

Considering only one dimension, as x direction, the dynamical structure factor for one

atom is:

Sint( ~Q, ω) =
1

2πh̄

∫

〈

ei
~Q·
∑

ν
ν~ux(0)ei

~Q·
∑

ν
ν~ux(t)

〉

T
eiωtdt. (1.33)

We can expand the summation over the internal modes that, within the harmonic approx-

imation, are dynamically decoupled. The sum of the arguments in the exponential terms

turns out to be a product of exponentials and the equation 1.33 becomes:

Sint( ~Q, ω) =
1

2πh̄

3N−6
∏

ν=1

∫

〈

ei
~Q· ν~u(0)ei

~Q· ν~u(t)
〉

T
eiωtdt, (1.34)
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where we suppressed the Cartesian indicator x.

In the following, we shall treat each mode individually and, as done for the equation 1.27,

rewrite each term of 1.34 as:

S( ~Q, ων) =
1

2πh̄

∫

ℑnu( ~Q, t)e−iωtdt, (1.35)

where ℑnu( ~Q, t) is:

ℑnu( ~Q, t) =
〈

ei
~Q· ν~ux(0)ei

~Q· ν~ux(t)
〉

T
. (1.36)

The position of the nucleus, as a function of time, is given in terms of the creation, â+,

and the annihilation operators â− by:

νu(t) =ν u
[

â+eiωt + â−e−iωt
]

. (1.37)

This is equivalent to the alternative representation:

ν~u(t) =ν ~u cosωt+
patom
mω

sinωt, (1.38)

where νu is the time independent maximum amplitude of the vibration and patom is the

linear momentum of the atom. Using the relation
〈

eAeB
〉

T
=
〈

eA
2
〉

T

〈

eAB
〉

T
for the thermal

average of operators equation 1.36 becomes:

ℑnu = e

〈

−[ ~Q· ν~u(0)]
2
〉

T e〈[ ~Q· ν~u(0)][ ~Q· ν~u(t)]〉T . (1.39)

Let’s consider the terms of equation 1.39 individually. For a given mode ν only the energy

levels 0, 1, 2 3 ... are available and given by the quantum number, n. The thermal average

of the argument of first term is:

〈

−
[

~Q · ν~u(0)
]2
〉

T

=

∑

n

Pn

〈

n| −
[

~Q · ν~u(0)
]2

|n
〉

=

−
[

~Q · ν~u
]2

(2 < n >T +1) .

(1.40)

The expectation value of the quantum number n is:

< n >T=
∑

n

Pn

〈

λs|n|λ′s′|
〉

=
∑

n

nPn

〈

λs||λ′s′|
〉

=
∑

n

nPn. (1.41)

The population of a level Pn can be written as:

Pn =
e
−nh̄ων

kBT

∑

n e
−nh̄ων

kBT

, (1.42)
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so for < n >T we obtain:

< n >T=
∑

n

n
e
−nh̄ων

kBT

∑

n e
−nh̄ων

kBT

=
e
− h̄ων

kBT

1− e
− h̄ων

kBT

=
1

e
h̄ων
kBT

−1
. (1.43)

Substituting this result into the equation 1.40, we obtain:
〈

−
[

~Q · ν~u(0)
]2
〉

T

=

−
[

~Q · ν~u
]2





1 + e
h̄ων
kBT

e
h̄ων
kBT

−1





(

1

2

)

=

−
[

~Q · ν~u
]2

coth
h̄ων

2kBT
.

(1.44)

The first term of equation 1.39 is known as the Debye-Waller factor and it is often found

in the literature as e2W . The Debye-Waller factor is a temperature dependent term, through

the atomic displacement, and its major effect is to decrease the observed intensity in neutron

spectroscopy. This is the reason why experimental efforts are done to reduce this factor as

much as possible. This can be done in two ways: decreasing T or ~Q.

The second term of equation 1.39 is:

e〈[ ~Q· ν~u(0)][ ~Q· ν~u(t)]〉T = e

〈

[ ~Q· ν~u]
2
[(<nT>+1)e−iωt+<nT>eiωt]

〉

(1.45)

and substituting from equation 1.43:

e〈[ ~Q· ν~u(0)][ ~Q· ν~u(t)]〉T =

e







[ ~Q· ν~u]
2 e

h̄ω
2kBT

e

h̄ω
kBT −1









e

h̄ω
2kBT

eiωt + eiωt

e

h̄ω
2kBT









.

(1.46)

In the latter equation we can recognize the modified Bessel function of the first kind I:

+∞
∑

n=−∞
ynIn {x} = e

[

x
2

(

y+ 1
y

)]

, (1.47)

where x and y are:

x = 2
[

~Q · ν~u
]2 e

h̄ω
kBT

e
h̄ω

kBT − 1
;

y =
eiωt

e
h̄ω

kBT

.

(1.48)

Substituting the equation 1.47 into 1.46 and using the hyperbolic sine function, we can

regroup the terms from equations 1.41, 1.45, 1.46 and 1.47:

e〈[ ~Q· ν~u(0)][ ~Q· ν~u(t)]〉T =

+∞
∑

n=−∞
e
n h̄ω

2kBT einωtIn











[

~Q · ν~u
]2

sinh h̄ω
2kBT











.
(1.49)
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In the INS experiment we will concentrate our attention on the O-H stretching mode

which shows an energy value above 400 meV . The value of kBT at room temperature is

around 25 meV , so the argument of the hyperbolic sine in 1.49 is larger than 10. As a

consequence the argument of the Bessel function is small enough that we can take only the

first term of its power series expansion:

In {x} ≈ 1

|n!|
(x

2

)|n|
. (1.50)

Furthermore for high x, sinhx ≈ ex, so we obtain, for a certain order n:

e〈[ ~Q· ν~u(0)][ ~Q· ν~u(t)]〉nT = einωt
e

nh̄ω
2kBT

e
|n|h̄ω
2kBT

[

~Q · ν~u
]2|n|

|n!| . (1.51)

The order n labels the final state of the sample and n=1 represent the (0-1) transition,

n=-1 is (1-0) and so on, while the n=0 solution refers to the elastic scattering. Considering

only neutron energy loss processess allow us to remove the modulus of the n and n!.

This result can be generalized in three dimensions. From equation 1.34, the contribution

to the spectrum of each Fourier component is a δ-function corresponding to each normal

mode and its overtones.

The time independent product of exponentials in the equation 1.44 becomes the expo-

nential of a sum over all modes. Thus equation 1.34 becomes for the individual νth normal

mode, excited to its nth harmonic:

S( ~Q, ων)
n =

[

~Q · ν~u
]2n

n!
e−(

~Q
∑

ν
ν~u)

2

δ(Ei − Ef + nh̄ων). (1.52)

Finally, let us reintroduce the atomic index l and include the atomic cross section σ. Then

the scattering intensity contribution to a given spectral band, that arises from the lth atom

is:

S•( ~Q, ων)
n
l =

σl
4π

[

~Q · ν~u
]2n

n!
e−2W . (1.53)

From now on, we will refer to this equation for the dynamical structure factor.

1.5 Deep inelastic neutron scattering

It was first pointed out by Hohenberg and Platzmann, Gol’danskii, and Ivanov and Sayasov

about 40 years ago [26, 114, 25, 115], that neutron scattering at high energy, h̄ω, and high

momentum transfers, h̄q, could be used to measure directly the distribution of atomic mo-

mentum ~p in condensed matter systems. The interest of such measurements is clear when
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we consider the fundamental role played by momentum in both classical and quantum me-

chanics. In the kinematic regime of interest at high momentum and energy transfer, the two

dynamical variables ~q and ω become coupled into a single variable y, and the results of the

measurements can be described in isotropic systems by the so-called single-particle neutron

Compton profile (NCP), J(y) [77]. The experimental technique is analogous to the measure-

ment of the electron momentum distribution through the Compton scattering of high-energy

photons from electrons, or the nucleon momentum distribution via the quasi-elastic electron

scattering from nuclei, and is known as Neutron Compton Scattering (NCS), or Deep In-

elastic Neutron Scattering (DINS) [59]. It is possible to find in DINS conceptual elements

and computational approaches common to other techniques, namely the Compton scatter-

ing of X-rays and γ-rays, used for the determination of electron momentum distributions in

solids, and quasi-elastic electron scattering of nucleons in nuclei, used for the determination

of nucleon momentum distributions [116]. However, at present DINS is the only effective

technique for deriving the single-particle (atomic and molecular) momentum distributions,

n(p), in condensed matter systems. This represents an important physical quantity in all

those systems where the dynamic behavior departs from the classical one. The so called

Impulse Approximation (IA) is the key feature of the DINS, consisting in assuming a target

particle as free, therefore neglecting the interaction with all other particles. In other words,

the energy exchanged between the incident and the target particles is much larger than the

binding energy of the system. In a classical system the IA holds when [117]

q >> Fi∆t, (1.54)

where q is the momentum exchanged in the scattering event, Fi the strength acting on the

target particle due to the the presence of all the other particles of the system and ∆t is the

duration time of the interaction [118].

The IA has some important implications:

• the scattering event is completely incoherent: the scattering is from a single particle,

the presence of the other particles can be completely neglected;

• the interaction occurs in a very short time interval. Typically of the order of ∆t = ∆r/v,

where ∆r is the radius of the interaction and v is velocity of the incident particle;

• final wave function of the target particle is a plane wave;

• the system in its initial state can be considered as a non interacting system with mo-

mentum distribution n(~p);

Then this allows us to consider the system as a free particle system. In this framework

the dynamical structure factor is a δ function with a Doppler broadening arising from the
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velocity distribution of the particle. The reconstruction of the momentum distribution is

then straightforward.

The IA is an exact approximation in in the asymptotic case where the wave vector ex-

changed takes an infinite value. In all practical cases one must consider the corrections to

the model and we will refer to that corrections as initial or final state effects (ISE and FSE).

In the latter case it is considered that the target particle does not behave exactly as a free

particle, while the ISE takes into account that the particles in their initial state could have

a discrete energy distribution instead of a continuous one.

Under these conditions, applying the momentum and energy conservation laws, the energy

and momentum transfer are related by:

h̄ω =
(pn − p′n)

2

2M
+

(pn − p′n) · p
M

, (1.55)

where ~pn and ~p′n are the momenta of the incident and scattered neutron, respectively, M and

~p are the mass and the momentum of the struck particle before collision. Thus, the energy

distribution of the scattered neutrons is directly related to the distribution of the momenta

of the particle parallel to the momentum transfer.

The inelastic scattering cross-section for unpolarized neutrons can be rewritten as a func-

tion of the incoherent part of the dynamic structure factor S(~q, ω) via the relation [53]:

d2σ(E0, E1, ϑ)

dΩdE1
= h̄−1

√

E1

E0

[

|b|2 S (~q, ω) +
(

∣

∣b2
∣

∣− |b|2
)

SI (~q, ω)
]

, (1.56)

where E1 is the energy of the scattered neutron, E0 that of the incident neutron and θ is the

scattering angle.

The incoherent structure factor is related to the single particle correlation function, as

we see in equation 1.36, also named the intermediate scattering function. We are however

interested in the total motion of the atoms ~r(t) and not simply to the motion with respect

to the molecular center of mass. Then we will rewrite the single particle correlation function

as:

Yjj′ (~q, t) =
〈

exp (−i~q · r̂j) exp
(

−i~q · r̂j′ (t)
)〉

. (1.57)

Again, r̂j (t) is the Heisenberg operator for the position of particle j at time t, r̂j = r̂j (0),

and N is the number of particles in the target system.

The incoherent dynamic structure factor SI (~q, ω) is related to the single-particle correla-

tion function, that is the equation 1.57 with j = j′, according to the following:

SI(~q, ω) =
1

2πN

∫ +∞

−∞
exp (−iωt)

∑

j

Yjj (~q, t) dt. (1.58)
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At the high q values, the scattering can be considered entirely incoherent, so the scattering

occurs from a single particle. The interpretation of DINS data relies essentially on the fact

that, if the momentum h̄q transferred between the incident neutron and the target system is

sufficiently high, the inelastic neutron scattering cross section provides a direct probe of the

distribution of atomic momenta in the target system.

The key approximation used in equations 1.57, with j = j′, for interpretation of the data

is that providing t sufficiently small, r̂j (t) can be replaced by:

r̂j (t) ≈ r̂j +
t

Mj
p̂j , (1.59)

where p̂j is the momentum operator and Mj the mass of the particle j. Physically this

approximation implies that the particle travels freely over times short enough that its inter-

action with other particles can be neglected. Inserting this approximation in the equation

1.57, and using the standard commutation relations between momentum and position,

[~ri, ~pj ] = ih̄δij , (1.60)

gives:

Yjj′ (~q, t) = exp

[

ih̄tq2

2Mj
δjj′

]〈

exp

[

i~q ·
(

r̂j′ − r̂j
)

+
it

Mj′
~q · p̂j′

]〉

, (1.61)

and in the limits of high q only terms with j = j′ are retained, obtaining:

Yjj (~q, t) = exp

[

ih̄tq2

2Mj

]〈

exp

[

it

Mj
~q · p̂j

]〉

. (1.62)

It follows from equations 1.58 and 1.62 that the incoherent dynamic structure factor is given

by:

SI(~q, ω) =
1

2πN

∑

j

∫ +∞

−∞
exp

(

−iωt+
ih̄tq2

2Mj

)〈

exp

[

it

Mj′
~q · p̂j

]〉

dt . (1.63)

The correlation function in equation 1.63 can be evaluated in terms of momentum states as:

〈

exp

[

it

Mj′
~q · p̂j

]〉

=

∫

n(~p) exp

[

it

M
~q · ~p

]

d~p , (1.64)

where n(~p) is the single-particle momentum distribution.

Formally, this is the diagonal matrix element in the p representation of the one particle

reduced density matrix. In the simplest case in which the system can be described by a single

particle in a potential, n(~p) = |φ(~p)|2, where:

φ(~p) =
1√
2π

∫

exp

[

i~p · ~x
h̄

]

Ψ(~x)d~x , (1.65)

where Ψ(~x) is the spatial wave function.
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Inserting equation 1.64 into equation 1.63 and performing the integration over t gives the

impulse approximation to SIA(~q, ω):

SIA(~q, ω) = h̄

∫

n(~p)δ

[

h̄ω − h̄ωr −
~p · h̄~q
M

]

d~p , (1.66)

where h̄ωr = h̄2q2/2M is the recoil energy.

The physical implication of equation 1.66 is that scattering occurs between the neutron

and a single particle, with conservation of kinetic energy and momentum of the system

particle-neutron. h̄ωr is the kinetic energy the target particle would have, provided that

the target is at rest and absorbs all the momentum transferred by the neutron. It gives

the centroid of the observed peak at a given q associated with the particle of mass M .

The momentum distribution of the struck particles broadens in a similar way as in the

Doppler broadening induced by the motion of the atoms. Since the position depends on M ,

different masses in the sample can be separated in the observed spectrum. For example in

measurements on H2X systems the signal from hydrogen ions is easily separated from the

signal due to oxygen or other heavier ions in hydrogen bonded systems.

If the impulse approximation is valid, the two dynamic variables, ω and q, can be explicitly

coupled through the definition of the West scaling variable y as [119]:

y =
M

h̄2q
(h̄ω − h̄ωr) . (1.67)

Equation 1.66 can be then reduced to the form

SIA(~q, ω) =
M

h̄q
J (y, q̂) , (1.68)

where

J (y, q̂) = h̄

∫

n
(

p′
)

δ
(

h̄y − ~p′ · q̂
)

d~p′. (1.69)

J (y, q̂) is the neutron Compton profile and is formally the Radon transform of the mo-

mentum distribution. Physically the quantity q̂ is a unit vector with the same direction and

sign of ~q. The function J (y, q̂) dy is the probability for an atom to have a momentum parallel

to q̂ of a magnitude between h̄y and h̄ (y + dy).

In an isotropic system, the direction q̂ is immaterial, and equation 1.69 becomes:

J (y) = 2πh̄

∫ ∞

|h̄y|
pn (p) dp. (1.70)

The geometrical interpretation of J (y) in the momentum space is shown in 1.2, where

J (y) is calculated by measuring a distance y along the direction of q from the origin of

momentum space to the point R = yh̄q̂, and then integrating n(~p) over the plane passing

through R and perpendicular to q. In the simple case of a Fermi gas at T = 0, reported in
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1.2, the momentum distribution is a solid sphere, i.e. n(~p) = ρ for p < pf (where pf is the

Fermi momentum) and n(~p) = 0, for p > pf . The function J (y) is then proportional to the

area of intersection of the sphere with a plane at a distance h̄y from the center of the sphere:

J (y) =







ρπh̄
(

p2f − h̄2y2
)

for p < pf

0 otherwise .
(1.71)

Figure 1.2: Illustration of how the neutron Compton profile is calculated. J (y) is obtained

from an integration of n(~p) over a plane perpendicular to q̂ at a distance h̄y from the origin

of atomic momentum space. In the simple case illustrated here, n(~p) is represented by a solid

sphere (i.e. an ideal Fermi liquid at zero temperature), and J (y) is the area of the intersection

between the sphere and the plane.

Although the Radon transform of n(~p) for a particular y and q̂ is an average over a plane,

no information is lost, and n(~p) can be reconstructed from J(y, q̂). In the isotropic case, from

equation 1.70 we have:

n(p) = − 1

2πh̄3y

d

dy
J(y)|h̄y=p . (1.72)

The single-particle mean kinetic energy, 〈Ek〉 , is related to the second moment of J (y)

via:
∫ +∞

−∞
y2J (y) dy = σ2

y =
2M

3h̄3 〈EK〉 , (1.73)

where σy is the standard deviation of the Neutron Compton Profile.
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1.5.1 Correction at finite q

The first approximation implicit in the impulse approximation is that the scattering is inco-

herent. Roughly speaking this approximation is valid provided the atomic nearest neighbor

distance is much larger than 2π/q, so that the interference of the scattering amplitudes from

different atoms averages to zero.

The experiments are typically done far into the limit where this approximation is valid.

The second approximation of the IA is the short-time approximation embodied in equation

1.59. We wish to determine when this is valid and what the corrections are.

There is a characteristic time τ associated with the scattering process. τ is essentially the

decay time of the correlation function Yjj (~q, t) defined in equation 1.62 and, at high q, τ has

the value [24]:

τ =
M

q∆p
, (1.74)

where ∆p is the width of the momentum distribution of the struck particle. This decay time

is due to phase mixing (see equation 1.64) as a consequence of the spread in velocities of the

particles [120, 121]. Providing there are no significant deviations from a free particle motion

over the time τ , then the impulse approximation will hold. For the systems we are studying

τ is a short time, in the attosecond range.

If we consider the mean quadratic velocity
〈

v2
〉

of the struck particles, the time of the

interaction then will be approximately 1/q
〈

v2
〉

. On the other hand
〈

v2
〉

= ∆p/M . τ can

be considered as the time lapse during which we can approximate the recoil of the struck

particle as free.

Then a criterion for the validity of the impulse approximation for a particle confined in a

potential is:

ω (~q) τ << 1 , (1.75)

where ω (~q) is the oscillation frequency for the particle when it has initially wave vector ~q.

The point here is that if the criterion is satisfied, the particle will have traveled only a very

small part of a periodic orbit, and its motion can be treated as being unaffected by the forces.

Since ω(~q) is bounded, the impulse approximation will always be satisfied for sufficiently large

q.

If we suppose that the condition 1.54 holds, we can demonstrate that the cross section

is that of a free particle system with a momentum distribution n(~p). This condition in our

case means that the intermolecular forces are negligible, as the potential energy, and does

not appear in the conservation law. However, it is very important to point out that all the

system interactions are significant because they determine the momentum distribution n(~p)

together with its thermodynamical state.
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Initial state effects

The ISE [122] account for the fact that the energy distribution of a system is a discrete set of

value Ei, and in the low temperature limit all the particle would have the zero point energy

[117]. The dynamical structure factor can be expressed, then, as follows:

S (~q, ω) =

∫

n (~p) δ
(

ω
[

(~p+ ~q)2 /2M + Ei

])

d~p, (1.76)

In this case the S (~q, ω) is a set of many peaks. However, the ISE correction is important

only at very low temperature which is not the case of this work. In the following we will not

take into account this correction.

Final state effects

In the framework of the IA, the final wave function of the struck particle is a plane wave.

This approximation is not valid if the exchanged wave vector is finite and then the struck

nucleus does not strictly recoil as a free particle. So FSE are due to the presence of other

atoms around the struck nucleus. This introduces two effects on the NCP: J(y) is not yet

symmentric nor centered in y = 0. Furthermore the width of the peak and its maximum has

an oscillatory dependence on q. This arises from interference effects that are neglected in the

IA approximation.

The calculation of the FSE has been done by Sears [24], which in his work represents the

corrections as a power series in 1/q of the S(~q, ω):

S (~q, ω) =
m

h̄q

[ ∞
∑

n=0

(−1)nAn (q)
dn

dyn

]

J (y) , (1.77)

where

An (q) =



































1, n = 0

0, n = 1, 2

∝ 1
q , n = 3

∝ 1
q2 , n = 4

...

(1.78)

As we can see from equation 1.77, it is possible to write S(~q, ω) as a sum of a symmetric

and antisymmetric parts. For high q values the series quickly converges and the IA improves.

Considering only the first two terms of the series:

S (~q, ω) =
m

h̄q

[

J (y)− A3

q

d3

dy3
J (y) +

A4

q2
d4

dy4
J (y) + ...

]

, (1.79)

where the coefficients A3 and A4 depend on the shape of the potential in which the struck

particle is:

A3 =
M

36h̄2

〈

∇2V
〉

; A4 =
M2

72h̄4

〈

(∇V )2
〉

. (1.80)
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Figure 1.3: Schematic of the inelastic structure factor as a function of energy and momentum

transfer. The neutron scattering, with increasing ω, becomes dominated by: incoherent elastic

and Bragg scattering (ω=0), diffusive modes (at very low ω values), collective excitations

(placed around low and medium ω), and intramolecular vibrations (medium high ω), while

at very high ω (and q) values, the various collective excitations are damped by the Debye

Waller factor and the single particle properties alone determine the scattering, which is well

described by the IA [53].The two peaks correspond to different atomic masses (M’ < M). As

q and ω increase the separation between the recoil peaks increases as well.

1.5.2 Property of the dynamical structure factor in the IA

The properties of J(y) that follow from equations 1.67 and 1.67 when q → ∞ are known in

the literature as y scaling. The condition for conservation of momentum and kinetic energy in

equation 1.66 links the variables ~q and ω, reducing the number of degrees of freedom by one.

The presence or absence of y scaling in the experimental data can be used to test the validity

of the impulse approximation. It is useful to recall the properties of S(~q, ω) in the framework

of the y scaling. These follow from the fact that scattering in the impulse approximation is

incoherent so that S(~q, ω) must satisfy the rigorous sum rule [123]:
∫

SIA (~q, ω) dω = 1. (1.81)

Equation 1.81 follows directly from equation 1.66. The physical interpretation of J(y) as
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a probability distribution for atomic momenta implies that it is an even function of y with

its maximum value at y = 0. It follows from equations 1.67 and 1.68 that, at constant q,

SIA(~q, ω) has its maximum at the recoil frequency ωr, and is symmetric in ω around ωr.

From equation 1.67 one obtains:
(

∂ω

∂y

)

=
h̄q

M
, (1.82)

so if the full width half maximum (FWHM) of J(y) is ∆y, then the FWHM of S(~q, ω), at

constant q is: ∆ω = h̄∆y/M , i.e. the width of S(~q, ω), is proportional to q. At a fixed y, the

magnitude of the dynamical structure factor is proportional to 1/q (from equation 1.68).

The DINS technique results very useful in the case of different atomic masses in the

sample. The locus of the recoil peaks in the S(~q, ω), at constant q, follows the parabola:

ω = ωr (q) =
h̄q2

2M
. (1.83)

So providing the positions ωmax of the maxima in SIA(~q, ω) determined for different

scattering angles, it is possible to plot ωmax as a function of q2: a straight line passing

through the origin is obtained, whose slope inversely proportional to the atomic mass (see

figure 1.4). This procedure can be used to test for inaccuracies in the IA.

It is interesting to recall a relationship between the initial and the final velocities of the

scattered neutrons whose energy and momentum transfers are linked by ω = ωr(q):

α =
v1
v0

=
cosθ +

[

(M/m)2 − sin2θ
]1/2

(M/m) + 1
, (1.84)

where v0 is the incident neutron velocity, v1 the final neutron velocity after the scattering,

m is the neutron mass, θ is the scattering angle and M is the nucleus mass. If M = m,

as in the case of scattering from a proton, this relation reduces to α = cos2θ, so α = 0

for θ = 90◦. Thus measurements of proton momentum distributions are performed only at

forward scattering angles, whereas for θ > 90◦, scattering from stationary hydrogen atoms

does not occur at all.
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Figure 1.4: Recoil energy as a function of the squared wave vector transfer for different

masses nuclei. Hydrogen recoil energy is well separated by other nuclei’s recoil energies, while

differences between heavy nuclei decrease as the mass increases. DINS works better with light

nuclei [53].



Chapter 2

Experimental apparatus

In this chapter the experimental apparatus will be described. We used two neutron spec-

trometers: VESUVIO installed at the ISIS spallation neutron source in Didcot (UK) and

SEQUOIA, installed at the Spallation Neutron Source (SNS) of the Oak Ridge National Lab-

oratory (ORNL), Tennessee, USA. VESUVIO has been designed for DINS measurements and

it allows to reach the kinematic condition in which the IA holds. Two of the three experiments

discussed in this work were done on the VESUVIO spectrometer: the polycristalline ice and

the monocrystalline oriented ice DINS measurements. The SEQUOIA spectrometer, where

the third experiment was carried out, vibrational spectra of water and ice, is instead devoted

to the vibrational neutron spectroscopy, so that the exchanged energy and wave vector are

lower with respect to VESUVIO. The main difference between these two spectrometers is in

the determination of the neutron final energy: VESUVIO is a time of flight (TOF) inverse

geometry spectrometer, while SEQUOIA is a direct geometry TOF spectrometer.

2.1 Neutron sources

Neutrons can be obtained as the result of many reactions that involve heavy atomic nuclei.

It could be useful to illustrate some methods to obtain a neutron source:

• production of photo-neutrons from electrons;

• fission;

• spallation.

Photo-neutrons from electrons are obtained from the relaxation of an excited heavy nu-

cleus. The excitation of the nucleus is obtained from the bremsstrahlung radiation emitted

by the acceleration of the high energy electrons when they interact whit the electromagnetic

54
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fields of the nucleus. However, this process is not very efficient because only a small fraction

of incoming electrons gives rise to the neutron emission, also providing a huge increase of

temperature of the heavy nuclei sample.

Fission is the reaction that produces neutrons into the usual reactors. Nuclear reactor can

be used not only to produce energy, but also to produce neutrons with the fission reaction.

In the facilities designed for this scope neutrons are usually packed in a pulsed beam.

The spallation process is used at SNS and ISIS and consists in making collide accelerated

proton beam on a target made of heavy nuclei. A spallation source presents many advantages

with respect to other sources [58]. The dissipated mean power, for example, is very low if

compared to the nuclear reactors ( 160 kW against tenth of MW of the reactors). Again the

mean energy per neutron is about 55MeV , while it is 180MeV for reactors and 2000MeV

for photo neutron sources.

From an economic point of view one must consider that the proton accelerators are more

expensive than the electron accelerators, but the spallation sources are still less expensive

than the high flux reactors that can reach the intensity of a spallation source. In this respect

major advantages consist in the possibility to perform the TOF and to have a neutron energy

spectrum with a larger energy range.

As introduced above a spallation source allows us to obtain neutrons from the collision of

high energy protons and a target made of heavy nuclei. The heavy nuclei fragments, produced

in the collision, emit many particles, among which there are neutrons. In the case of ISIS

the target is tantalum, while at SNS mercury is used. The nuclei are excited in the collision

with protons and the relaxation can be divided in two steps: in the first, named cascade,

high energy neutrons are emitted, in the second, the evaporation, neutrinos, pions, protons

and other particle are emitted, together with low energy neutrons.

Incident proton beam is produced and accelerated in several steps. Protons are produced

starting from the excitation of gaseous hydrogen that produces H− ions. These are acceler-

ated by an electric potential and introduced in a linear accelerator (LINAC) in which they

reach an energy of about 70MeV in the case of ISIS. At SNS the LINAC accelerates the H−

up to to 1GeV . The LINAC is a superposition of normal conducting and superconducting

radio-frequency cavities that accelerate the beam and a magnetic lattice that provides focus-

ing and steering. Three different types of accelerators are used. The first two, the drift-tube

LINAC and the coupled-cavity LINAC, are made of copper, operate at room temperature,

and accelerate the beam to about 200MeV . The remainder of the acceleration is accom-

plished by superconducting niobium cavities. These cavities are cooled with liquid helium to

an operating temperature of 2 K. Diagnostic elements provide information about the beam

current, shape, and timing, as well as other information necessary to ensure that the beam
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Figure 2.1: Schematic representation of a spallation process.

is suitable for injection into the accumulator ring and to allow the high-power beam to be

safely controlled .

The accelerated pulse of H− from the LINAC is wrapped into the ring through a stripper

foil (Al, 0.3µm at ISIS) that strips the electrons from the negatively charged hydrogen ions

to produce the protons that circulate in the accumulation ring. The protons are further

accelerated up to 800MeV and 2GeV , at ISIS and at SNS, respectively, and packed in a

very short bunch which collides with the target, with very short pulses of less than 1µm for

both sources. The frequency of the pulses is 50 and 60 Hz, respectively.

At ISIS the target station is a set of Ta folis surrounded by a very complex system of

neutrons reflectors, moderators and heat absorbers. The neutron production of this target

is about 15 neutrons per proton. Moderators slow down fast neutrons up to energy that are

useful for neutron spectroscopy (typically from 1 meV up to 100 eV ).

At SNS the target station is made of Hg atoms that provide 20 to 30 spalled neutrons

per incident proton. In the same way, the outgoing neutrons are moderated and guided out

of the target vessel into beam guides that lead directly to instrument stations.

The characteristics of a moderator can be chosen to obtain a neutron beam with an

optimized energy distribution. In the case of VESUVIO and SEQUOIA an high flux in the

epithermal region is desirable.
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Figure 2.2: Scheme of ISIS neutron source.

2.2 Basic principles of the time-of-flight technique

The total neutron Time-Of-Flight (TOF) t is the time spent by a neutron to travel from the

moderator to the detector. It can be written as:

t = t0 +
L0

v0
+

L1

v1
(2.1)

where t0 is a fixed electronic time delay, L0 and L1 are the incident and scattering flight paths

of the instrument, while v0 and v1 are the initial and final neutron velocity, respectively. The

figure 2.3 represents a schematic drawing of an instrument, where the geometrical parameters

are clearly indicated.

In the TOF technique, once L0, L1, the scattering angle ϑ and the initial or the final

neutron energy (E0 or E1) are known, the kinematics of the scattering process can be recon-

structed. In practice if we know the initial (final) energy, the total neutron TOF allows for

the measurement of the final (initial) one, while the detector
′
s angular position (ϑ) allows

for the determination of the wave vector transfer, q, as it will be briefly explained in the

following.

The TOF acquisition chain can briefly be described as follows: before the proton bunch

impinges on the heavy metal spallation target, a proton beam monitor, placed close to the

target, triggers the opening of a time gate (t = tstart = 0) of fixed duration ∆t, which
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Figure 2.3: Schematic of an instrument using the TOF technique: L0 is the primary flight

path (moderator-sample distance), L1 is the secondary flight path (sample-detector distance).

The tstart and tstop are provided by the proton beam monitor and the detectors, respectively.

depends on the bunch time structure of the source. During ∆t the acquisition electronics of

an instrument is enabled to process the electric signals provided by neutron detection system

(neutron counters). Each signal is stored in a channel of a Time to Digital Converter (TDC),

its value being the time difference between the opening of the gate tstart (approximatively

corresponding to the instant the neutron leaves the moderator) and the detection instant

(tstop). A fixed time delay t0 (see equation 2.1) of about 5 µs is electronically provided,

allowing for the recovery of the detectors of all instruments from the saturation induced by

the ”γ-flash”, produced in the spallation process. As we have to deal with a direct and an

inverse TOF geometry a brief description of this two geometry is reported in the following.

2.3 Direct and inverse geometry inelastic spectrometers

To reconstruct the kinematics in an inelastic scattering measurement, the initial and final

neutron energies (wave vector) have to be calculated. The wave vector, q, and the energy

transfer, ω, can be then extracted by using the linear momentum and energy conservation

equations:
−→q =

−→
k0 −

−→
k1, (2.2)

ω =
h̄2

2m
(k20 − k21) = E0 − E1, (2.3)

k0 and k1 being the initial and final neutron wave vectors, and m the neutron mass, respec-

tively. The conservation laws apply rather stringent limitations to the values of q and ω

observed. The relation linking q and ω can be found starting from the relation:

q2 = k20 + k21 − 2k0k1cosϑ, (2.4)
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or in energy units:
h̄2q2

2m
= E0 + E1 − 2

√

E0E1cosϑ. (2.5)

In the direct geometry configuration E0 is selected. Thus the equation 2.5 becomes:

h̄2q2

2m
= 2E0 − h̄ω − 2

√

E0(E0 − ω)cosϑ. (2.6)

For an inverse geometry instrument E1 is selected and the relation 2.5 becomes:

h̄2q2

2m
= 2E1 + h̄ω − 2

√

E1(E1 + ω)cosϑ. (2.7)

From a kinematic point of view, the main difference between the direct and inverse con-

figuration is that in the direct geometry the maximum energy loss is limited to E0, while

there is no limit to the energy loss in the inverse geometry. This is clearly observed in figures

2.4 and 2.5, where contour plots of equal scattering angles are plotted as a function of wave

vector and energy transfers for fixed initial (figure 2.4) and final (figure 2.5) neutron energy

of 6.67 eV .

2.4 VESUVIO

VESUVIO is a TOF inverse geometry spectrometer installed at ISIS neutron source near

Didcot (Oxfordshire, UK). VESUVIO is a unique neutron spectrometer because of the high

intensity in the eV energy range, and whose pulsed time structure allows for the measurements

of momentum distributions in a variety of condensed matter systems.

Energy transfer in the 1-100 eV region and wave vector transfer between 30 and 200

Å−1 are achieved using a filter difference technique. The energy of the scattered neutron is

fixed by a nuclear resonance absorption foil and the incident energy (and hence energy and

momentum transfers) are determined using the standard time of flight techniques.

Incoming neutrons are slowed down by a water moderator at T = 295K. The energy

spectrum shows a peak at E = 0.03 eV and an epithermal tail that goes as E0.9
n , where En is

the incident energy (figure 2.6).

Figure 2.7 show a schematic of the spectrometer. In table 2.4 main experimental param-

eters are reported. As we can see from table 2.4 and from the scheme, VESUVIO uses two

banks of detectors that are the forward and backward detectors.

2.4.1 VESUVIO: the resonance detectors

The neutron final energy selection is performed by the absorption of the neutron by an heavy

nucleus. In the present case the heavy nucleus is 197Au: a 12.5µm thickness foil (the analyzer
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Figure 2.4: Contour plot of iso-angular loci as a function of wave vector and energy transfers

for a direct geometry instrument with E0 = 6.67 eV . In the direct geometry configuration the

maximum energy that a neutron can loss is fixed by the E0 value.

foil) is placed in front of the detectors. The absorption cross section has a huge and sharp peak

for 4.908 eV neutrons, with an HWHM of 0.144 eV (the cross section is σ(Er) = 36592 bn)

[124] with a 103 − 104 ratio between non-resonat to resonant energy (see figure 2.8). The

process can be described by the formula:

A + n → (A + 1)∗ → (A + 1) +

N
∑

i

γi + K, (2.8)

where the nucleus, with atomic number A, absorbs a neutron, is excited and immediately

(≤ 10−16 s) relaxes, emitting high energy photons
∑N

i γi. The last term, K, is the recoil

energy of the nucleus, that can be neglected.

The energy range of our interest for the final energy of the neutrons can be restricted from

1 to 100 eV . As we can see from figure 2.8, in this energy range the resonance at 4.908 eV is

much larger than the other resonances.
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Figure 2.5: Contour plot of iso-angular loci as a function of wave vector and energy transfers

for an inverse geometry instrument with E1 = 6.67 eV. In the inverse geometry configuration

the maximum energy that a neutron can loss depends on the maximum energy of the neutrons

of the incoming beam. As a consequence the inverse geometry configuration allow us to reach

larger values of the exchanged energy with respect to the direct geometry configuration, with

the same energy resolution.

Neutrons with an energy larger than 100 eV are less effectively detected, due to the com-

bined effect of low absorption cross section and decreasing neutron flux. The only resonance

that could in principle give a peak in the experimental spectra is the 60 eV resonance. In all

cases however the peak generated by this resonance is not distinguishable over the background

or it can be cut off from the spectrum because it appears at very small TOF.

In figure 2.9 the acquisition line is shown. The efficiency in the neutrons detection is a

function of the absorption probability of an incoming neutron that hits the analyzer foil and

of the efficiency of the γ detectors. The absorption probability is proportional to the thickness

of the analyzer foil, that should be chosen comparable to the mean free path of a neutron, to

minimize the absorption probability of a neutron with energy far from the resonance. With

the present configuration the total efficiency is about 0.63.
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Figure 2.6: Neutron flux at VESUVIO.

Figure 2.7: Schematic of VESUVIO.

Geometric configuration Inverse

Neutron energy selection Nuclear Resonance

Detectors YAP scintillators

L0 11.055m

L1 ≈ 0.6m

Angular range(forward) 30◦-70◦

Angular range (backward) 120◦-170◦

Available (q, ω) region q ≥ 30 Å−1, ω ≥ 1eV

Table 2.1: Experimental parameters of VESUVIO.
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Figure 2.8: 197Au absorption cross section. The intensity of the resonance at 4.908 eV is

much larger than other resonances in the energy range of our interest (the intensities are in

logarithmic scale).
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Figure 2.9: Schematic of the data acquisition with the resonance detectors: a neutron impinges

on the detector an it can be absorbed by the analyzer foil. The absorption produces a γ rays

that is detected by the scintillator.

The condition for the detection of a neutron is then the detection of a γ photon that

releases part of its energy in the scintillator. The photon detection generates an electric

signal that is processed by the fast electronic chain, emitting another signal that stops the

acquisition. This stop signal is generated with a time lapse that is negligible (shorter than 1

µs) with respect to the absorption of the neutron.

The γ detectors should not have neutron capture resonances in an energy interval between

1 and 100 eV, otherwise they would became gamma emitters, producing a wrong neutron

count. In this work we used the YAP (Ittrio-Allumino-Perovskite) scintillators as γ detectors.

The scintillators are materials that can absorb high energy radiation, remitting them as visible

light after a decay time td. YAP are very fast scintillators (td is very short), they have a good

mechanical and chemical resistance, they are not hygroscopic, they have a glassy structure

with a high density (5.55 gcm−3) but low atomic number (Z=36) and they posses the crucial

feature for a scintillator: they are transparent to the visible light. The material is also stable

in a wide range of temperatures. Main features of YAP are reported in table 2.4.1.

VESUVIO is equipped by 64 detectors in forward scattering, disposed in an angular range

between 33◦ and 72◦ with respect to the incoming neutron direction. Detectors are mounted

in 8 columns, each of which mounts 8 detectors (see figure 2.10).

2.4.2 FCT: Foil Cycling Technique

To increase the energy resolution, the acquisition is done with a gold foil between the sample

and the detectors that works as band cut filter [85]. The width of the J(y) has two con-
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Atomic Number 36

Density 5.55 gcm−3

λ of maximum emission 350 nm

Refraction index (λ = 350nm) 1.94

Light production 18000 photons/MeV

Time of decay 27 ns

Hygroscopic no

Table 2.2: Main features of a YAP scintillator.

Figure 2.10: Design of the experimental chamber. Plan(left) and side view (right).
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tributions: one is intrinsic and related to the n(p) of the target particle, the other is the

instrumental resolution. In the chapter dedicated to the data analysis we will compare the

result of the proton mean kinetic energy obtained by a numerical derivation (with no correc-

tion to the instrumental resolution) and by a fitting procedure that takes into account the

resolution.

The data produced by the VESUVIO spectrometer is then obtained by taking differences

among spectra produced with gold foils in different positions. The foil changers are also

illustrated in figure 2.11

By the use of a secondary foil placed in two suitable positions, the energy resolution can

be much improved and the background almost eliminated. This method, named Foil Cycling

Technique (FCT), is illustrated in Figure 2.12

The data acquisition with the FCT can be described in two steps: in the first step an

acquisition is done with the secondary foil interposed between the sample and the detectors

while in the second step an acquisition is done without the secondary foil. The final spec-

trum is obtained then by the subtraction of the spectrum without the foil and the spectrum

obtained with the foil.

The improvement of the instrumental energy resolution can be explained as follows: let

us call d the thickness of the primary and secondary gold foil, then the transfer function of

the neutron beam in the foil out position can be expressed as:

Tout = 1 − e−Nσy(E) d, (2.9)

where σy(E) is the neutron capture cross section as a function of the energy and N is the

number of absorbing nuclei per unit volume. The transfer function for the neutron beam

passing through the secondary foil is:

Tfilter = e−NσT (E) d, (2.10)

where σT (E) is the total cross section that takes into account all the physical processes that

remove a neutron from the beam. So when the secondary foil is interposed the transfer

function can be calculated from the equation 2.9 times equation 2.10:

Tin(E) = e−NσT (E) d
(

1− e−Nσy(E) d
)

. (2.11)

From the difference spectrum in the two foil positions, one obtains an effective transfer

function that can be expressed as follows:

T (E) =
(

1− e−Nσy(E) d
)(

1− e−NσT (E) d
)

. (2.12)
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Figure 2.11: VESUVIO layout.
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Figure 2.12: Foil cycling method used on VESUVIO. There is a primary gold foil fixed on

the surface of the YAP detector and a movable secondary gold foil of identical thickness. The

secondary foils are cycled, that is moved many times between the two positions within a data

collection period. The cycling removes drifts in detector efficiency with time, due for example

to ambient temperature changes.

Figure 2.13: Calculated transfer function with a secondary foil 12.5µm thik. Continuous line

is the transfer function of the foil out mode, dotted line is the transfer function of the foil in

mode and the dashed line is their difference.
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Considering that the total cross section around the capture resonance is almost equal to the

neutron capture cross section we can put σT (E) ≈ σy(E) obtaining:

T (E) ≈
(

1− e−Nσy(E) d
)2

. (2.13)

So with a very good approximation the final transfer function with the FCT is the square

of the transfer function without the secondary foil. For a Gaussian shape of the transfer

function we would obtain a FWHM that is smaller by a factor 0.71. Calculations shows that

the real improvement of the resolution is about 0.74 and this effect gives rise to a loss of

intensity of the resonance peak of only 10 % [85].

The improvement of the resolution is not the only effect of the FCT. In any neutron

spectrometer there is a non negligible amount of background caused by other products of

the spallation process or by the interaction of the neutron with the infrastructure of the

experimental hall. Moreover in the present case YAP detectors are used, that reveal γ rays,

a very important part of the natural background. On the other hand we can consider the

background as a noise with a constant value in time. In that case the subtraction of the two

spectra will also produce a complete background removal.

2.5 SEQUOIA

SEQUOIA is a fine resolution thermal - epithermal spectrometer located on the beamline 17

at the SNS of the Oak Ridge National Laboratory in Oak Ridge, Tennessee (USA). Figure

2.14 shows the overall layout of the spectrometer and points out major components many

of which will be here described. In table 2.3 distances to major instrument components are

given.

SEQUOIA is a direct geometry time-of-flight chopper spectrometer that can utilize in-

cident neutron energies Ei ranging from 10 meV and 2 eV . The output of the moderator,

ambient water poisoned with Gd, is shown in figure 2.15. The SEQUOIA spectrometer en-

ables very high-resolution inelastic neutron scattering studies of magnetic excitations and

fluctuations and lattice vibrations and has been also used to conduct forefront research on

dynamical processes in materials. With its capability to acquire data quickly and relate them

to three-dimensional momentum transfers, SEQUOIA applications span a wide cross-section

of important research areas in condensed matter and materials.

2.5.1 Choppers

The energy selection on SEQUOIA is done by choppers, that are rotating particle velocity

selectors. On SEQUOIA two choppers can be used in series, the T0 chopper together with
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Figure 2.14: Schematic view of the SEQUOIA spectrometer indicating all of the major in-

strument components.

Description Distance (m)

Moderator to T0 chopper 9.5

Moderator to Fermi chopper 18.2

Moderator to Monitor 1 18.2

Moderator to Sample 20.0

Sample to horizontal plane detector pixels 5.5

Moderator to Monitor 2 29.0

Table 2.3: Distances to major instrument components.
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Figure 2.15: Output of the moderator, as a function of energy, at the SEQUOIA spectrometer.
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the Fermi chopper 1 or 2. The Fermi Choppers are mounted on a translator table that can

put either Fermi chopper 1 or 2 into the beam or neither (for white beam configuration).

The purpose of the T0 chopper, which is located at 9.861 m from the moderator, is to

suppress the prompt pulse of fast neutrons produced when the proton beam strikes the target.

This suppression is accomplished by having an approximately 0.20 m thick piece of the alloy

Inconel X-718 in the beam when the proton pulse hits the target. The material works by

scattering neutrons into the neighboring shielding. This piece of inconel must be out of the

beam in sufficient time for the 0.01 - 2 eV neutrons to pass. It only turns counter clockwise

and can operate at rotational speeds between 30 Hz and 180 Hz in multiples of 30 Hz. So

the T0 chopper transmits a much wider bandwidth than the Fermi choppers.

The Fermi choppers are mounted 18.0085 m from the moderator. Its purpose is to select

a monochromatic pulse of neutrons. A Fermi chopper is a series of closely spaced neutron-

absorbing blades (slit package) held together by a rotor that spins about a vertical axis in

the path of the beam. All slit packages are 100 mm in length. Each Fermi Chopper can be

spun from 0 to 600 Hz in increments of 60 Hz. Only one Fermi chopper may be spinning at

full speed at a time. Figure 2.16 and Figure 2.17 provide the resolution and transmission for

the two Fermi choppers for the elastic peak.

2.5.2 Detectors

The final energy selection is performed with the TOF technique that has been previously

described. In this way, knowing the position of each detectors we can determine all the

kinematic of each revealed neutron.

The detector array on SEQUOIA is an assembly of 1.2 m long by 25 mm diameter Linear

Position Sensitive Detectors (LPSDs). The array is formed by 1440 detectors grouped into

packs of 8 and located on a vertical cylinder with a radius of ≈ 5.5 m (which is the distance

between the sample position and the detectors in the horizontal plane). The LPSDs are filled

with 3He at a pressure of 1.0 MPa. To reduce background there is no window between

the sample and the detectors; the detectors are located inside a detector chamber that is

evacuated to a high vacuum (below 10-6 atm) and is contiguous with the sample vessel.

An incoming neutron is converted through the nuclear reaction

n+3 He →3 H +1 H + 0.76MeV (2.14)

into charged particles tritium (T or 3H) and protium (p or 1H) which then are detected by

creating a charge cloud in the stopping surrounding gas. The electrons from the ionized gas

are collected at an anode wire running down the center of the detector tube. This wire is

at 1870 V above ground and has a high resistance so the proportion of charge seen at each
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Figure 2.16: Transmission coefficient through the slit package and elastic energy resolution

for the Fermi chopper 1 as a function of the incoming neutrons energy, upper and lower panel,

respectively.
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Figure 2.17: Transmission coefficient through the slit package and elastic energy resolution

for the Fermi chopper 2 as a function of the incoming neutrons energy, upper and lower panel,

respectively.
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end allows one to determine the position of the neutron detection event. The length of the

detectors is divided into 128 pixels of ≈ 10 mm length by the electronics. Each pixel subtends

an angle of ≈ 0.26◦ perpendicular to the length of the tube and ≈ 0.16◦ along the length of

the tube. Each pixel has a timing resolution of 1 µs and saturates at no less than 70,000 n/s.

After saturation a tube is ready for measurement within 10 µs. Saturation is indicated by

lack of response, even if the signal is increased. In extreme saturation cases the charge cloud

grows up and down the tube and position sensitivity is lost as well.

The efficiency of a 3He detector is not constant with the energy of the incoming neutron:

it varies as 1/
√
E. When an inelastic neutron experiment is performed one must take into

account for the relative variation of the intensity of spectrum at different energy due to the

energy dependence of the efficiency. For this purpose at the beginning of each experiment a

V sample, irradiated with a white beam, is measured to calibrate the detectors response and

to accordingly correct the data.

2.5.3 Monitors

There are two neutron beam monitors located along the direct beam, one located just down-

stream of the Fermi chopper and variable aperture and a second located farther downstream

of the sample near the beamstop.

The positions of each monitor with respect to the moderator are 18.2331 m and 29.0033

m, respectively. If the upstream monitor has been removed an remounted, a new position is

recorded.

These two monitors are primarily used to determine the speed of the incident neutrons,

but can also be used to normalize the intensity. The detection media is 3He, just as in

the detectors. However they have a relatively low gas pressure to detect a small portion of

neutrons without saturating. More specifically their detection efficiency is 10−6 for Ei = 2

eV of the neutrons. The detection area is 76.2 mm wide by 114.3 mm high and 12.7 mm

deep. The gas is contained in an Al box. Both the incoming and outgoing windows are 1.3

mm thick.



Chapter 3

Data analysis: DINS on

polycristalline ice

In the fist chapter the equations relating the cross section to the physical quantities of our

interest have been derived. As already described, DINS allows us to extract momentum

distribution and mean kinetic energy of protons in ice.

In that discussion an ideal situation has been analyzed: a neutron impinges on the sample,

interacts once and then is revealed. In the real case one has to consider that the probability

of a neutron to interact more than once and then to be revealed is not negligible. These

kind of events, named Multiple Scattering (MS) events, give rise to a measured cross section

that differs from that we want to examine to extract the F (y) function and then the physical

quantities to be studied. The multiple scattering is not the only contribution to the experi-

mental data that we have to subtract: in the TOF spectra recoil peaks appears due to other

masses of the sample (O of the water and Al of the can) and the instrumental resolution has

to be considered as well.

The DINS data analysis is not trivial and require a particular attention to obtain reliable

physical results. The following steps of the data analysis and reduction will be described in

this chapter:

1. Background correction;

2. Subtraction of multiple scattering;

3. Subtraction of unwanted recoil peaks;

4. Rescaling of TOF data to the West variable y and normalization;

5. MC simulation for calculation of the instrumental resolution of each detectors.

76
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This procedure is standard for a DINS experiment and permits to obtain the NCP for

each detector Fl(y, ~q). The routines for this analysis are also provided by the VESUVIO staff,

however, new routines have been implemented in order to better control the data analysis.

Matlab and Fortran have been used for the data analysis [81]. The important innovation in

the DINS data analysis, introduced in this work regards the derivations of 〈Ek〉 and n(p). In

previous experiments the overall NCP F (y) was expressed as a Gaussian times a polynomial

expansion representing a complete basis in the 1-variable functions space. No physical model

was used to obtain this expression and as a consequence the interpretation of the results

was very difficult. We will use in this chapter a physical model that consists in writing the

measured n(p) in the spherical average of three Gaussian momentum distributions. In this

way the anisotropy of the system can be easily pointed out. This is not the fist time the

anisotropic Gaussian model is used to model the n(p) [125], however, it is the first time that

the parameters are derived a using prior knowledge from a recent and accurate simulation

[126].

Furthermore another physical quantity has been derived: the mean force that is much

more sensitive to the anisotropy of the system and it is computable directly from row F (y)

[3].

In this chapter we will describe in detail all the data analysis of the experiment on the

polycristalline ice at T = 271 K, performed with the VESUVIO spectrometer.

3.1 Background correction

As discussed previously, the FCT should completely remove the background. However, the

secondary foil could generate a background as well. This background arises from the different

positions of the secondary foil with respect to the detectors. When the secondary foil removes

a neutron from the beam, capturing it, it emits γ rays isotropically. This emission gives a

contribution to the background and can be subtracted when the subtraction (between the

foil in and foil out spectra) is performed. However, from the point of view of a single detector

this background is not the same when the secondary foil moves from one position to another,

because the solid angle subtended from a generic point of the foil to the detector changes.

This effect was in fact evident, and absolutely not negligible, in the previous hardware setting

of the spectrometer. The secondary foil was a unique big foil moving in such a way that the

detectors above the horizontal plane passing through the sample was in the foil in condition

while the detectors under such plane was not and vice versa. In November 2009, the hardware

setting was changed to the present one, described in the previous chapter, and a routine for

the correction of data taken before that time was provided by the VESUVIO staff.
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The routine is still available, but this hardware setting strongly reduce the γ background

so that any correction due to the background is negligible. We have to point out the fact that

only 48 out of the 64 forward scattering detectors seem to work correctly. The remaining 16

are those mounted on one side of the angular range of detection. This let us think that a

geometrical factor related to the background is responsible of this behavior but the complete

motivation is unknown. For this reason we will only consider 48 detectors and we shall not

attempt a correction of the background of the remaining 16.

3.2 Multiple scattering subtraction

A Monte Carlo (MC) simulation has been implemented to subtract the multiple scattering

contribution. The simulation reproduces the scattering event with the atomic mass of the

sample. The features of the simulation can be summarized as follows:

• A neutron is created with random incident energy;

• The incoming neutron can interact with the sample from 0 to 3 times;

• The final energy selection is simulated taking into account the transfer function obtained

from the capture cross section of Au (see equation 2.12);

• The sample has no structure: the atomic masses in the sample (H, O, Al) are distributed

randomly in the sample volume and are free particles;

• The momentum distribution of the atomic masses is Gaussian;

• Simulation takes into account the instrumental resolution;

• 1.5 ∗ 109 events are computed for each detector.

The simulation generates two spectra for each detector: a spectrum with the single scat-

tering events and a spectrum with all the scattering events. The difference of this two spectra

is then the multiple scattering contribution that has to be subtracted.

For each atomic mass the information needed are: number of atoms, mass, cross section

and standard deviation of J(y). As usual, the mass value determines the position of the recoil

peak, the standard deviation its width and the cross section and the number of atoms its

intensity. These parameters were adjusted until the simulation reproduces as best as possible

the experimental data.

Only double and triple scattering events are accounted for. The sample is thin enough to

yield a negligible contribution for higher order scattering events. For our purpose, even the
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triple scattering event could be neglected, but it has been considered because the additional

computational time was negligible too.

As expected, the main contribution to the multiple scattering arises from the hydrogen

atoms. The proton has a cross section that is ≈ 20 times the cross section of the oxygen and

≈ 50 times the Al. In figure 3.1 the MS subtraction for two spectra at 61◦ and 42◦ scattering

angles is shown.

The same MC simulation has been used to calculate, for each scattering angle, the instru-

mental resolution. Instead of the atomic mass of the sample, the simulation has been done

with an ideal sample composed by H atoms only, with the momenta set to zero. By doing so

the width of the recoil peak we obtained, is entirely due to the instrumental resolution. The

MC has been previously tested with calibrating measurements on a Pb sample, that produces

a recoil peak whose width is entirely due to the instrumental resolution.

Figure 3.1: Two experimental spectra corresponding to 61◦ and 42◦ scattering angles, left and

right plots, before and after the MS subtraction, upper and lower plots, respectively. The black

lines are the experimental data, the red lines are the simulations.

3.3 Subtraction of O and Al recoil peaks

The next step in the data reduction is the subtraction of the O and Al recoil peaks to obtain

TOF spectra in which only the hydrogen recoil appears. In this step, the features of DINS

spectra are crucial because the recoil peaks are centered at different time of flights as a
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function of the mass. The Al and O peaks are well separated from the H peak. Only for

smaller scattering angle the heavy masses peaks appear on the tail of the hydrogen but this

does not prevent the subtraction.

Al and O peaks are superimposed and appear as a unique peak at all the scattering

angles. For our purpose we can however treat them as a unique peak. A Fortran code has

been implemented to fit this peak with a function that is the convolution of a Gaussian and

a Lorentzian functions, i.e. a Voigt profile [127]:

V (x, σ, γ) =

∫ +∞

−∞
G(x′, σ)L(x− x′, γ)dx′, (3.1)

with

G(x, σ) =
1√
2πσ

exp
−x2

2σ2
(3.2)

and

L(x, γ) =
γ

π(x2 + γ2)
. (3.3)

The input parameters are the position of the peak and the range of calculation for the

minimization are given by graphical input, with the use of a Matlab code, for each peak of

each spectra (the hydrogen peak is fitted too, with the same fitting function, to distinguish

it from the Al-O peak, when they are partially superimposed).

As an example, in figure 3.2 and 3.3 the result of the fit for two spectra, corresponding

at 66◦ and 32◦ scattering angles, respectively, are reported.

3.4 y transform

So far in the dynamical structure factors only the hydrogen recoil peak appears. The relation

that relates ω to y is that reported in chapter 1, the 1.67, that we report below:

y =
M

h̄2q
(h̄ω − h̄ωr) . (3.4)

The wave vector transfer, q, varies as a function of the time of flight of the neutron. If

the final energy is fixed, the TOF is inversely proportional to the square root of initial energy

(t ∝ 1/
√
E) and the relation between q and ω is given by:

h̄2q2

2m
= 2E1 + h̄ω − 2

√

E1 (E1 + h̄ω)cosϑ (3.5)

For each detector and for each TOF we have a different wave vector transfer that is larger,

for shorter times of flight and larger scattering angles.

In figure 3.4 and 3.5 two Fl(y, ~q) spectra for 45◦ and 60◦ scattering angles, are reported.

In both of them we can see that the tail at positive y have larger error bars. This is a feature
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Figure 3.2: Subtraction of Al-O recoil peak in a TOF spectrum at 66◦ scattering angle. Black

and green lines are the experimental data and the fit, respectively.
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Figure 3.3: Subtraction of Al-O recoil peak in a TOF spectrum at 32◦ scattering angle.

Black and green lines are the experimental data and the fit, respectively. This is the lowest

angle scattering at VESUVIO spectrometer. The H and Al+O recoil peaks are partially

superimposed. As a consequence, a fit of the H peak is needed as well, to correctly subtract

unwanted recoil peaks. Even at the lowest scattering angle the subtraction can be performed.
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Figure 3.4: NCP, black line with error bars and wave vector transfer, red line. The scattering

angle is 45◦.

Figure 3.5: NCP, black line with error bars and wave vector transfer, red line. The scattering

angle is 68◦. At this scattering angle the y spectrum is cut. Furthermore at large y values the

noise is larger, as these values corresponds to very small TOF. For computational purpose,

the y values out of the range are put equal to zero, with a huge error bar (not reported in this

plot) and the q value equal to 1000 Å−1.
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of all the spectra and it is due to the fact that large positive y, correspond to short times

of flight, where there are less counts, producing larger noise. Furthermore the 60◦ angle

spectrum is cut, because such value of y corresponds to time of flight values smaller than

100 µs, that is the minimum value of the TOF range. This suggests that is not useful to

have spectra at angle higher than 72◦ (for H recoil), despite the improvement of the impulse

approximation as the exchanged wave vector increases.

In the cut spectra, the y values, that were not available, are set to zero with very large

error bars and the exchanged wave vector to 1000 Å−1 for computational purpose.

The y transform must also be performed for the instrumental resolution calculated with

the MC simulation. By doing so we obtain the instrumental resolution in the y space: Rl(y, ~q),

for each lth detector.

3.5 Data Analysis

The experimental Fl(y, ~q) have been normalized to unit area, following the zero-order sum

rule for the dynamical incoherent structure factor [24].

The recoil peak of the H has a width that depends on the scattering angle. Instead, when

the TOF data are transformed into the y space the Fl(y, ~q) are an evaluation of the same

physical quantity, and its q dependence is only related to the FSE and to the instrumental

resolution. Figure 3.6 shows how the different Fl(y, ~q) functions scale to collapse into a single

detector averaged Compton profile.

The NCP Fl(y, ~q) are affected by the instrumental resolution and by the FSE. The ex-

perimental NCP can then be expressed as:

Fl(y, ~q) = [JIA(y) + ∆Jl(y, ~q)]⊗Rl(y, ~q), (3.6)

where JIA(y) is the longitudinal momentum distribution, ∆Jl(y, ~q) are the q-dependent devi-

ations from the IA (final state effects), and Rl(y, ~q) is the fixed-angle instrumental resolution

function. The angle-averaged Fl(y, ~q), named F (y), is derived by calculating a simple av-

erage over the different detectors. This quantity, shown in figure 3.7, provides a graphical

representation of the overall quality of the data.

The JIA(y) line shape as well as n(p) and 〈Ek〉have been calculated from the Fl(y, ~q)

spectra in three different ways:

• M0 model: the 〈Ek〉 value is obtained by numerical integration of F (y)y2;

• M1 model: a full analysis of the DINS line shape via simultaneous fitting of the indi-

vidual Fl(y, ~q) spectra with a model-independent line shape;
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Figure 3.6: Plot of all the NCP, Fl(y, ~q), (markers with omitted error bars) from all detectors.

The plot shows the collapse of the profiles at different angles, demonstrating that the scattering

regime reached in the present experiment is well described within the IA. For the highest

angles, the artificially imposed Fl(y, ~q) are omitted for y > ymax.
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Figure 3.7: Experimental Neutron Compton Profile for ice at T = 271 K averaged over the

whole set of the scattering angles (F (y) = 〈Fl(y, ~q)〉l) (blue dots with error bars). The angle-

averaged best fit is reported as a black continuous line for the M1 model. If final state effects

are not accounted for, the corresponding angle averaged best fit is reported as a red dashed

line. The fits residuals are also reported.
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• M2 model: full analysis of the DINS line shape via simultaneous fitting of the individual

Fl(y, ~q) spectra with a three dimensional anisotropic Gaussian line shape derived from

a quasi-harmonic model.

The numerical integration of F (y)y2 [128] provides a first order estimate of 〈Ek〉 :
∫ +∞

−∞
F (y)y2 = σ2∗

F . (3.7)

The deconvolution of the instrumental resolution is obtained, in this framework, by calculat-

ing the R(y), i.e. the angle averaged resolution function, and then its second momentum as

in the equation 3.7:
∫ +∞

−∞
R(y)y2 = σ2

R (3.8)

and subtracting the σ2
R value to σ2∗

F . σ2
R results 0.98 Å−2, yielding σ2∗ = σ2∗

F - σ2
R = 27.0 ±

2.7 Å−2. The 〈Ek〉 ∗ results 169 ± 19 meV .

Furthermore one can obtain the momentum distribution n∗(p) by a direct numerical

derivation of F (y) (see the equation 1.72). In this case a direct deconvolution of the resolution

is not possible. The derivation of a noisy experimental data is also a difficult task, because

the main effect of the derivation is to increase the noise. We than perform a smoothing of

the F (y) just to have a first raw estimate of the momentum distribution too.

In figure 3.8 n∗(p) is reported as a function of |p|. The noise dominates for small p, but for

larger values the agreement between the n∗(p) and the best fit of n(p) obtained with the M1

model is appreciable. It has to be pointed out that the continuous line in figure 3.8 does not

contain the instrumental resolution and the final state effects contribution, while n∗(p) does.

The agreement among the two function shows the validity of the impulse approximation and

the very high resolution of the VESUVIO spectrometer.

The two parametric methods of analysis involve the fitting of the Fl(y, ~q) spectra with

either model-independent or multivariate Gaussian functions, the latter corresponding to a

harmonic picture of the effective proton potential. We will call this two methods M1 and

M2, respectively. Only the M1 model is available on the instrument program suite. For M1,

the model-independent form for JIA(y) is:

JIA(y) =
e−

y2

2σ2

√
2πσ

[

1 +

+∞
∑

n=2

cn
22nn!

H2n

(

y√
2σ

)

]

, (3.9)

a Gaussian function times a sum of Hermite polynomials. The momentum distribution can

then be written as [129, 130]:

n(p) =
e−

p2

2σ2

(
√
2πσ)3

[

1 +
∑

n

cn(−1)nL
1
2
n

(

p2

2σ2

)

]

, (3.10)
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Figure 3.8: Direct numerical determination of the proton momentum distribution n∗(p)

(points with error bars) and momentum distribution n(p) derived by the M1 model (continuous

line). The lower panel reports the difference between n∗(p) and n(p). The inset reports F (y)

(points with error bars) and R(y) (dashed line). Except for very low p values, for which the

factor 1
y of the equation 1.72 produces large noise, the agreement between n∗(p) and n(p)

is very good. It is worth to note that the n∗(p) has not been corrected for the instrumental

resolution nor for the FSE. This is another evidence of the high performance of the VESUVIO

spectrometer in DINS measurements.
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where L
1
2
n are the generalized Laguerre polynomials.

The fitting parameters of the M1 model are the standard deviation σ and the coefficients

of the Hermite polynomial. This form is very general (it is a complete basis of the 1-variable

function space) and very convenient for the system we are analyzing, from a computational

point of view: only the first term of the sum in the equation 3.9 is taken into account (the

summation converges very quickly) and the 〈Ek〉 is directly related to σ and independent

from the other fitting parameters. This model however may not facilitate the interpretation

of the data as it does not allow us to separate the effects of the anharmonicity from those of

the anisotropy.

In particular, in the case of ice, a recent PICPMD (Path Integral Car-Parrinello Molecular

Dynamics) calculation [131, 126] shows that, within statistical errors, the momentum distri-

bution of each individual proton is well approximated by a multivariate Gaussian distribution

with three distinct frequencies ωx, ωy and ωz.

These are associated to local principal axes that depend on the crystalline orientation

of the molecule to which the proton belongs [101]. This constitutes an anisotropic quasi-

harmonic model in which the effective frequencies ωi account for the main effects of anhar-

monicity. Experiments access the total momentum distribution, i.e., the superposition of

the distributions of all the protons in the sample. In polycrystalline samples a spherically

averaged distribution originates in this way:

n(p) =

〈

1√
8π3σzσyσx

exp

(

− p2z
2σ2

z

−
p2y
2σ2

y

− p2x
2σ2

x

)〉

Ω

. (3.11)

Here 〈...〉Ω denotes spherical average and the variances σ2
i=x,y,z are related to the principal

frequencies by:

h̄2σ2 =
Mh̄ωi

2

(

coth
βh̄ωi

2

)

. (3.12)

In the M2 model we are thus imposing a physical model to the momentum distribution

following information deriving from PICPMD. In this model we have three fitting parameters:

σx, σy and σz.

For finite q, the deviation from the IA can be accounted for by adding corrections, to first

order in 1/q. In both M1 and M2 the underlying model for ∆Jl(y, ~q) is based on the original

framework proposed by Sears [24]. The experimental Compton profile is q-dependent and

the following approximation is used:

J(y, q) =

(

1−A3(q)
∂3

∂y3

)

JIA = J(y) + ∆J(y, q). (3.13)

Here the leading form of JIA(y) is assumed to have a simple Gaussian shape, and introducing
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x = y√
2σ
, we have:

− ∂3

∂y3
JIA = JIA

1

σ323/2
H3

(

y√
2ω

)

, (3.14)

where H3(x) = 8x3−12x. Since A3(y)=
m∇2V
36h̄2q

we obtain, for an isotropic harmonic potential

∆J(y, q) =
e

−y2

2σ2

√
2πσ

M2ω2

12h̄2q

1

σ323/2
H3

(

y√
2σ

)

. (3.15)

The q-independent factor M2ω2

12h̄2
1

σ323/2
, in ∆J(y, q) defines a positive parameter, c1:

∆J(y, q) =
e

−y2

2σ2

√
2πσ

c1

q
H3

(

y√
2σ

)

. (3.16)

This term is asymmetric and induces a modulation in JIA(y). The dependence on q and on

the scattering angle can be appreciated in figure 3.10, where the apparent centroid of Fl(y, ~q)

at the lowest scattering angle is shifted to slightly negative y values, as well as in figure 3.7 ,

where the average over all detectors shows the average shift of the centroids due to the FSE

[24]. Neglecting of final state effects results in poorer fits with larger residuals, with typical

asymmetric shape. In addition, if the final state effects are not accounted for in the fitting,

the kinetic energy derived, for example from M1, is reduced by approximately 5 meV . Figure

3.9 shows the modulation induced by FSE on a low angle detector spectrum.

Both M1 and M2 procedures rely on the minimization of:

χ2 =
∑

l

∑

i

(

F th
l (yi, qi)− Fl(yi, qi)

)2

ǫel,i
, (3.17)

where F th
l (yi, qi) = [JIA(y) + ∆Jl(y, ~q)] ⊗ Rl(y, ~q). Here JIA(y) + ∆Jl(y, ~q) is described by

either M1 or M2 line shapes, the index l represents the detector index, the index i represents

the y value at the ith bin and ǫl,i is the uncertainty for each data point. The double sum over

i and l reflects the relevant properties:

• J(y)IA is unique for all detectors;

• ∆Jl(y, ~q) varies across detectors due to the different q values accessed, but c1 is inde-

pendent on q and is unique for all detectors;

• Rl(y, ~q) varies across detectors, but can be extracted by calibration procedures.

Based on the above physical assumptions, we have carried out the fitting, using M1 and

M2, minimizing the above global χ2, as defined in 3.17 for all detectors simultaneously, to

provide unique values (detector-independent) of σ, a2, c1, σx, σy, σz. We have considered

the global fitting as the preferred choice with respect to the fitting of individual detectors.
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Figure 3.9: Experimental Neutron Compton Profile, Fl(y, ~q), at a scattering angle θ= 33◦ for

ice at T = 271 K (blue dots with error bars). The best fit using M1 with the inclusion of

FSE is reported as a black continuous line, while if FSE are not included in M1 the best fit

is shown as a red dashed line. The fits’ residuals are also reported.
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The latter is generally used on VESUVIO to extract σl, a2l, c1l, etc., whose averages give

the parameters σ, a2, c1. However, the global fit has its basis on the invariance of J(y)IA

and c1 across different detectors, while the individual fitting follows the approach of finding

l statistically independent momentum distributions to be subsequently averaged. It is worth

to be stressed that, since the χ2 for individual detectors is weighted by the error bar, and the

latter is poorly correlated with the noise present at high positive y, the results from individual

detectors may be affected by the noise, since the latter is not accounted for by the χ2. On

the other hand the global fitting provides a more efficient way for noise cancellation. The fit

with the M1 model has been carried out using a FORTRAN code which makes use of the

MINUIT minimization routine, [132] while the fit with the M2 model has been carried out

using a MATLAB code. Examples of the quality of fits for the M1 model are reported in

figure 3.10.
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Figure 3.10: Example of normalized NCP, Fl(y, ~q), (markers with error bars), for three scat-

tering angles, together with their best fits using the M1 model. Two of the spectra are shifted

upwards for clarity. For the two highest angles, the artificially imposed Fl(y, ~q) = 0 are omit-

ted for y > ymax. The the apparent centroid of Fl(y, ~q) at the lowest scattering angle is shifted

to slightly negative y values, due to the FSE.



Chapter 4

Data analysis: DINS on oriented

single crystal ice

In this chapter we will describe the data analysis of the DINS experiment carried on an

oriented ice sample. The sample is an ice film of 5 mm thickness onto a 0.5 mm thick-15

mm diameter platinum single crystal substrate.

The sample has been prepared by evaporating H2O in a vacuum chamber. The initial

base pressure of chamber was ≈ 6.5×10−11 mBar. The Pt (111) crystal was cleaned via

repeated Ar+ sputter-anneal cycles, (≈ 500 eV energy of the Ar ions with a drain current

between 5 and 7 A) using anneal temperatures of 903 K to 923 K. The Pt crystal was also

given repeated oxygen treatments to remove any carbon contamination. and cleanliness was

verified by LEED.

Initially the ice layer was prepared by dosing approximately the first 100 layers of water

via a molecular beam. The dose temperature used was 145 K with a dose time of 5 hours and

the approximate dose rate was 0.33 layers min−1. The crystal was then moved to the effusive

dose position in order to increase the growth rate. The pressure of water in the chamber

was steadily increased coupled with the dose temperature (up to 2×10−5 mBar and 167 K,

respectively), to promote single ice crystal growth over nucleation.

From previous calibrations, the dose rate in these conditions was ≈ 90 layers s−1. For a

total deposition time of ≈ 36 hours (≈ 129600 s) thus yield to ≈ 11.6×106 layers of water,

corresponding to an ice film of ≈ 4.65 mm thick [133].

The data reduction of this experiment follows the same step described in the previous

chapter, i.e. multiple scattering subtraction, heavy masses recoil peaks subtraction and y

variable transformation of the TOF spectra. In this chapter we will then describe only the

part that differs from the polycristalline ice experiment.

The Pt substrate has in fact many neutron resonances that appear in the time of flight

94
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spectra and are superimposed to the hydrogen recoil peak, so a careful subtraction of these

peaks is needed.

Furthermore the geometry of the experiment and the features of the sample could allow

us to extract directional informations with a constant q analysis of the Neutron Compton

Profile.

In the present experiment as in the experiment described in the previous chapter, the

data reduction procedure include only 48 detectors.

4.1 Subtraction of Pt capture resonances

On VESUVIO the neutron data recording is performed using the foil cycling acquisition

procedure. This technique is mostly optimized for recording neutron scattering signals. In

the presence of significant signal due to radiative resonance capture in the sample, Pt in

this case, a residual contribution from the resonance capture is still present in the neutron

TOF spectra and must be then accounted for. The neutron radiative capture cross section

of Pt shows several resonances which can be seen as fingerprints in the time of flight spectra

registered by the YAP detectors of VESUVIO. As for the gold analyzer foil (the primary foil)

when a neutron has been captured by a Pt nucleus, it excites, and quickly decays emitting γ

rays that are revealed by the YAP scintillators.

Figure 4.1: Calculated and measured TOF Neutron Radiative capture interaction probability

in 0.5 mm Pt as a function of energy, left panel and right panel, respectively.

The interaction probability can be calculated from the radiative capture cross section of

Pt (available on public databases, see for example Ref. [134]). Figure 4.1 shows the result

of the analytical calculation of the interaction probability in the Pt thickness (500 µm) as

a function of neutron energy (left panel) and neutron time of flight (right panel) over the
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primary flight path L0 = 11.055 m.

The Pt resonances are found at the same TOF positions for all the different detectors. The

position in TOF of a photon produced at the sample position and revealed by the scintillators

only depends on the energy value of the capture resonance. For a given resonance, a neutron

is captured at a certain energy at the sample position, then a photon travels from the sample

to the detectors covering a distance that depends on the detector position. The time that a

photon takes to travel from the sample to the detectors is however negligible with respect to

our time resolution, so the photons TOF are shrinked to the same TOF value.

Figure 4.2: Sum of all TOF DINS spectra of ice at T=130 K and α = 0◦ (black line). The

red lines are the Pt resonances positions calculated using the radiative capture cross sections

database.

This simplifies the subtraction of the resonances and allows us to sum up all TOF data to

better visualize the Pt resonances. The sum of all TOF spectra from the oriented ice film at

T=130 K and α = 0◦ are shown in figure 4.2, where one can observe a very good agreement

between the calculated and experimental Pt resonances, right panel of figure 4.1 and dotted

red line of figure 4.2, respectively.

The lower intensity of the Pt resonances for the α = 30◦ orientation observed in figure 4.3
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Figure 4.3: Comparison between the sum of all TOF spectra of the oriented ice at α = 0◦

(black line) and α = 30◦ (blue line) orientations. The calculated Pt resonances positions in

TOF are also shown as a red line. The inset shows the region from 160 to 250 µs to better

visualize the intensity of the Pt resonance peaks at the two orientations.
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and insert can be explained as follow. The statistical uncertainties of the neutrons counts is,

for each value of TOF, the square root of the counts, as they follows the Poisson distribution

[135]. This holds for counts in the foil in and out positions separately, so when the subtraction

is performed the counts and the uncertainty become:

Nout −Nin ±
√

Nout +Nin. (4.1)

When a background source gives rise to a very large counts value, as the case of the Pt

resonances, the subtraction of the spectra yields to a large relative error. As a consequence

the removal of the background in the FCT is far from complete. Analyzing the singles TOF

spectra it arises that the residual contributions from the resonance capture in the sample

result as positive and negative dips in the TOF spectra. In figure 4.4 some dips are clearly

observed as a fingerprint of the radiative resonance capture in the sample. This feature

accounts for the lack of intensity observed in figure 4.3 and insert.

The residual contribution from radiative resonance capture has been subtracted in the

TOF spectra for each detector by fitting Voigt functions to each resonance peak, as the

subtraction of peaks from the heavy mass atoms recoil discussed in the previous chapter.

Figure 4.5 shows two examples of TOF data before and after the resonances subtraction.

The remaining part of the data reduction follows exactly the same steps described in

chapter 3 for DINS on polycrystalline ice. In figure 4.6 the F̄ (y) =< Fl(y, ~q) >l are reported

for α = 0◦ and α = 30◦.

After the measurements for the two values of α, the ice film has been removed from the

Pt substrate and the same measurement, for α = 0◦ were repeated with only the ice in the

beam. This measurement will be used to check for the reliability of the resonance subtraction

procedure.

4.2 Constant q̂ analysis

As discussed in chapter 1, DINS allow us to measure the momentum distribution along a

direction identified by the wave vector transfer. For isotropic samples as liquids, or poly-

crystalline solids, the momentum distribution is averaged over the whole solid angle. If the

sample has a defined geometry however directional information could be extracted.

All the kinematics of the scattering is known, so for each TOF value or equivalently for

each y value of each Fl(y, ~q) the modulus and the direction of ~q is known.

Let us call c the axis of growth of the ice crystal and α the angle between c and the

incident beam direction. As described before, a measurement has been done for α = 0◦ and

30◦. Let us define β as the angle formed by c and ~q. We can scan the whole set of Fl(y, ~q)
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Figure 4.4: A TOF spectrum from Pt+Ice. In principle the Pt resonances, and all resonances

in general, should be eliminated upon the subtraction of the foil in and foil out spectra. How-

ever, the statistical uncertainties of the difference of two large counts, has a large relative

error. As a result the intensities of the resonances in the TOF spectra are spread over a wide

range of values. In particular a resonance can appears as a sharp peak (as in the sum of all

detectors) or as a dip, as in this spectrum.

Figure 4.5: Examples of TOF DINS data at low (θ = 34◦) and high (θ = 65◦) scattering

angle before (black line) and after subtraction of the main Pt resonances.
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Figure 4.6: Experimental angle averaged NCP, F̄ (y), for the T= 130 K ice film sample at

α = 0◦(open dots) and α = 30◦ (full dots).
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Figure 4.7: Kinematics of DINS scattering for θ = 65◦ in the longitudinal y range -30 Å−1 <

y < 15 Å−1 corresponding to initial neutron wave vectors range 44 Å−1 < k0 < 543 Å−1

and a fixed value of k1 = 48.6 Å−1 . In the figure the scattering wave vector ~q is plotted for

the extreme values of y= -30 Å−1 and y = 15 Å−1.

looking for the y and l values that correspond at a certain value of the angle β (i.e. the ~q

direction with respect to the c axis).

It is important to emphasize that in picking up data points at constant q̂, the whole set

of data at α = 0◦ and 30◦ is used, because for a fixed l and y we have different values of β.

In figures 4.7, 4.8 and 4.9 the kinematic of the scattering events is shown. The values of

the β angles chosen are: 130◦, 150◦ and 180◦. For these tree angles we have enough data

points to reconstruct the F (y, q, q̂ = constant). The range of the selected angles are 10◦

around each β value.

In figures 4.10, 4.11 and 4.12 the Neutron Compton Profiles are shown for β = 130◦, 150◦

and 180 ◦. It appears clear from these plots, that values of β larger than 180◦ and smaller

than 130◦ would not have an NCP in a reasonable range of y. The fits are done with the

Gauss-Hermite fitting function [136].
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Figure 4.8: Kinematics of DINS scattering and ~q orientations with respect to the sample

c-axis (red arrow) or α = 0◦ at θ = 65◦ scattering angle. In the figure the scattering wave

vector transfer ~q is plotted for the extreme values y = -30 Å−1 and y = 15 Å−1 and for few

intermediate values. The direction of ~q with respect to the c direction is indicated by the angle

β. For larger q values β approach 180◦. Values of β < 120◦ are unaccessible. This sample

orientation allow us to sample the NCP for 120◦ < β < 180◦.
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Figure 4.9: Kinematics of DINS scattering and ~q orientations with respect to the sample

c-axis (purple arrow) or α = 30◦ at θ = 65◦ scattering angle. In the figure the scattering

wave vector trnsfer ~q is plotted for the extreme values y = -30 Å−1 and y = 15 Å−1 and for

few intermediate values. The direction of ~q with respect to the c direction is indicated by the

angle β. The sample orientation at α = 30◦ allow us to reach larger value of β. This sample

orientation allow us to sample the NCP for 150◦ < β < 210◦.
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Figure 4.10: Experimental Neutron Compton Profile for β = 130 ◦± 10◦ and its corresponding

best fit.
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Figure 4.11: Experimental Neutron Compton Profile for β = 150 ◦± 10◦ and its corresponding

best fit.
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Figure 4.12: Experimental Neutron Compton Profile for β = 180 ◦± 10◦ and its corresponding

best fit.



Chapter 5

Data analysis: INS on water and ice

The INS measurements have been carried out at the SNS of Oak Ridge National Laboratories

by using the SEQUOIA spectrometer. In particular we measured polycristalline ice Ih at

T=271 K, to have a direct comparison with previous experiments and simulations [96, 99],

and water at several temperatures from super-cooled water at T= 269 K to room temperature

(T= 296 K). The incident energy was fixed to Ei = 600 meV , being the best compromise to

access to the whole excitation spectrum and to have the best energy resolution.

We used an Al can for all the measurements. The internal cavity of the can is a disc (5

cm diameter and 0.1 cm wide, see figure 5.1) with a Teflon coating to prevent the nucleation

of water below for temperatures slightly below the freezing temperature (T= 273.15 K).

Figure 5.1: Schematic and picture of the cell.

The standard software routines available on SEQUOIA allowed us to extract the single

Sθ(q,E) spectra as a function of the energy loss E (q is a function of E and θ) at fixed

θ from a data matrix in the (q,E) plane, as reported in figure 5.2. We obtain absolute
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scattering functions by means of a standard background subtraction and normalization from

the scattered intensities of the sample, empty container and vanadium [98] to correct the

intensity for the different efficiency of 3He detectors at different energies and for the factor
kf
ki
.

Figure 5.2: Contour plot in the (q,E) plane, showing the kinematic range explored by the

SEQUOIA spectrometer with an incident neutron energy of 600 meV . The bar on the right

indicates the intensity values.

Our data sets are composed of spectra at different scattering angles ranging from 4◦ up to

56◦ with an increment of 2◦. The energy range varies from -200 to 550 meV with an energy

bin of 2 meV . In the present case, scattering angles up to 20◦ are considered. We will focus

mainly on the excitation of the stretching mode. No attempt for multiphonon correction has

been made: this contribution is negligible for q = 0 and in this study we will reconstruct the

density of states in the limit for q → 0.

The analysis will be performed in three steps:

• Multiple Scattering (MS) subtraction;

• Calculation of the Density Of States (DOS);

• Extraction of other physical quantities from the DOS.
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5.1 Multiple scattering subtraction

The MS is evaluated by the simple model described in Ref. [96] and [99]. According to that

model the MS is described as a double scattering process, neglecting higher order scattering,

where a neutron enters into the sample (a slab), suffers a 90◦ scattering, travels inside the

sample, undergoes another 90◦ scattering and emerges from the sample. This method has the

advantage to give a very simple evaluation of the MS, as it can be modeled by a convolution of

two Gaussian functions each of which represents a single scattering event. The MS lineshape

is then a Gaussian with the parameters defined by the experimental setup (i.e the incident

energy defines the center of the Gaussian, and the recoil peak defines its variance). The

drawback is that this method is limited to small scattering angles.

The center of the Gaussian function that describes the behavior of the MS is given by

the model and it is 2Ei = 1200 meV . The standard deviation σ should be measured by

detecting neutrons at a scattering angle equal to 90◦. The resulting spectra is a Gaussian

that is supposed to be self-convoluted to obtain σ. However SEQUOIA does not have access

at such high scattering angles so the σ has been evaluated by a fitting procedure.

The fit is done by considering the tails of the spectrum in which no peaks are expected,

minimizing the function:

χ2 =
∑

i

|S(q,Ei)−G(E)|2
ǫ2i

, (5.1)

where G(E) = Ae−
(E−Ei)

2

2σ2 , with σ as the free fitting parameter and ǫi as the uncertainties of

S(q,Ei).

The absolute intensity A of the G(E) depends on the normalization of the S(q,E) and

on the ratio between the intensities of single and double scattering.

This quantity is available by a formula first proposed by Sears [100] and yields, for the

geometry and kinematics of our experiment, to a double scattering with an intensity that

is 20% of the total intensity. Then A has been kept fixed in the fit. In figure 5.3 a plot of

the experimental data for ice at T= 271 K and for the smallest scattering angles (θ = 4◦) is

reported together with the evaluation of MS obtained.

The MS is not expected to be phase or temperature dependent. Furthermore the MS can

be considered constant for small scattering angles, i. e. for angles up to 20◦. Indeed, the

model used to evaluate the MS is known to work well only for small scattering angles, so we

used G(E) of figure 5.3 to subtract the multiple scattering at all the temperatures and at all

the scattering angles up to 20◦.

A more rigorous treatment of the MS subtraction would be required if one wanted to use
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Figure 5.3: Experimental dynamical structure factor for a scattering angle θ = 4◦ (blue line)

and MS (red line) calculated with the constraint of 20% of MS.

data at all the scattering angles and in the whole energy range. In that case a MC simulation

should be performed to have a more extensive multiple scattering evaluation.

However, our goal here is to extract the density of the states of the stretching mode so

that we only need a subset of energies and θ ranging from 350 meV to 550 meV and from

4◦ to 20◦. In this scattering region the MS subtraction results accurate enough, confirming

one of the most important features of INS measurements.

In figure 5.6 is reported a Monte Carlo simulation of the contribution of the multiple

scattering for liquid H2O obtained from a model density of states [138]. As we can see the

multiple scattering is expected to have a monotonous behavior in the energy region of our

interest justifying the evaluation of the multiple scattering with a Gaussian function.

5.2 Calculation of the density of the states

The INS is a powerful method for determining the Density Of vibrational States (DOS), or

frequency distribution function g(ω) of crystals and amorphous solids [139]. The most serious

difficulties arise from the MS subtraction, described in the previous section and from the de-

termination of the separate contribution of different modes, when they overlap. Fortunately,

the vibrational modes of H2O are well separated in energy. In particular the stretching mode,
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Figure 5.4: Experimental dynamical structure factor measured in the present experiment (blue

line) and from Ref. [96]. The calculated MS fraction of the present data (green line) is the 20

% of the total scattering, while in the data from Ref. [96] (red line) it is the 28%. However,

the red line is smaller than the green line: this is a consequence of the incident neutron energy

that is 600 meV in the present experiment and 800 meV in that of Ref. [96].
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Figure 5.5: Example of MS subtraction for two spectra recordered on ice at T=271 K, at θ =

6◦ (left column) and 8◦ (right column) before and after the subtraction.
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Figure 5.6: Multiple scattering calculation from Ref. [137]. The shaded area corresponds to

the energy range of our interest.

appearing for ice at E ≈ 420 meV , with a width of ≈ 80 meV is well separated from the

bending mode at ≈ 200 meV and a width of ≈ 50 meV .

The DOS is obtained as the limit for low q of the function S(q,ω)
q2 , where the dynamical

structure factor is corrected for the Debye-Waller factors and other constants. We define the

function Γ by the following relation [140]:

S(q, ω) =
1

k
q2Γ(q, ω) , (5.2)

where:

k =

[

2mh̄ω

e−2W

4π

σ

1

n(ω) + 1

]

, (5.3)

where n(ω) is the Bose population factor (≈ 1 for T= 271 K) and e−2W is the Debye-Waller

factor. The latter is not far from unity and is estimated considering the mean displacement

< u2 > of the hydrogen to be 0.072 Å2. g(ω) is then calculated as the limit:

lim
q→0

Γ(q, ω) = lim
q→0

S(q, ω)

q2
= g(ω) , (5.4)

where Γ(q, ω) is expressed as:

Γ(q, ω) = g(ω) + αq2 . (5.5)

The DOS is calculated considering for each energy value the intensity and the exchanged

wave vector q. Then, for each energy, the intensity is reported as a function of q2. This data

set is fitted to the equation 5.5, where g(ω) and α are the parameters of the linear fit. So
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for each energy value, we obtain a value of g(ω) which allow us to reconstruct the DOS as

a function of the energy. The data have been rebinned with an energy bin of 6 meV while

the raw data have an energy bin of 2 meV . This choice is the best compromise between the

energy resolution that is 12-14 meV , in the range 350 - 500 meV of energy loss, and the

noise. Figure 5.7 reports Γ(q, ω) for four values of the energy, each of which is plotted as

function of q2.

Figure 5.7: Γ(q, ω) plotted as a function of q2 for some energies. The red line is the least

squares linear fit, while the green lines represent the uncertianties of g(ω).

The DOS of the stretching mode is then obtained in the energy range from 350 and 480

meV for ice at T = 271 K, and reported in figure 5.8. The integral area of this data is 8.7

± 0.5 that is very close to the expected value, considering n = 8 stretching modes in a unit

cell of ice. In this figure the experimental resolution of the instrument is also reported as a

green line.

In order to extract a DOS not altered by the instrumental resolution, the latter should

be deconvoluted from the DOS. This can be done considering that the resolution:

• is not q dependent;
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Figure 5.8: DOS of Ice Ih, black dots with error bars. The red line is the best fit of the data

to a Gaussian function, the green line is the instrumental resolution and the blue line is the

de-convoluted Gaussian.

• has a Gaussian behavior;

• is almost constant in the energy range, ranging from 12 to 14 meV .

We do not want to make any assumption on the line shape of the DOS but, in order to

have an easy way to calculate the contribution of the instrumental resolution, we can consider

that in a first approximation the O − H stretching is harmonic with a Gaussian DOS (the

deconvolution of two Gaussian being a Gaussian with a variance that is the difference between

the variances). Under these assumptions, a fit to the experimental DOS with a Gaussian has

been performed. In figure 5.8 the fit and the result of the deconvolution are reported, as

red and blue lines, respectively. It is clearly seen that the instrumental resolution does not

change the DOS in a substantial way. The value of the integral area of the DOS and the

fact that the peak associated to the stretching mode is much larger than the instrumental

resolution suggest indeed that the expected instrumental resolution is very small. Following

this procedure the DOS has been calculated at all the temperatures of the experiment.

The Density of states allows us to calculate some other physical quantities. The mean

kinetic energy can be found with the following formula:

〈EK〉 = 3h̄

4

∫ +∞

0
ωg(ω) coth

h̄ω

2kBT
dω . (5.6)
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The mean kinetic energy can be expressed as 〈Ek〉= 3
2kBT

∗, where T ∗ is the effective

temperature, first defined by Keer in 1973 [141], as an evaluation of the importance of the zero

point motion. In his work he treated the case of liquid Ne, an intermediate system between

the He (a quantum system) and the Ar (well described by the classical physic). He found

that for a system in which the quantum corrections to the classical values are small, these

correction may be obtained by a perturbation calculation in which h̄ is treated as a small

quantity. When the correction to order of h̄2 are incorporated into the momentum distribu-

tion function, it still remains a Gaussian function of the momentum, but the temperature

parameter T of the classical formula is replaced by the effective temperature T ∗ > T .

T ∗ is related to the DOS as follows:

T ∗ =
∫ +∞

0
ωg(ω) coth

h̄ω

2kBT
dω . (5.7)

With T ∗ we can express the harmonic-isotropic momentum distribution as:

n(p) =
1

(2πmkBT ∗)
3
2

e
− p2

2mkBT∗ (5.8)

In the equations 5.6, 5.7 and 5.8 the harmonic approximation is implicit, because the

DOS is defined for harmonic crystals. Furthermore the correct normalization of the g(ω) is

required in all the energy range. The calculation of this quantities thus implies the knowledge

of the DOS for ω from 0 to infinite.

The procedure used for the calculation of the DOS can be extended without effort to the

entire spectral range. However, as described above, we did not perform a multiple scattering

subtraction that can be considered reliable for all energies. Anyway, we can consider the

idea of calculating the DOS in the entire spectrum, using the latter only to impose the

normalization to unit area and then calculate the 〈Ek〉 only for the stretching region.



Chapter 6

Results and Conclusions

In this chapter the results of the three experiments will be exposed. In the first section all

the experimental results will be shown and commented. In the section that follows we will

draw conclusion putting together all the results of the different experiment and then, based

on the physical results, the possible future works will be discussed.

6.1 Results

The proton momentum distribution and mean kinetic energy have been measured for ice Ih

and Ic, at T=271 K and T=130 K respectively. Vibrational spectra have been also measured

for ice Ih at T=271 K and for water at the following temperature: 269, 271 (supercooled

water), 273, 275, 276, 278, 280, 285, 290, 296, K.

6.1.1 Proton momentum distribution and mean kinetic energy of ice Ih

Proton momentum distribution in Ice Ih, at T= 271 K, has been obtained from DINS data

recordered with the VESUVIO spectrometer. The momentum distribution is related to the

NCP via the relation 3.10 shown in chapter 2 that we recall for the sake of simplicity:

n(p) =
e−

p2

2σ2

(
√
2πσ)3

[

1 +
∑

n

cn(−1)nL
1
2
n

(

p2

2σ2

)

]

(6.1)

The radial 4πp2n(p), where n(p) is obtained with the equation 6.1 (M1 model), is shown

in figure 6.1, plotted as blue line.

The M2 model, with n(p) described by the momentum distribution of equation 3.11:

n(p) =

〈

1√
8π3σzσyσx

exp

(

− p2z
2σ2

z

−
p2y
2σ2

y

− p2x
2σ2

x

)〉

Ω

(6.2)
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Figure 6.1: Experimental radial momentum distribution for ice at 271 K obtained using model

M1 (blue solid line), M2 (black dots) and PICPMD for ice at 269K (red dashed line) with

error bars. Errors on the radial momentum distribution, for both M1 and M2, are very small:

they are determined from the parameters covariance matrix calculated by the fitting codes.
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is instead represented by the black dots. In this figure is also reported the radial proton

momentum distribution obtained by the PICPMD. The M2 model fits to the experimental

data just as well as the M1 model, confirming that the added bias does not worsen in any

way the quality of the fit. The values of the fitting parameters of the M1 and M2 model, and

the PICPMD frequencies are reported in table 6.1.

Model σ [Å−1] a2 ωz [cm−1] ωx [cm−1] ωy [cm−1] 〈Ek〉 [meV ]

M1 4.99 ± 0.03 0.10 ± 0.01 - - - 156 ± 2

M2 - - 2795 ± 95 1230 ± 110 920 ± 80 154 ± 2

PICPMD - - 2640 ± 60 1160 ± 25 775 ± 20 143 ± 2

Table 6.1: Values of the fitting parameters used in M1 and M2 model. PICPMD frequencies

are reported for comparison. The relation among the fitting parameter σi of the M2 model

and the ωi is reported in the equation 6.3.

In the case of the spherically averaged multivariate Gaussian, or M2 model, there is,

however, a difficulty since optimization gives nearly degenerate σx and σy values leaving the

error bars on the effective frequencies poorly defined. This reflects the presence of too many

fitting parameters for the information content of the (spherically averaged) data set. Indeed

the difficulty would disappear by adopting a model with only two distinct parameters (σz

and σt = σx = σx in the transverse direction) as done in a previous study [84], but this would

not be an accurate description of the physics. Rather than following this approach, in the M2

model we retain three distinct σi and eliminate the degeneracy by adding a weighting term

in the least square fit of the experimental Compton profiles, to minimize the deviation of the

fitted σi from their PICPMD counterparts. The magnitude of the weighting term reflects the

assumed physical ranges for the σi or equivalently, the ωi.

However, σx and σy should be distinct from each other, as they reflect distinct averaged

information on the bending and the libration frequencies of the vibrational spectrum. Such

anisotropic behavior in the spherical momentum distribution is largely suppressed by the

spherical averaging operation. Thus to obtain distinct σx and σy values from the spherically

averaged momentum distribution, a significantly higher resolution would be needed than

those currently available with state-of-the-art facilities and instrumentation. Although in

the future it will be possible to reach the required resolution, at present the only way to

acquire directional information from experiments on macroscopically isotropic samples such

as polycrystalline ice, is to use prior knowledge on the distribution in the fitting procedure.

In this respect, PICPMD simulations are a reliable source of theoretical knowledge, since

• they predict momentum distributions in good agreement with experiment;
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• they are a parameter-free approach in which the only physical approximation is associ-

ated to the adopted electronic density functional.

Values of the PICPMD frequencies are taken from [101] and are reported in table 6.3.

The corresponding σi values are given by the relation:

h̄2σ2
i =

Mh̄ωi

2
coth

h̄ωi

2kBT
, (6.3)

that yields (σz)
PI = 6.28 Å−1, (σx)

PI= 4.18 Å−1, and (σy)
PI= 3.46 Å−1.

Assuming that the deviation of the actual σ2
k from (σ2

k)
PI follows a Gaussian probability

distribution with standard deviation ∆σ2
i , one has a probability to find a certain σ2

k value

that is:

P (σ2
k) ∝ e

[σ2
k−(σ2

k)PI ]

2(∆σ2
k
)2 . (6.4)

∆σ2
i reflects the the uncertainty of σ2

i , which depends on the likelihood interval suggested by

physics and the experimental resolution. In our fit we take ∆σ2
z = 3.0 Å−2, ∆σ2

y = 1.5 Å−2

and ∆σ2
x = 1.2 Å−2.

These values correspond to the following 70 % confidence intervals for the principal fre-

quencies ωk:

ωz ∈ [2430, 2830]cm−1 ,

ωy ∈ [1060, 1265]cm−1 ,

ωx ∈ [680, 860]cm−1 .

(6.5)

The assumed distribution for σ2
k 6.4 is used as prior information in the maximum likelihood

method [142], yielding a modified objective function to be minimized:

χ2(σ2
x, σ

2
y , σ

2
z ) =

∑

l

∑

i

(

F th
l (yi, qi)− Fl(yi, qi))

)2

ǫ2l,i
+

∑

k=x,y,z

[

σ2
k − (σ2

k)
PI
]2

2(∆σ2
k)

2
. (6.6)

The results of this fit are shown in table 6.3. The relatively large error bars reflect the

estimates for the physical range made in the fit.

The blue shifts of the experimental frequencies relative to their PICPMD counterparts

suggest that the experimental n(p) should be slightly more spread out than its theoreti-

cal counterpart, an outcome that is entirely borne out by the plot of the PICPMD radial

momentum distribution reported in figure 6.1.

Interestingly, the comparison between PICPMD and the present more accurate experi-

ment reverses the trend observed in the comparison with the previous experiment of Ref. [84]:

the proton is now more localized in the experiment than in the calculation, consistently with

the delocalization error of common density functional theory approximations [143]. Indeed,



CHAPTER 6. RESULTS AND CONCLUSIONS 121

as pointed out in the introduction, the momentum distribution derived in [84] should not be

considered reliable due to lack of data reduction.

The effect can be quantified in terms of 〈Ek〉 , which is 156 ± 2 meV with the M1 fit and

154 ± 2 meV with the M2 fit, as opposed to 143 ± 2 meV in PICPMD. The relative lack of

sensitivity of the spherical momentum distribution to the anisotropy of a system characterized

by three distinct quasi-harmonic frequencies confirms a recent theoretical study [3], in which

a more sensitive quantity named mean force was proposed. For a macroscopically isotropic

system, the latter is a function of the radial displacement x. The mean force is defined as:

f(x) = (− log n(x))′ − Mx

βh̄2
. (6.7)

Here n(x) is the spherical end-to-end distribution, i.e., the Fourier transform of n(p) (equa-

tion 6.2), while the second term is the free particle contribution which is independent on the

environment; f(x) can be directly related to the experimental J̄IA(y) data obtained after cor-

recting the NCP data F̄ (y) for the final state effects ∆J(y, q). The corresponding expression

is [3]:

f(x) = −Mx

βh̄2
+

∫ +∞
0 dyy sinxy/h̄J̄IA(y)

h̄
∫ +∞
0 dy cosxy/h̄J̄IA(y)

. (6.8)

The mean forces extracted from J̄IA(y), from M2, and from PICPMD data are plotted in

figure 6.2.

Figure 6.2: Mean force, with error bars, calculated directly from the experimental asymptotic

Compton profile, J̄IA(y) (blue solid line), M2 (black dots), and PICPMD data (red dashed

line).
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The three mean forces have good correspondence and f(x) extracted from the raw exper-

imental data is particularly close to that of the M2 model, indicating that the quantum state

of the proton in ice is well represented by quasi-harmonic anisotropic motion. Notice that the

error bars of f(x) increase systematically with the displacement x, reflecting a progressively

larger statistical uncertainty as the tail of the end-to-end distribution is approached; f(x)

is related to the derivative of the Fourier transform of the NCP, and therefore, at large x,

becomes sensitive to its highest frequency components, i.e., to the noise. The effect becomes

so pronounced in the raw f(x) that we truncate the plot at 0.35 Å. The 〈Ek〉 estimated, in a

fourth, non parametric way, from the raw f(x) is 156 ± 9 meV . The error bar of this estimate

is larger than that from M1 or M2, since the raw mean force constitutes a model independent,

nonparametric approach. To accurately resolve the anisotropic frequencies without resorting

to a model dependent approach, the counting statistics in the experiment, i.e., the uncertainty

of the raw f(x) should be comparable to that of the M2 model in figure 6.2.

All these results can also be found in Ref. [144].

M2 model applied to DINS data recordered on water

In two previous works [81, 82], DINS measurements on water at various temperatures has

been performed. In both experiments data were analyzed only using the M1 model, well

reproducing the experimental data. Fitting these data using the M2 model can give further

information on the role of anharmonicity with respect to the anisotropy of the momentum

distribution.

Figure 6.3: Angle averaged NCP, F̄ (y), and its best fit using M2 model for supercooled water,

at T= 269 and 271 K. The fits cannot reproduce satisfactory the experimental data, indicating

a large anharmonic contribution.
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Figure 6.4: Angle averaged NCP, F̄ (y), and its best fit using M2 model for water. The fit

residuals indicate that an anharmonic contribution is still present and non negligible for T

= 272.15 K (supercooled phase) and T =277.15 K (the temperature of maximum density of

water). Data at T= 272.95 K and 274.15 K are well represented by an harmonic-anisotropic

model.
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Figure 6.5: Angle averaged NCP, F̄ (y), and its best fit using M2 model for water. The

proton momentum distribution of water near the room temperature is well represented by an

harmonic anisotropic model.

In figures 6.3, 6.4 and 6.5, the best fit using the M2 model compared to the experimental

F̄ (y) is shown for all available temperatures. We must point out that the fit with three

different σi as free parameters can be done only in the case of a prior knowledge on these

parameters as in the case of ice Ih. In performing these fits we did not try to make any

guess on the prior, instead we used the same of the ice, in the assumption that the principal

frequencies of water do not vary dramatically from those of ice. Anyway, for this reason, this

part of the data analysis should be considered reliable only in a qualitative way.

As a result anharmonicity effects seem to be not negligible for the supercooled water and

for water at the temperature of maximum density, T = 277.15 K, while the water around room

temperature can be well represented by an harmonic anisotropic model. The behavior of the

〈Ek〉 as a function of the temperature is still preserved, only a rigid shift of the 〈Ek〉 value is

evident towards smaller values for the stable water and towards larger values for supercooled

water, with the relative maximum at T=277.15 K and the absolute maximum at T=271 K,

as shown in figure 6.6.

6.1.2 Proton momentum distribution and mean kinetic energy in ice Ic

Proton momentum distribution in Ice Ic at T= 130 K, has been obtained from DINS data

recordered on the VESUVIO spectrometer. The NCP of the oriented ice sample at α =

0◦ is reported in figure 6.7, together with the NCP of the polycrystalline ice. In this case

remarkable differences between the two spectra can be observed.

Each experimental NCP was fitted simultaneously in the y-space, with the M1 paramet-
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Figure 6.6: Mean kinetic energy of the proton, 〈Ek〉 for liquid water as a function of the

temperature. Values obtained with M1 and M2 model are compared. The M2 model underes-

timates the 〈Ek〉 for the temperatures at which the system is well described by an anisotropic

harmonic model. Instead, when the M2 model fails, the 〈Ek〉 is overestimated with respect to

the M1 model. This effect can be explained as follows: if the tail of the momentum distri-

bution does not go to zero as a Gaussian distribution, the M2 model yields larger σi values,

corresponding to a larger 〈Ek〉 .
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ric model, to determine the mean kinetic energy 〈Ek〉 , without taking into account the q̂

orientation respect to the sample orientation. The resulting value of 〈Ek〉 are listed in table

6.2. For both orientations the experimental NCP data sets, recorded with the left and right

detectors, have been fitted separately.

Figure 6.7: Comparison between angle-averaged NCP, F̄ (y), for polycrystalline ice at T =

271 K (full squares) and oriented ice for α = 0◦ orientation (open circles).

The 〈Ek〉 values are considerably lower than the zero point kinetic energy of the proton

of ice Ih. The concept of the zero point kinetic energy arises from the ground state of an

harmonic oscillator, that is not equal to zero, but it has an energy equal to 1
2 h̄ω [145]. In

general a DINS measurement at T very close to zero yields the zero point kinetic energy of the

target particle. In the case of the proton in ice and water, the 〈Ek〉 is almost completely due

to its zero point motion, due to its small mass, as measured by Reiter [146] for polycristalline

ice Ih at T= 5 K, yielding 〈Ek〉= 142 meV . In that work the authors also performed a DINS

experiment for H2O in nanotubes at T = 5 K, finding 〈Ek〉= 104 meV .

The simultaneous fit of all the spectra yield a momentum distribution that can be consid-

ered very close to spherically averaged distribution as the case of a liquid or a polycristalline

sample. In fact, not only we are probing the n(p) in a wide range of direction, considering

the angular range of detection, but also the different orientations of the H2O molecules in

a monocrystalline sample with respect to the incoming neutrons, gives rise to a momentum

probed along different directions. This is indeed confirmed by the 〈Ek〉 values obtained from
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T [K] Sample α [degrees] Detectors 〈Ek〉 [meV ]

271 Polycrystal - All 156 ± 2

130 Oriented Ice 0 All 101 ± 1

130 Oriented Ice 30 All 100 ± 1

130 Oriented Ice 0 Left side only 99 ± 2

130 Oriented Ice 0 Right side only 103 ± 3

130 Oriented Ice 30 Left side only 98 ± 1

130 Oriented Ice 30 Right side only 102 ± 1

130 Oriented Ice no Pt 0 All 105 ± 1

Table 6.2: Mean proton kinetic energy for oriented and polycrystalline ice, obtained with the

M1 model.

measurements at different α values.

We gather that the small structural differences between the Ice Ic and the ice Ih pro-

duce a large discrepancy between their proton 〈Ek〉 . Even if this result was unexpected, it

should not considered to much surprising. Indeed the same phenomenology, not only can

be found in the case the ice Ih in nanotube, but also in the case of the supercooled water

previously described. The 〈Ek〉 of the supercooled water has an excess with respect to water

above 0 ◦C that is ≈ 50% of the kinetic energy in the stable phase. Neutron diffraction

measurements [147] of supercooled water showed a very tiny difference between the peaks of

the radial O−O distribution of the water at T = 269 K and T = 289 K: the maxima of these

peaks were found to be at 2.70 and 2.76 Å, respectively. Despite this little discrepancy the

proton momentum distribution of water changes dramatically. We still do not have enough

information to establish a direct and quantitative correlation among structural discrepancies

and the 〈Ek〉behavior, but it could be useful to remark this parallelism in different phases of

water.

Finally, the measurement of the sample without the Pt substrate yields a slightly larger

value of 〈Ek〉 . This allows us to conclude that the presence of the Pt substrate does not alter

dramatically the measurements.

The statement according to which we are probing the momentum distribution only along

a single direction is not strictly correct. We are in fact probing the momentum distribution

in a set of directions describing a cone. The aperture of this cone is inversely proportional

to the exchanged wave vector: as explained in chapter 4, the larger is the q the closer to the

c-axis is the probed direction. The constant q̂ analysis of the data at α = 0◦ and 30◦ give

the results reported in the table 6.3, where β is the angle between q̂ and the c-axis.

The constant q direction analysis seems to give a kind of 〈Ek〉 distribution as a function
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β [degree] 〈Ek〉 [meV ]

130 ± 10 105 ± 1

150 ± 10 99 ± 1

180 ± 10 94 ± 1

Table 6.3: Mean kinetic energy of proton, 〈Ek〉 , calculated from the momentum distribution

probed along the direction forming an angle β with the c-axis.

of β. Thus moving from a wave vector direction parallel to the c axis towards a direction

perpendicular to it the mean kinetic energy of the proton increases. However, to obtain these

three values we had to select our data point with an interval of β = 20◦. This requirement

has been imposed by the need to have a suitable number of points of F (y).

These data have also been analyzed with the harmonic M2 model of n(p) and the resulting

values of 〈Ek〉 are reported in the table 6.4. Fitting the data with 2 or 3 harmonic components

yielded degenerate values and, as a consequence, very large error bars. The data can instead

be fitted with only one component giving 〈Ek〉 values compatible with the previous fit. The

resulting proton momentum distribution is thus harmonic and isotropic. In figure 6.8 the

experimental NCP is reported for α=0◦.

α [degree] σ [Å−1] 〈Ek〉 [meV ]

0 4.02 ± 0.02 100 ± 1

30 4.00 ± 0.02 99 ± 1

Table 6.4: Mean kinetic energy of the proton for α = 0◦ and 30◦ resulting from the M2 model.

Figure 6.8: Angle averaged NCP, F̄ (y), for α = 0◦ (red line), its corresponding best fit (blue

line), using the M2 model, and their difference (black line).
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6.1.3 Vibrational spectroscopy

Vibrational spectra of a sample of pure H2O in the liquid stable phase at T = 275, 276, 278,

280, 285, 290 and 296 K, in the liquid metastable phase (supercooled water) at T = 269, 271

and 273 K and in solid phase (ice Ih) at T = 271 K have been obtained from measurement

at SEQUOIA spectrometer with an incident neutron energy of 600 meV .

It is useful to show the raw spectra for some of these temperatures (for the three different

phases in which H2O has been measured). As described in chapter 5, the MS has been

evaluated from ice at T=271 K and subtracted for spectra at all other temperatures. So the

MS correction is the same for all spectra.

Figure 6.9: Raw data corrected for the multiple scattering: ice at T = 271 K. Each line

represents a scattering angle, from 4◦ to 20◦ (with an increment of 2◦), from bottom to up.

The vertical lines are an estimation of the vibrational energies of the ice. They result to be

Elib = 80 ± 10, Eben =200 ± 10 and Estr 420 = ± 10.

In figures 6.9, 6.10 and 6.11 the vibrational spectra of ice at T = 271 K, supercooled water

at T = 271 K and water at room temperature, respectively, are shown. In these figures are

also indicated the approximate values of the three peaks corresponding to theH2O vibrational

modes. The uncertainties of these values are estimated to be around 10 meV . A comparison

among the values in different phases shows that the principal frequencies do not vary within

the range of investigated temperatures for liquid water. Instead, the principal frequencies of

ice appear at lower energies. A direct comparison among the frequency values can be done

with the results obtained from DINS and PICPMD. Frequencies are reported in table 6.5 in
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Figure 6.10: Raw data corrected for the multiple scattering: water at T = 271 K. Each line

represents a scattering angle, from 4◦ to 20◦ (with an increment of 2◦), from bottom to up.

The vertical lines are an estimation of the vibrational energies of the ice. They result to be

Elib = 75 ± 10, Eben =210 ± 10 and Estr 430 = ± 10.
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Figure 6.11: Raw data corrected for the multiple scattering: water at T = 296 K. Each line

represents a scattering angle, from 4◦ to 20◦ (with an increment of 2◦), from bottom to up.

The vertical lines are an estimation of the vibrational energies of the ice. They result to be

Elib = 70 ± 10, Eben =210 ± 10 and Elib 430 = ± 10.
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cm−1 unit.

ωz [cm−1] ωx [cm−1] ωy [cm−1]

INS 3390 ± 80 1610 ± 80 640 ± 80

DINS 2795 ± 95 1230 ± 110 930 ± 80

PICPMD 2640 ± 60 1160 ± 25 775 ± 25

Table 6.5: Principal frequencies of ice Ih

The INS frequencies are not consistent with DINS and PICPMD ones. This is because

PICPMD values are calculated taking into account the fact that the principal frequencies are

obtained as the combined contribution of modes and they are the effective frequencies of a

quasi-harmonic model. For example ωx has two contributions that are ≈ 50 % bending and

50 % libration and ωz is not completely due to the stretching (even if it is ≈ 97 % due to the

stretching motion). The DINS values are indeed been obtained from prior knowledge of the

PICPMD frequencies.

The most interesting feature arising from figures 6.10 and 6.11 is that the vibrational

spectrum of water does not change appreciably passing through the supercooled to stable

phase up to the room temperature. This is a surprising result because, as previously stressed,

the dynamical behavior of the supercooled water is very different with respect to that of the

water above the melting point.

In figure 6.12 the raw data difference of water at T=271 K and at room temperature is

reported. As we can see no appreciable discrepancy arises among the spectra, except for some

features at low energy. We want to emphasize that, in the stretching region, the vibrational

spectrum at these two temperatures does not change. This comparison can be made among

all other temperatures with the same conclusions. Here we decide to report the comparison

of water at T=271 K and room temperature because they present the major differences for

what concerns the momentum distribution. Instead, small discrepancies appear if we sum up

all the spectra at all the angles, also considering angles above 20◦.

In figure 6.13 we sum up, for each temperature, the spectra at all the available angles,

from 4◦ to 54◦. These are raw data, apart for the standard corrections available on SEQUOIA

spectrometer, reported in an energy range around the stretching region. We are looking for

discrepancies, in the vibrational spectra around the stretching peak, among supercooled and

room temperature water, because it has been proposed that the different behavior of the pro-

ton along the stretching is due to a variation of the potential, passing through the metastable

phase to the stable one. This effect could allow the tunneling of the protons between two

minima of a double well potential [81, 82]. The different behavior of the supercooled wa-

ter spectra with respect to water at room temperature cannot however explain the large
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Figure 6.12: Difference between raw data for water at room temperature and supercooled water

at scattering angles from 4◦ to 20◦ (from bottom). It is clear that the vibrational spectrum

of water does not vary passing through T = 271 K to 296 K. Small differences arise for very

low energy loss values, but these discrepancy cannot account for the difference between the

supercooled water and the water at room temperature momentum distributions.
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Figure 6.13: Summation of data at scattering angle from 4◦ to 54◦, for ice, water and super-

cooled water, around the stretching peak. If we sum up all the data we are much more sensible

to any difference among the vibrational spectra. In this plot a tiny difference in the stretching

region of the vibrational spectrum between water at T = 271 K and 296 K is visible.
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difference among momentum distributions and no clear evidence of any modification of the

stretching mode can be seen.

The density of states has also been extracted from these spectra for all temperatures in

the stretching region, i.e. E from 350 to 480 meV for ice and from 350 to 500 meV for water.

The spectra have been normalized to unity in this energy range: this normalization should

give a DOS with an integral that is the total number of stretching modes n, considering 4

molecules in a unit cell. The expected value is n =8, for ice Ih.

Figure 6.14: Density of states for ice Ih at T = 271 K. The result of the present experiment

is reported with black dots, the result of Ref. [96] is reported as red asterisk. The energy bin

is 6 meV in both cases. The line shape of the DOS from Ref. [96] is larger than the DOS

of the present experiment: this is due to the smaller energy resolution of SEQUOIA. The

larger intensity of the tails of the former could be due to a not reliable MS subtraction. In

this respect a fit of the MS lineshape represents an improvement with respect to the simple

model described in Ref. [96].

In figure 6.14 the DOS for ice Ih at T=271 K is reported together with the DOS calculated

in Ref. [96] for comparison. The higher resolution of the present experiment results in as a

DOS that is sharper with respect to the previous experiment. As expected, both distributions

are centered at approximately the same energy value E = 417 and (415.5 ± 0.5) meV for

Ref. [96] and present data, respectively. The integral area of this data is 8.7 ± 0.5 that is
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very close to the expected value.

The DOS of water has been obtained in the same way as that of the ice. In figure 6.15 is

reported the DOS of ice compared with the DOS of the supercooled water at T=271 K. It is

visible that the spectrum associated to the the supercooled water DOS is broader and it is

peaked at E=425 meV .

As we saw in the raw data, and as expected after considering that the raw vibrational

spectra for water do not change appreciably in the whole temperature range, we obtain several

equivalent DOS. In figure 6.16 we can see that the g(E) for water are comparable among each

other within the error bars (the latter are not reported in figure 6.16, but are all of the same

order of magnitude as in figure 6.15 and 6.17).

Figure 6.15: Comparison of the DOS of supercooled water and ice Ih at T = 271 K, with

error bars. As expected the DOS of ice is shifted at lower energy (its maximum being at 415.5

± 0.5 meV ) with respect to that of the supercooled water (425.5 ± 0.5 meV ).

If the density of states is known for all energies it is possible to calculate the mean kinetic

energy assuming the motion to be harmonic for all the modes. The relation between the

〈Ek〉 and g(E) is shown in the equation 5.6. The same equation with the integral going from
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Figure 6.16: Comparison among DOS of the supercooled water and ice at T = 271 K and

stable water at temperatures: 276, 278, and 296 K. As expected from the vibrational spectra

no appreciable change of the DOS is observed for water as the temperature is varied.
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Figure 6.17: DOS with error bars for water at T = 273, 275, 280 and 290 K.
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E=350 to 500 meV gives the contribution to the mean kinetic energy of the stretching mode:

〈EK〉Str =
3

4

∫ 500

350
Eg(

E

h̄
) coth

E

2kBT
d(

E

h̄
) , (6.9)

where the integral variable has been changed from ω to E.

However, careful attention must be paid to the normalization condition. The equations

5.6 and 6.9 holds if the sum rule:

∫ +∞

0
g(ω)dω =

∫ +∞

0

1

h̄
g(E)dE = 1 . (6.10)

is satisfied. This equation is the direct consequence of the fact that the density of states is a

distribution function.

The procedure for the extraction of the DOS can be extended to the whole spectrum, we

can then use these data to impose the correct normalization to the g(E). However, in doing

so we are introducing uncontrollable uncertainties due to the MS subtraction methods that is

expected to work fine only in the stretching region. If we make the assumption that the MS

is almost constant through the spectra at various temperatures we cannot extract reliable

numbers, but we can compare results among them to have a numerical parameter to plot:

we can then look for correlation between this numerical parameter (i.e. the 〈EK〉Str ) and

the temperature.

In figure 6.19 〈EK〉Str is reported as a function of the temperature, showing that there

is no correlation between the mean proton kinetic energy and the temperature: the behavior

is almost constant. It is worth noting that the 6.19 〈EK〉Str for ice is 85 ± 4 meV , in good

agreement with the PICPMD value of 82 meV .

6.2 Conclusions

A DINS measurement on a polycrystalline ice Ih has been done at VESUVIO spectrometer

at ISIS. New data analysis tools have been introduced for DINS measurements.

The direct numerical determination of the momentum distribution can be used to unam-

biguously identify nuclear quantum effects, the chemical environment, and the anisotropic-

harmonic or anharmonic character of atomic motions in condensed systems. The numerical

integration proposed in this work is intended to be part of a set of non-parametric determi-

nations of the momentum distributions [144, 148, 149, 3], that can be used synergistically

with the parametric fitting analysis, broadening the capabilities of the deep inelastic neutron

scattering technique. Moreover, the direct numerical determination of n(p) can be applied to

the recent studies of heavier mass systems, such as lithium, oxygen, etc. [150, 151], that aim

at assessing the magnitude of nuclear quantum fluctuations in any condensed matter system.
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Figure 6.18: Density of states for ice and supercooled water at T = 271 K and PICPMD for

all energies.
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Figure 6.19: 〈EK〉Str as a function of the temperature, calculated by the equation 6.9.
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In contrast, the parametric models M1 and M2 yield to a smooth momentum distribution

that must be related to the features of the model. The M1 line shape for example can

fit to any momentum distribution, providing enough Hermite polynomials. However, the

interpretation of the data would be difficult in terms of anisotropy and anharmonicity. The

M2 model can only be applied for harmonic anisotropic momentum distribution. By putting

together the information extracted from the models one conclusion can be drawn on the

nature of the sample under analysis. In particular ice Ih at T=271 K results to have an

harmonic anisotropic momentum distribution.

This work illustrates how the theoretical and experimental determination of the momen-

tum distribution in a benchmark system like polycrystalline ice can directly access the phys-

ical mechanisms describing quantum state of the proton . We have successfully extracted the

dominant features of the microscopic directional momentum distribution from an experiment

on a macroscopically isotropic sample. Moreover, we have measured with high precision the

non-trivial quantum excess kinetic energy, an observable that can be used as a quantitative

benchmark for electronic density functionals employed in the description of hydrogen bonded

systems in ab initio numerical simulations. An accurate measurement of the kinetic energy

is in fact the most direct experimental probe of the spatial localization/delocalization of the

proton, and can contribute to the development of better theoretical descriptions of water and

hydrogen bonded systems in general. This study can be further used to investigate the role

of nuclear quantum effects in a variety of hydrogen bonded systems.

Carrying out the same analysis on previous water data, it results that momentum dis-

tribution of supercooled water, showing a secondary peak at high momentum, cannot be

described as an anisotropic model only: proton potential in these cases come out to have a

not negligible anharmoic part. The same considerations holds for water at T = 277.15 K,

the maximun density temperature for liquid water. Water around the melting point and near

room temperature behaves as an harmonic anisotropic system.

A set of DINS measurements on a monocrystalline ice Ic on a Pt substrate has been carried

out at VESUVIO spectrometer at T = 130 K. This experiment can be seen as the experimental

way of extracting directional information from DINS, a complementary approach with respect

to the polycristalline ice Ih.

We obtained an unexpected 〈Ek〉 value, that is smaller than the measured zero point

kinetic energy of ice Ih. We infer from this experience and from that of the supercooled water

that H-bonded systems could give rise to drastic change of the momentum distribution upon

very small structural alterations. Although this experiment was planned for a directional

analysis of ice we found an unexpected but very important result.

The constant q̂ analysis yielded energy values decreasing as q̂ approaches the c − axis.
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All the momentum distributions are well represented by an harmonic isotropic model.

The huge excess of 〈Ek〉 in water, especially in the supercooled regime, was described in

terms of a proton that can coherently tunnel among two wells of a double wells potential along

the H-bond. This hypothesis should have as a consequence an evolution of the vibrational

spectrum around the stretching region as a function of the temperature.

An INS experiment on pure H2O has then been carried out on SEQUOIA spectrometer

at the Oak Ridge National Laboratory in a range of temperature from 269 to 296 K for liquid

water and 271 K for ice.

A model for the multiple scattering subtraction was used to correct the data. This simple

model, used in Ref. [96], has been improved by fitting the dynamical structure factor tail.

This made possible the extraction of the vibrational density of states for ice and water for

all the investigated temperatures.

A clear picture arises from these measurements: the stretching mode does not change

appreciably in passing from supercooled to room temperature water. For ice we found results

in agreement with previous works.

6.3 Future developments

The data analysis developed for DINS measurement can be applied to any physical system

for which a DINS measurement is reliable.

The combination between statistical data analysis and prior knowledge deriving from

theoretical studies, or simulations, is a very powerful tool to determine the effective anisotropy

or anharmonicity of a potential. This study can then pave the way for future works in this

direction.

At present, the DINS measurement on ice Ic does not lead to a clear picture of the physics

of such system. The constant q̂ analysis, in particular requires more q̂ values for a reliable

analysis. The present analysis shows only three values, each of which contains a set of β

varying over 20◦. This is equivalent to sum up many contribution coming from, for example,

q̂ from 140◦ to 160◦ for the β value of 150◦. Choosing a smaller interval of q̂ would produce,

with the present data, NCP with few data points, and as a consequence with a poor statistic

and a very low reliability of the results. Instead, it would be desirable to have much more

〈Ek〉 as a function of q̂. This can be obtained with new DINS measurement on the same

system with different orientations of the c − axis. Furthermore the low value of zero point

energy of the ice Ic rises the interest on measuring the same quantity for all the crystalline

phases of ice.

The most important approximation done for the data analysis of the INS measurements is
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the subtraction of the multiple scattering. This procedure works well under certain conditions

but limits the quantity of information that can be extracted from these data.

A MC simulation for the evaluation of the multiple scattering, for example, should be

feasible. Many papers can be found in the literature on this topic. Once the multiple

scattering is subtracted reliably in the whole spectrum the DOS can be extracted for all the

spectra. In this way the also the total 〈Ek〉will be available from the INS data.
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