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ABSTRACT 

Analytic expressions of lepton-flavour- and lepton-number-violating decays of charged 

leptons are presented in the context of SU(2)L ® U(l)y scenarios, in which their field 

content is inspired by grand unified theories (GUT's) or superstring models and naturally 

contain left-handed and/or right-handed neutral singlets. Possible constraints imposed 

by cosmology and low-energy data are briefly discussed. The violation of the decoupling 

theorem in flavour-dependent graphs due to the presence of heavy neutral leptons of Dirac 

or Majorana nature is emphasized. Numerical estimates are given. 
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1 Introduction 

The quest for an understanding of the problem of smallness in mass or masslessness of 

the light known neutrinos, Ve, v~-', and v-r, has relied on interesting solutions in the context 

of extended gauge structures of the minimal Standard Model (SM) such as grand unified 

theories (GUT's), e.g. S0(10) models [1], or superstring models with an E6 symmetry [2]. 

Among the various solutions, the most attractive one, known as the "see-saw" mechanism, 

has been conceived by the authors in [3] in S0(10) or left-right symmetric models. In 

these theories, right-handed neutrinos are introduced with the simultaneous inclusion of 

Majorana masses that violate the lepton-number ( L) by !:l.L = 2 operators in the Yukawa 

sector. The neutrino-mass spectrum of a simple "see-saw" model with one generation of 

quarks and leptons consists of two massive Majorana neutrinos, v and N, having masses 

m., ~ m'iJ/mM and mN ~ mM. If the Dirac mass term mD is of the order of a typical 

charged-lepton or quark mass, as dictated by GUT relations [4], and the Majorana-mass 

scale mM is sufficiently large, one can then obtain a very light neutrino v. The general 

situation of an interfamily "see-saw" model with a number nG of weak isodoublets and a 

number nR of right-handed neutrinos is more involved [5] and will be discussed in Section 

2. 

If nature keeps to the pathway of an ultimate solution via the "see-saw" mechanism, 

then heavy Majorana neutrinos, Ni, may manifest themselves in L-violating processes at 

high-energy ee [6], ep [7], and pp colliders [8,9], in possible lepton-flavour-violating decays 

of the Z [10] and Higgs particles (H) [11] or through universality-breaking effects in lep­

tonic diagonal Z-boson decays [12]. Their existence may also influence [13,14] a number 

of electroweak oblique parameters given in [15,16] or specific Higgs observables considered 

recently [17,18]. Finally, there are many other places scanned by exhaustive combined 

analyses of charged-current-universality effects in leptonic 7r decays, neutral-current in­

teractions in neutrino-nucleon scatterings, r-polarization asymmetries, neutrino-counting 

experiments at the CERN Large Electron Positron Collider (LEP), etc. [19,20], in which 

Majorana neutrinos could also manifest their presence. 

Another possible solution of the neutrino-mass problem has been contemplated in the 

framework of heterotic superstring models [2,21] or certain scenarios of SO(lO) models [22]. 
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The low-energy limit of such theories extend the SM field content by adding new left-handed 

and right-handed neutral isosinglets. For simplicity, one can, however, assume the absence 

of !l.L = 2 operators in the Yukawa sector. In a simple one-generation scenario, one 

obtains three Weyl fermions from which one of them is completely massless to all orders 

of perturbation theory [22,2,23] and the other two are degenerate in mass and thus form 

a heavy Dirac neutrino which has a mass of the order of the isosinglet Dirac mass M. 

The Dirac mass M simply connects the right-handed and left-handed chiral singlets in 

the Yukawa sector. This solution is particularly preferable if the light known neutrinos 

turn out to be strictly massless. The model could straightforwardly be extended to na 

generations without qualitatively changing its picture regarding neutrino masses. In an na­

generation model, one generally obtains na massless neutrinos and na heavy Dirac neutral 

fermions [23,24]. This minimal model is invariant under the gauge group SU(2)L ® U(1)y 

and possesses many attractive features that might be summarized in [25]. For example, 

even if the total lepton number is conserved, the model does generally violate the separate 

leptonic quantum numbers and can hence account for possible L- and/or CP-violating 

signals at the Z peak [23] or in other high-energy processes [26]. 

In this paper we carefully study the three-body decays of a charged lepton, l, into other 

three charged leptons, which we denote hereafter as l', h, and l2 • After detailed calculations, 

we find analytically that the decay amplitude of l --+ l'hl2 increase quadratically with the 

mass of the heavy Dirac or Majorana neutrino. This explicit violation of the decoupling 

theorem [27] has recently been observed for the one-loop vertex functions Zll' and Hll' 

(with l =/= l') in "see-saw" models [10,11]. The effective couplings Zll' and Hll' show a 

similar strong quadratic dependence of the heavy neutrino mass. Among the various decay 

processes, we find numerically that the decays, T --+ e- e- e+ and T --+ e- p-p+, have the 

biggest opportunity to be detected at the present or future LEP data. Especially, the effect 

of genuine Majorana-neutrino contributions to the charged lepton decays is also analyzed 

quantitatively. 

The present work is organized as follows: In Section 2 we give a brief description of 

the basic low-energy structure of a GUT- and superstring-inspired SM. In Section 3, we 

discuss general constraints that should be imposed on these models. Analytically, Section 

3.1 considers possible constraints based on the assumption that the model should generate 
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a sufficiently large lepton asymmetry via the out-of-equilibrium £-violating decays of a 

heavy Majorana neutrino which can be converted later on into the observed baryon-number 

(B) asymmetry in the universe (BAU) due to the sphaleron interactions. In section 3.2, 

stringent constraints of possible non-SM mixings are derived by a global analysis of all 

existing low-energy data. Also, bounds that may be obtained by the non-observation of 

leptonic non-diagonal Z-boson decays at LEP are discussed in Section 3.3. In Section 4, we 

analytically calculate the branching ratios of the photonic decays of a lepton (l), l -+ l'1, 

and the three-body decay modes of the type l-+ l'hl2 in the context of the models discussed 

in Section 2. Numerical predictions and discussion of these lepton-flavour-violating decays 

are summarized in Section 5. We draw our conclusions in Section 6. 

2 Theoretical models 

In this section, we will give a short description of the basic low-energy structure of the 

two most popular extensions of the SM that can naturally account for very light or strictly 

massless neutrinos . The field content of these models is inspired by heterotic superstring 

models [2] or certain SO(lO)-GUTs [3,22] and is free of anomalies [25] . These two scenarios 

are the interfamily "see-saw" model realized in the SM with right-handed neutrinos [3,7,5] 

and the SM with left-handed and right-handed neutral singlets [2,23,24]. 

lnterfamily "see-saw" models, being invariant under the SM gauge group, represent 

one of the most natural framework to predict heavy Majorana neutrinos. After the intro­

duction of a number fiR of right-handed neutrinos, v~i' in addition to fiG left-handed ones, 

vt, which also allows the presence of tlL = 2 operators through Majorana masses, the 

Yukawa sector of such a minimal extension of the SM is written down as 

(2.1) 

where the (nG + nR) x (nG + nR)-dimensional neutrino-mass matrix 

( 
0 ffiD) 

m}; mM 
(2.2) 
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has the known "see-saw" form [3]. The matrix M" can always be diagonalized by 

a unitary matrix U" of the same dimensionality with the neutrino-mass matrix (i.e., 

uvT M"U" = M"). One then gets llG +fiR physical Majorana neutrinos ni through the 

unitary transformations 

no+nR 
L U';j* nLj and (2.3) 
j=l 

The first nG neutral states, Vi (- ni for i = 1, ... , llG ), are identified with the known nG 

light neutrinos (i.e., nG = 3), while the remaining nR mass eigenstates, Nj (- ni+nG for 

j = 1, ... , nR), represent heavy Majorana neutrinos which are novel particles predicted by 

the model. The quark sector of such an extension is standard and can completely be given 

by the SM. 

Adopting the conventions of Ref. [5], the interactions of the Majorana neutrinos, ni, 

and charged leptons, li, with the gauge bosons, w± and Z, and the unphysical Goldstone 

bosons, G± and G0 (in the Feynman-'t Hooft gauge), are correspondingly obtained by the 

Lagrangians: 

and 

£ G'f 
int 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where P L(PR) = (1 + (-)15 )/2 and mi denotes all the physical neutrino masses. In 

Eqs. (2.4)-(2.7), Band Care nG X (nR + nG)- and (nG + nR) x (nR + nG)-dimensional 

matrices, respectively, which are defined as 

fiG 

Bz;j = L Vl~~eUk'J 
k=l 

and 
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where V1 is the leptonic Cabbibo-Kobayashi-Maskawa (CKM) matrix. 

Note that the flavour-mixing matrices B and C satisfy a number of identities, which 

are derived just by using the information of SU(2)L ® U(1)y invariance of .Cy.. These 

identities, which guarantee the renormalizability of the interfamily "see-saw" model, can 

be summarized as [11,5] 

nG+nR nG+nR llG+llR llG 

L BhkB~k = Sz1z2, 2: cik c;k = cij, L BzkCki = Bli, L B,*,.iBz,.j = Cij, (2.9) 
k=l k=l 

llG+llR 

L mkCikCik = 0, 
k=l 

k=l k=l 
nG+nR 

L mkBzkCZi = 0, 
k=l 

nG+nR 

L mkBhkBz2 k = 0. 
k=l 

(2.10) 

Consequently, our theoretical analysis should be regarded to be independent of the weak­

basis structure of possible neutrino-mass-matrix ansatze [28]. It is also instructive to re­

express the Z-boson coupling to the Majorana neutrinos, ni, as follows: 

(2.11) 

One can thus remark that the coupling Zninj is generally flavour non-diagonal and has 

both chiralities in this minimal model. 

Another attractive scenario predicting for the light neutrinos to be strictly massless 

serves a superstring-inspired extension of the SM, in which left-handed neutral singlets, 

SLi, in addition to the right-handed neutrinos, v~;' have been introduced. For the sake 

of simplicity, we will assume that !:lL = 2 interactions are absent in the model, and the 

number of right-handed neutrinos, nR, equals the number of the singlet fields SLi· After 

the spontaneous break-down of the SM gauge symmetry, the Yukawa sector relevant for 

the neutrino masses reads [2,22] 

(2.12) 

where the (na + 2nR) x (na + 2nR) neutrino-mass matrix is given by 

(2.13) 
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Since the rank of the neutrino matrix in Eq. (2.13) is 2nR, M" has na zero eigenvalues. 

These na massless eigenstates should clearly describe the ordinary light neutrinos, lie, v~-' 

and 11-r [2,22]. The remaining 2nR Weyl fermions are degenerate in pairs due to the fact that 

Lis conserved and so form nR heavy Dirac neutrinos. A nice feature of the model is that 

the individual leptonic quantum numbers may be violated [23,24,29]. The charged-current 

Lagrangian can be obtained by Eq. (2.4), while the neutral-current interaction is given 

by [23] 
g nG+nR 

.cz - - ~Z~-' "" n- ·C· ·"V PLn · int - L...,; t tJ 11-' J' 2ew .. 1 t,J= 

(2.14) 

The matrices B and C for this specific model obey the sum rules in Eq. (2.9), but not the 

identities of Eq. (2.10). 

At this stage, we must comment on the difference between the Lagrangians (2.5) 

and (2.14). Since Eq. (2.5) describe Majorana neutrinos contrary to the Lagrangian (2.14) 

where the massive neutrinos are Dirac, the strength of the Znini coupling for identical 

Majorana fermions is two times larger than the one which may naively be red off from .Cfnt 

in Eqs. (2.5) and (2.11). The off-diagonal coupling Zninj (with ni =f ni) is again enhanced 

by a factor of two, since the charge-conjugate interaction Znjni will equally contribute to 

the coupling of the Z-boson to Majorana neutrinos. In our forthcoming calculations, we 

have taken into account all these theoretical differences in treating Majorana and Dirac 

fields . In fact, we find that taking formally the limit Cti -+ 0 but keeping Cij =f 0 in 

Eq. (2.11) and considering the afore-mentioned statistical Majorana factors is sufficient to 

recover the model with additional left-handed neutral singlets. 

To make life easier, we ultimately make the following reasonable assumptions: To a 

good approximation, we assume that possible novel particles related to the above unified 

theories, such as leptoquarks [30] or extra charged and neutral gauge bosons, Wi [31] and 

Z' [32,20], are sufficiently heavy so as to decouple completely from the low-energy processes 

discussed in Sections 3.3 and 4. For obvious reasons, possible singlet and triplet Majoron 

fields [33-36] are considered to couple very weakly to matter so that we can safely ignore 

them in our considerations. 
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3 General constraints on the models 

3.1 Constraints from sphaleron erasure of the BAU 

Unified theories based on the gauge group S0(10) or E6 can naturally accommodate 

right-handed neutrinos in addition to quarks and leptons of the SM. In such theories, the 

Majorana mass mM can directly be related to the B- L scale of a local symmetry which 

is assumed to be spontaneously broken. It is therefore evident that the mass of heavy 

Majorana neutrinos will be determined by the scale of B - L breaking. Moreover, out­

of-equilibrium lepton-number-violating decays of heavy Majorana neutrinos can generate a 

non-zero L (37] in the universe through the L-violating interactions of Eqs. (2.4)-(2. 7). This 

excess in L can be converted into a B asymmetry of the universe via the ( B + L )-violating 

sphaleron interactions, which are in thermal equilibrium above the critical temperature 

of the electroweak phase transition (38,39]. Many studies have recently been devoted to 

constrain the ( B - L )-violating mass scale by making use of the drastic out-of-equilibrium 

condition for the !:1L = 2 operators, and so to derive a lower mass bound on the heavy 

Majorana neutrinos (40-44]. For example, in (40] conceivable scenarios predicting heavy 

Majorana neutrinos with mN = 1-10 TeV could naturally account for the observed BAU. 

Subsequently, it was argued (41] that the mN lower bound of rv 1 TeV was considerably 

underestimated and a lower bound on mN > 105 TeV should be imposed in a two-generation 

scenario of right-handed neutrinos with large interfamily mixings so as to be compatible 

with the existing BAU. This would obviously imply that probing Majorana-neutrino physics 

at collider energies may not be phenomenologically interesting. 

The latter observation can indeed be valid in a two-generation-mixing model with 

two right-handed neutrinos. In general, in three-generation models with lepton-flavour 

mixings, a careful inspection of chemical potentials has shown that the stringent mass 

bound of heavy Majorana neutrinos mentioned above can be weakened dramatically and 

is quite model dependent [43,44]. In particular, it is sufficient that in equilibrium state 

one individual lepton number, e.g. LJJ., is conserved in order to generate the BAU via the 

sphaleron interactions, even if non-vanishing operators with !:1Ll, =f fl.LJJ. were in thermal 

equilibrium [43]. The reason is that sphalerons generally conserve the quantum numbers 
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B/3- Lz; [42,43] and thus preserve any BAU generated by an excess, e.g., m L~, from 

being washed out. Similar conclusions have been drawn in Ref. [44]. 

A viable scenario of heavy Majorana neutrinos with masses f"V Te V can easily be 

realized in the SM with nR = 4. If the BA U is to be generated through an excess in 

muonic number density, this asymmetry in L~ can be achieved by considering a neutrino 

mass matrix, Mv, similar to the C P-violating scenario given in [17]. This scenario contains 

one left-handed neutrino, v£1 , to which, for the case at hand, a muonic quantum number 

should be assigned, and two right-handed neutrinos, denoted as v~3 and v~4 • The explicit 

form of Mv is then given by [17] 

Mv = (: : ~ ) 1 

b 0 B 

(3.1) 

where a and b are in general complex numbers, and A and B can be chosen to be real. 

Out-of-equilibrium conditions for generating a sufficiently large asymmetry in L~, which 

can give rise to the established BAU, lead to the stringent lower bounds on the masses of 

the corresponding physical heavy neutrinos N3 ,4 as consistently obtained by [41]. However, 

the remaining e- and r-lepton families can strongly mix each other via two additional 

right-handed neutrinos, e.g., v~1 and v~2 , and form an individual4 X 4 "see-saw" matrix. 

Operators !::l.Le f= 0 and !::l.LT f= 0 are now allowed to be in thermal equilibrium provided 

that !::l.(Le - L~-') = 0 and !::l.(LT - L~) = 0. The latter condition is automatically satisfied 

due to the construction of this specific scenario with fiR = 4. As a consequence, the severe 

lower mass bounds on the physical heavy neutrinos N1 and N 2 can be evaded completely. 

A similar analysis in a SM with nR = 3 is more involved due to the flavour-mixing effects 

in the neutrino-mass matrix and can be given elsewhere. 

3.2 Low-energy constraints 

There exists a great number of low-energy experiments that could set upper bounds 

on possible non-SM couplings [19]. The most significant experimental tests giving stringent 

constraints turn out to be the neutrino counting at the Z peak, the precise measurement 

of the muon width I£ ----+ evev~, charged-current universality effects in the observable r( 71' ----+ 
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ev)jr(7r --+ Jl<ll), non-universality effects in the quantity B(r --+ evv)/B(r --+ J.wv), and 

other nuclear physics effects and experiments. All these constraints, which are derived 

by the low-energy data mentioned above, depend crucially on the gauge structure of the 

model under discussion. For example, assuming the supersymmetric (SUSY) nature of the 

E6 models or SUSY-S0(10) unified theories [45,46], and R-parity invariance, the neutralino 

state could then be the lightest supersymmetric particle (LSP) which is stable. If the mass 

of the LSP is assumed to be in the vicinity of Mz /2, then an additional invisible decay 

channel for the Z boson will open kinematically and neutrino-counting limits imposed on 

the couplings Z llil/j may not be applicable. Furthermore, caveats arising from decays of the 

type Z --+ Nv, which may provide Z boson by an additional invisible decay mode, could 

also be present [26]. 

Thus, identifying the non-SM-mixing angles (si )2 of Ref. [19] as 

llR 

(s£) 2 LIBl;Nil 2
, (3.2) 

j=l 

and in view of the discussion given above, one may tolerate the following upper limits [19]: 

(s v"")2 < 0 070 and (svLP-)2 < 1. 10-9
• L . ' (3.3) 

Another limitation to the parameters of our model comes from the requirement of the 

validity of perturbative unitarity that can be violated in the limit of large heavy-neutrino 

masses. A safe estimate for the latter may be obtained by requiring that the total widths, 

rN;, and masses of neutrino fields Ni satisfy the inequality 

1 
(3.4) < -

2 

The total widths ofthe heavy neutrinos, rN;, can be written down as a sum over all possible 

decay channels [5], i.e. 

rN; = L: r(Ni --+ zjw=t=) + L: (r(Ni --+ viz) + r(Ni --+ vi H)). (3.5) 
~ ~ 

In the limit of mN; ~ Mw, Mz, MH, the above expression can significantly be simplified 

as 

(3.6) 

Expression (3.6) is independent of the nature of the heavy neutrinos Ni, which could be of 

the Majorana or Dirac type. 
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3.3 Constraints from leptonic Z-boson decays 

Aside from low-energy constraints discussed in Section 3.2, many extensions of the 

SM derived by unified theories inay give rise to sizeable lepton-flavour-violating decays of 

the Z boson [47]. In particular, it has been found in [10] that the non-observation of such 

non-SM signals at LEP may impose combined bounds both on heavy neutrino masses mN, 

and mixings (si )2
. The reason is that the amplitude of such a decay increase quadratically 

with the heavy neutrino mass and thus violates the decoupling theorem [27]. In a self­

explanatory way, the amplitude of the decay Z ----+ ll' may generally be parametrized as 

T( Z ----+ ll') = (3.7) 

where aw = g!/47r and the form factor FM', which is induced by the Feynman graphs of 

Fig. 2 at the one-loop electroweak order, is given in Appendix A. The branching ratio of 

this decay mode is obtained by 

B(Z----+ ll' + l'l) (3.8) 

where rz = 91.173 GeV is the experimental value of the total width of the Z boson [49]. 

In particular, interfamily "see-saw" models with more than one right-handed neutrino can 

dramatically relax the severe limits on si rv Jm~.~)mN as usually derived in a one-family 

"see-saw" scenario [48], and thus predict sizeable lepton-flavour-violating decays of the Z 

and H particles that can be probed at high-energy colliders [11,10). A similar enhancement 

of non-universality effects in leptonic Z-boson decays due to the non-decoupling physics 

introduced by heavy Majorana neutrinos has recently been studied in [12]. In fact, it has 

been shown [12) that the decay amplitude relevant for such effects can be up to 10 times 

bigger than the naive value obtained by neglecting seemingly suppressed terms proportional 

to (si )4 • We postpone the numerical discussion of possible constraints arising due to lepton­

flavour-violating decays of the Z boson in Section 5. 

4 Flavour-violating decays of charged leptons 

In Sections 4.1 and 4.2, we will theoretically analyze the possibility of lepton :flavour 
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non-conservation in decays of the form 1 --+ 1'1 and 1 --+ 1'hZ2 , respectively. As mentioned 

in the Introduction, 1, 1', 11 and 12 denote usual charged leptons, i.e. the e, J.t and T leptons. 

4.1 The decay l -+ l'r 

In the framework of the minimal class of models discussed in Section 2, heavy Majo­

rana or Dirac neutrinos can give rise to the decay 1--+ 1'1- The Feynman graphs responsible 

for such a decay are shown in Fig. 1. Applying electromagnetic gauge invariance to the 

decay amplitude 1(p) --+ l'(p')!( q), where the photon, 1, may be off-mass shell, yields [51,52] 

[

nG+nR 

T(1--+ l'1) = -i 16:~a, e~ ul' ~ B1iBz•iF-r(>.i)(q21~- fiq~)(1 -Is) 

~~ l ~ Bz'iBz'iG-y(>.i)iu~~.~qv(mz•(1-ls)+mz(1+1s)) uz, (4.1) 

where >.i = mUMa,, q =p-p' denotes the outgoing momentum of the photon, and the 

form factors F-y and G-y are given in Appendix B. It is now straightforward to calculate the 

branching ratio of l --+ l'1 
3 2 4 

awsw mz m, I all' 12 
25671'2 Mw r, -r ' 

B(l--+ l'1) (4.2) 

where r 1 is the total width of the decaying lepton 1, while G~' in Eq. ( 4.2) represents a 

composite form factor defined in Appendix B. Specifically, for the total width of the T 

lepton, we use the experimental value, r 'T = 2.1581 10-12 GeV [49], whereas the muon 

total width may be obtained by [50] 

G}m! ( m~) [t + a
2
: (2

4
5 _ 7!' 2)), r ~ = 19271'3 

1 - 8 m! 11 

(4.3) 

where ctem = e2 
/ 471'. The muon total width given in Eq. ( 4.3) is in excellent agreement 

with the experimental value reported in [49]. 

The experimental upper bounds arising from the non-observation of decays of the 

type l --+ l'1 are [49] 

at 90% CL. Using the values for the mixing angles (s{) 2 of Eq. (3.3), one easily finds that 

the photonic decays involving muons are extremely suppressed in our minimal scenarios. 
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Furthermore, the theoretical prediction B(r -t e1);S 10-7 shows that photonic decays of a 

T lepton is not the most favourable place to probe heavy neutrino physics. 

4.2 Three-body leptonic decays l --* l'l 1l2 

In a three-generation model the decaying charged lepton l will either be a muon or a 

T lepton. There are seven possible decays of the generic form l -t l'l1 l2 

a. T- -t J.L- J.L- J.L+' 

b. T - -t J.L - J.L - e+ , 

c. T - -t e- J.L - J.L+ , 

d. T - -t e- e- J.L+ 1 

e. T - -t e- J.L - e+ 
1 

f. T- -t e-e-e+, 

g. J.L- -t e- e- e+. (4.5) 

To facilitate our computational task, we divide the decays in Eq. ( 4.5) into three categories 

according to the leptonic flavours in the final state: Category (i) contains all the decays 

where l' =f 12 and It= 12 or 1' = 12 and It =f 12 (i.e. the decays (c) and (e)). Category (ii) 

comprises all the decays where 1' =It = 12 (i.e. the decays (a), (f) and (g)). And lastly, 

all the decays with final leptons having 1' =f 12 , 11 =f 12 belong to the category (iii) (i.e. the 

decays (b) and (d)). 

The transition amplitude of the decay 1(p) -t 1'(p')11(p1 )l2(p2 ) receives contributions 

from 1- and Z-mediated graphs shown in Fig. 1 and 2, respectively, and box diagrams given 

in Fig. 3. These three different amplitudes are conveniently written down as follows: 

. 2 

Tz(1 -t l'ltl2) - - 1~~Ar iLz'ltJ(1 -15)uz Uz1 /tJ(1 - 4s! -IG)Vz2 
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na+nR 
xSzll2 L B,:Bz,j[sijFz(Ai) + cijHz(Ai,Aj) + CijGz(Ai,Aj)],(4.7) 

i,j=l 

• 2 

TBoz(l-+ l'ltl2) - - 1~~a, Uz'/~(1 -ls)uz U~t/~(1 -ls)Vz2 

na+nR 
X L [(BI'iB!d + Bz1iBzt;)BuBi2 j FBoz(>.i, Aj) 

i,j=l 

+Bz'iBI1 iBzjB~j GBoa:( >.i, Aj)], (4.8) 

where q = p1 + p2 . In addition to the photonic form factors F-y and G-y in Eq. (4.6), the 

form factors Fz, Hz, Gz, FBoa:, and GBoa: are given in Appendix B. Note that the term 

proportional to G-y in Eq. ( 4.6) contains a non-local interaction which is singular in the 

limit q2 -+ 0. 

Following the classification mentioned above, the branching ratio for all decays be­

longing t.o the first category is found to be * 

a; mf mz B(z--+ z'-z:;zt, l' f. 12,11 = Z2) = -- -
2457611"3 M~ r, 

x{ I F~;!11 + Fff'- 2s!(Fff'- F;1
') 1

2 + 4s! I Fff'- F;z' 1
2 

+ Ss! Re[(Fff' + F~;!11 )G~' *] - 32s! Re[(Fff'- F;1')G~' *] 
m2 

+ 32s~ I G~' 1
2 [ln -t- 3J}, (4.9) 

mzl 

where F~1', G~', FM', and F~~!h are composite form factors defined explicitly in Appendix 

B. The branching ratios referring to the categories (ii) and (iii) are correspondingly given 

by 

a; mf mz B(z--+ z'-z-;zt, z' = z1 = l2) = - 4 -
2457611"3 Mw fz 

X { 2 I iF~~~ 11 + Fff1 
- 2s!(Fff1 

- F;") 1
2 + 4s~ I F~1 

- F;11 
1
2 

+ 16s! Re[(Fff1 + iF~~~ 11 )G~1 *] - 48s! Re[(F~1 
- F;" )G~1 *] 

m 2 11 + 32s~ I G~1 12 
[ln m; - 4J} (4.10) 

lt 

and 

(4.11) 

*In our calculations we have used a notation similar to the authors in [29]. However, our branching-ratio 

expressions (4.9) and (4.10) are at variance with their results. 

14 



Equations ( 4.9) and ( 4.10) contain a non-local interaction in terms <X G~' and G~1 , which 

is discussed in detail in Appendix C. In Eq. (4.10), one has to take into account statistical 

symmetrization factors for the two identical final leptons (i.e. l' = 11 ), as well as additional 

Feynman graphs resulting from ·the interchange of the lepton l' with 11 . The set of decays 

in (iii) can only be induced by the box graphs shown in Fig. 3. The amplitude of such 

a class of decays (i.e. decays (b) and (d)) is always proportional to ( s[; )2 s£e si' and the 

corresponding branching ratios are hence expected to be vanishingly small even if one uses 

the upper value of si' in Eq. (3.3). For reasons of mere academic interest, we simply note 

that B(T----+ e-e-J.L+),B(T----+ 1-L-J.L-e+):S 10-12 . As a consequence, we find that the 

decays (c) and (f) in Eq. (4.5) deserve the biggest attention and will hence be analyzed 

numerically in the next section. 

5 Numerical evaluation and discussion 

We will now investigate the phenomenological impact of those theories that contain 

heavy Dirac or Majorana neutrinos. In order to pin down numerical predictions, we will, for 

definiteness, assume an extension of the SM by two right-handed neutrinos. The neutrino 

mass spectrum of such a model consists of three light Majorana neutrinos which have been 

identified with the three known neutrinos, ve, v~-', and Vn and two heavy ones denoted by 

N1 and N 2 • As already mentioned in Section 2, the SM inspired by superstring theories 

with an E6 symmetry [2], in which one left-handed and one right-hand~d chiral singlets 

are present, can effectively be recovered by the SM with two right-handed neutrinos when 

going to the degenerate mass limit for the two heavy Majorana neutrinos. It is therefore 

obvious that branching-ratio results for the SM with one left-handed and one right-handed 

:neutral singlets can be red off from the SM with two right-handed neutrinos in the specific 

Apart from the two heavy Majorana neutrino masses which are free parameters of 

the theory, the model contains numerous mixing angles, Bli and Cij, for which the only 

restriction comes from a low-energy analysis as discussed in Sections 3.2 and 3.3. However, 

in our minimal model with two right-handed neutrinos one can derive, with the help of the 
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identities in Eqs. (2.9) and (2.10), the useful relations 

(5.1) 

where p = m'1-v)m'1-v1. The mixings CN;N; can also be obtained by employing Eq. (2.9). In 

this way, one gets 

fiG 1 fiG 

2:)s~)2, CN2Na = 
1 + p1/2 

l:(s~)2, 
i=1 i=1 

ip1/4 fiG 

1 + p1/2 
2)s~)2. (5.2) 
i=1 

Evidently, our minimal scenario depends only on the masses of the heavy Majorana neu­

trinos, mN1 and mN2 (or equivalently on mN1 and p), and the mixing angles (s~)2 , which 

are directly constrained by a global analysis of low-energy data. 

In our illustrative model, with the help of Eq. (5.2), we can easily obtain the maximal 

heavy neutrino mass allowed by perturbative unitarity. Satisfying Eq. (3.4) for both heavy 

neutrinos N1 and N2 , one gets the global relation 

2M2 1 -1/2 [ fiG l-1 m2 < ~ + P "'(sv;)2 
Nt - 1/2 L....i L ' 

aw P i=1 
(5.3) 

with p 2: 1. Condition (5.3) has thoroughly been used in our numerical estimates to impose 

an upper bound on mN1 ,2 • 

For reasons mentioned in Section 4.2, we present the branching ratios for the leptonic 

decays T- ---+ e- e- e+ and T- ---+ c J.L- J.L+ in Fig. 4. To gauge to which extend our minimal 

model can predict measurable rates, we have first assumed the maximally allowed values [19] 

for ( s~,. )2 = 0.07 and ( s~e )2 = 0.015 ( (si' )2 c::: 0) given in Eq. (3.3). From Fig. 4 we find 

the encouraging branching ratios 

B( - - - +) < 2 10-6 
T -+eee "'. (5.4) 

The present experimental upper limits on these decays are given by [49] 

Even if we assume smaller values for the mixing angles, (s~,.) 2 = 0.035 and (s~e)2 = 0.01 

((si') 2 = 0), the lepton-flavour-violating decays of the T lepton can still be significant. 
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From Fig. 5 one has that 

B( - - - +) < 5 10-7 
T ---teee "'. (5.6) 

and the possibility of observing such decays at future LEP experiments appears feasible. 

Note that the branching ratio increase with the heavy neutrino mass to the fourth power 

and hence allows to reach measurable values. To demonstrate this fact, we have just 

neglected contributions of seemingly suppressed terms 0( ( s';: )4
) in the transition elements 

and found a reduction of our numerical values up to "' 10-2 . In the low-mass range of heavy 

neutrinos (i.e. for mN, < 200 Ge V) the difference between the two distinct computations is 

quite small and consistent with results obtained in [29]. In the high-mass regime, however, 

the situation changes drastically (see also Figs. 4 and 5), since in the transition amplitude, 

terms proportional to ( s';: ) 2 increase logarithmically with the heavy neutrino mass mN, 

i.e.ln(m1/M~ ), while terms of O((s';:)4
) show a strong quadratic dependence in the heavy 

neutrino mass, i.e. m1/ M~. A similar observation has also been made in [10,11]. 

Fig. 6 represents genuine Majorana-neutrino quantum effects, since we have computed 

the branching ratios as a function of the ratio mN.)mi¥1 for the selective values of mN1 = 

200 GeV and 500 GeV. Although the most stringent constraints on the heavy Majorana 

neutrino masses result from Eq. (5.3), it is, however, important to notice that for lower 

neutrino masses the maximum of B(r- ---t e-e-e+) and B(r- ---t e-J.L-J.L+) is not given by 

the degenerate case where p = 1. Actually, if mN2 /mN1 ~ 3 the branching ratios show 

up a maximum which can be up to two times bigger than the case where both the heavy 

neutrinos, N 1 and N 2 , are degenerate. We have thus found that for mN1 = 500 GeV and 

mN2 ~ 1.5 TeV, 

B( - - - +) < 2 10-8 
T ---teee "'. (5.7) 

Such effects might be accessible at T factories if one assumes an upgrade in the luminosity 

of the LEP collider by a factor of 10. 

In the following, we will discuss possible constraints that might arise from lepton­

flavour-violating decays of the Z boson. Since we always assume that (si' )2 = 0, we will 

focus our analysis on the decays Z ---t e-r+ + e+r-. Within the perturbatively allowed 

range of heavy neutrino masses as determined by Eq. (5.3), Fig. 7 gives 

B(Z ---t e-r+ + e+r-) :S 4.0 10-6
, for (s[,T)2 = 0.070, (s[,") 2 = 0.015, 
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B(Z--+ e-T+ + e+T-) ~ 1.110-6
, for (s[n 2 = 0.035, (s£e)2 = 0.010, 

B(Z--+ e-T+ + e+T-) ~ 6.0 10-7
, for (s£'")2 = 0.020, (s£e) 2 = 0.010. (5.8) 

Although all these branching ratios could be detected at future LEP data, they cannot 

impose any severe constraints on the T decays into three charged leptons for the present 

analysis. The experimental sensitivity at LEP is currently given by [49] 

(5.9) 

Of course, if a higher precision were available in experiments, one would then have to 

combine both the information arising from Z --+ eT and T --+ eee to obtain a safe numerical 

prediction of possible lepton-flavour-violating processes in the e-T system and so to impose 

reliable limits on the mixing angles ( s£'" )2 and ( s[,e )2
. 

In Fig. 7, we must comment on the fact that the branching ratios for the three 

different mixing-angle sets in the order stated in Eq. (5.7) show a minimum at the positions 

mN = 700, 900 and 1200 GeV, respectively. The reason is that O((s£)2
) and O((s£)4) 

terms of FM' in Eq. (3.7) cancel each other and the whole transition amplitude becomes 

pure absorptive. In the range of very heavy neutrinos, terms proportional to (s£) 4 will 

dominate in the amplitude for the same reasons mentioned above. The effect of such a 

dynamical cancellation of the dispersive part of the amplitude could be shown up as a 

difference between the charge-conjugate decay modes of Z --+ e-T+ and Z --+ e+T-, leading 

to sizeable C P-violating effects [24]. 

In Fig. 8, we display genuine Majorana-neutrino virtual effects- by examining the 

behaviour of the branching ratio as a function of the quantity mN2 /mN1 for rather modest 

values of mN1 • Here, the situation is more involved and depends strongly on the value 

of mN1 we choose. The fact that the amplitude could be dominated by ( s£ )2 terms for 

relatively light heavy Majorana neutrinos (i.e. mN1 < 400 Ge V) or by ( s£ )4 terms for 

larger values of ffiNl plays a crucial role for the shape of the different lines drawn in Fig. 8. 

The common feature is, however, that the case where both the heavy Majorana neutrinos, 

N1 and N2 , have the same mass does not again correspond to the situation yielding the 

biggest branching-ratio value. 

Finally, T leptons can also decay hadronically via the channels: T --+ kq, T ~ l;-~r0 , 

etc. (29]. However, the present experimental sensitivity to these decays seems to be rather 
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weak [49] so as to set constraints on our analysis. For example, B( T --+ e7r0 ) < 1.4 10-4 , at 

CL= 90%. 

6 Conclusions 

GUT or superstring-inspired extensions of the minimal SM, which naturally contain 

left-handed and/or right-handed weak isosinglets, could favourably account for sizeable 

branching ratios of T decays into three charged leptons up to "' 10-6 and may hence be 

observed at LEP. Such decays show a quadric mass dependence of the heavy neutrino mass, 

which strongly violates the decoupling theorem [27]. Therefore, this strong violation of the 

decoupling theorem gives a unique chance for such lepton-flavour-violating decays to be seen 

at LEP experiments or planned collider machines. 

Heavy Majorana neutrinos introduce, via loop effects, a different behaviour in the 

transition amplitude as compared to heavy Dirac neutrinos. We have, for example, demon­

strated in Fig. 6 that an appreciably large mass difference between the two heavy Majorana 

neutrinos N1 and N2 (i.e. mN2 /mN1 ~ 3) gives rise to an enhancement of a factor of two 

to the corresponding branching-ratio value where mN1 = ffiN2 • 

Apart from general constraints that our minimal model should satisfy, we have also 

analyzed the non-diagonal leptonic decays of the Z boson. Restricting our analysis within 

the range allowed by perturbative unitarity, we have found that B(Z--+ e-r++ e+r-);S 

4. 10-6 which could be probed at LEP. It is therefore imperative to look experimentally 

for such signals that are forbidden in the minimal Standard Model but allowed in certain 

unified theories which are expected to describe the physics at the Planck mass scale such 

as the models considered in the present work. 

Acknowledgements. We thank S.A. Abel, G.G. Ross, and M. Shaposhnikov for discus­

sions about cosmological constraints on models with Majorana neutrinos, R.J.N. Phillips 

for useful comments, B.A. Kniehl for technical details ofloop integrals, and M.C. Gonzalez­

Garcia and J.W.F. Valle for remarks and comments. 
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A Loop integrals of leptonic Z-boson decays 

After computing the Feynman graphs shown in Fig. 2, we find that the analytic 

expression of the form factor FM' defined in Eq. (3.7) can be cast into the form [10] 

-rll' -.rz -

where Ai = mUMfv, Az = M'i/Mfv, and the definition of the loop integrals, I, f, Lt, K1 , 

K 2 , k, and L2 , may be found in [12]. The analytic expressions of these loop integrals have 

been calculated explicitly and are listed below 

l(Ai) = 

(A.2) 

(A.3) 
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(A.5) 

(A.6) 

(A.7) 

where P± = (1 ± iTJ)/2 with TJ = J4A.z1 
- 1, e± = (A.z- Ai + A.i ± iy'W)f2A.z with w = 

4A.·A.·- (A.z- A·- A.·) 2 and 
' 3 ' 3 ' 

B1(Ai) - (1- y)A.i + y[1- A.zyx(l- x)], (A.9) 

B2 (Ai, A.i) - 1- y + y[xA.i + (1- x)A.i- A.zyx(1- x)]. (A.lO) 

Note that w 2: 0 for iv%- j>:-;1::; vx;::; A+ j>:;. If v% + J>.~ < vx;, then one has 

to analytically continue the function 

c. 1 ( .jW ) = 2 C.wtan-1 ( Az- (v%- ~)2 ) 
yw tan- ' ; + ',· _ 'z yw . !\. "'· "' "' ( v% + y Aj )2 

- Az 
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__. ~ ln V -Xz V .Xz _ i1r~. 
(

. /1 - (.v>:i-/&)2 + . /1- (.v>:i+v§)a ) 

J1- (v>:i~'fi)2 - J1 - (v?:i~'fi)2 
(A.ll) 

The dilogarithmic function Li2 ( x) (with x being real) should also be continued analytically 

as follows: 

Li2(x±ie) = - ('z:dtlnl1 -tl ± i8(x-1)1rlnx. 
Jo t 

(A.12) 

For A < lA- j>:";l, we have checked that Eq. (A.5) and the l.h.s of Eq. (A.ll) do 

not contain any imaginary part. This implies that FM' is pure dispersive in this specific 

kinematic range. 

As we are interested in heavy neutrinos with masses larger than Mz, the absorptive 

part of FM' will solely originate from the Fig. 2(i) in which only intermediate light neutrinos 

can come kinematically on-mass shell. Neglecting light neutrino masses in the calculation, 

we get 

Abs(FM') 

B Loop functions of flavour-violating decays 

of charged leptons 

(A.13) 

In Section 4 the amplitudes of the flavour-violating decays of l, l-:--+ l'l1l2 and l __. l'"f, 

are expressed in terms of all possible form factors that are derived by an explicit calculation 

of the Feynman graphs shown in Figs. 1-3. The photonic form factors, F,., and G,., in 

Eq. (4.1), vanish in the limit of zero external momenta and lepton masses due to the 

electromagnetic gauge invariance. One has consistently to expand the corresponding loop 

integrals up to the next order of q2 [52) in order to obtain a non-vanishing result. After a 

straightforward computation, we find that 

7x3 - x2 - 12x 
12(1- x)3 

2x3 + 5x2
- x 

4(1- x)3 

x 4 
- 10x3 + 12x2 

6(1- x)4 lnx, 

3x3 

2( 1 - x )4 In x, 
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Fz(x) 
5x 5x2 

( ) ( ) 
ln x, 

21-x 21-x2 
(B.3) 

Gz(x,y) 1 [:z:2(1-y) 1 y2(1 - x) 1 l - nx- ny 
2( X - y) 1 - X 1 - y 

1 (B.4) 

Hz(x,y) VWY [ x2 - 4x 1 y2 - 4y 1 l nx- ny , 
4( X - y) 1 - X 1 - y 

(B.5) 

_1_ [ 1 + xy ( - 1- + x
2 

1n x _ _ 1_ _ y
2 

1n y ) 
x-y ( 4) 1-x (1-x)2 1-y (1-y)2 

(B.6) 

_ 2xy (-1- + x 1n x _ _ 1_ _ y 1n y ) l 
1 -X (1 -X ) 2 1 - y (1 - y )2 1 

_ _ vwy_x_y [(4 + xy) (-1- + x ln x __ 1 __ --:-'y'--ln_.:.y,--) 
x-y 1-x (1-x)2 1-y (1-y)Z 

( 
1 x

2 
ln x 1 y

2 
1n y ) l 

- 2 1- X + (1- X )2 - 1 - y - (1- y )2 . (B.7) 

Although F-y, G-y, Fz, and FBoa: are already known in the literature [52-54], the form factors 

Gz, Hz and GBoa: are newly obtained by Eqs. (B.4), (B.5) and (B. 7), respectively*. 

For completeness, we list below expressions of the form factors computed at some 

special values of the arguments 

F-r(1) 
25 

F-y(O) = 0; (B.8) 
72' 

G-r(l) 
1 

G (0)- O· (B.9) 
8' 

'Y - , 

Fz(1) 
5 

Fz(O) = 0; (B.10) - 4, 

Gz(x, x) 
X x lnx x lnx 1 

- - - -- Gz(O, x) =- 2(1 _ x)' Gz(1, x) = 2' 2 1-x 
, 

Gz(O, 0) 0, Gz(1, 0) = ~' 1 
Gz(1, 1) = 2; (B.ll) 

3 X 3 
Hz(x,x) = 4- 4 - -4(:--1---x....,..) 

x3
- 2x2 + 4x 

( )2 lnx, 
41-x 

• Recently, we became aware of a work [55] that also arrives at similar expressions for the form factors 

Gz and Hz. Reference [55] deals with Majorana-neutrino effects in the electron and muon sector, whereas 

we are mainly interested here in an extensive analysis of flavour-violating r decays into three charged 

leptons. 
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Hz(1, :e) - y'x [-3 - x2- 4x lnx] 
4 1-:e (1-x)2 ' 

Hz(O,x) Hz(O, 0) = 0, Hz(1, 0) = 0, 
1 

(B.12) - 0, Hz(1, 1) = gi 

FBo:~:(x,x) 
x4 

- 16:~:3 + 19:~: 2 - 4 3x3 + 4x2 - 4x 
4(1- x)3 2(1- x)3 lnx, 

FBo:~:(l, X) 
5x3

- 8x2 + 7x- 4 :ea - 4x2 

8(1- x)3 ( ) ln x, 41-:~: 3 

FBo:~:(O, X) 
1 x In x 

--+ 1- X (1- X )2 1 

FBo:~:(O, 0) 
1 3 

(B.13) 1, FBo:~:(1, 0) = 2' FBo:~:(1, 1) = 4; 

GBo:~:(x,x) 
2x4 

- 4x3 + 8x2 
- 6x x4 + x3 + 4x 

(1- X ) 3 (1- x)3 
ln x, 

GBo:~:(1, x) y'x [ x3
- 2x

2 + 7x- 6 x
2

- 4x 1 l _ + nx , 
2(1- x)3 (1- x)3 

GBo:~:(O, X) GBo:~:(O, 0) = 0, GBo:~:(1, 0) = 0, 
3 

(B.14) = 0, GBo:~:(1, 1) = 2· 

Since all the form factors given in Eqs. (B.l)-(B.7) are multiplied by certain combi­

nations of Band C matrices in the decay amplitudes (4.1), (4.6), (4.7) and (4.8), it will 

be helpful to define the following composite form factors: 

pll' 
"( 

a~~' 
"( 

pll' z 

pll'l1l2 
Bo:~: 

L B1:Bz•iF7 (>.i) = L Bz*N,Bt'N;F-rP.·NJ, (B.15) 
N; 

- L B1:Bl'iG7 (> .. i) = L Bi'N,Bz'N,G7 (>w;), (B.16) 
N; 

~ B1:Bl'i [oijFz(Ai) + CijGz(>.i, A3) + CijHz(Ai, A3)] 
SJ 

= L B1/v,Bz'N; [oN,N;(Fz(AN;) + 2Gz(O, AN.)) 
N;N; 
+CiV,N;(Gz(AN,, AN;)- Gz(O, AN.)- Gz(O, AN;)) 

+CN,N;Hz(AN,, AN;)], (B.17) 

- L B1:B1: 3(Bl'iBtd + B~tiBl'i) FBo:~:(Ai, Aj) 
ij 

+ L Bl:B~iBl'jBld GBo:~:(Ai, Aj) 
ij 

- L [(Bz'N,Bl'N;Olll2 + Bz'N,Bz1Ni8l'l2)0N;N; [FBo:~:(O, AN.)- FBo:~:(O, o)] 
N;N; 

24 



+Bz*N;Bi,N;(Bz'N;BhN; + Bz1 N;Bl'Ni) 

X [FBoa:(>.N;,>.Nj)- FBow(O,>.N;)- FBom(O,>.NJ + FBoa:(O,O)] 

+BiN;Bz:N;Bl'N;Bl1 N;GBox(>w;, >.N; )] , (B.18) 

where we have made use of the identities of Eq. (2.9) in the final step of the Eqs. (B.15)-

(B.18) and re-expressed all the composite form factors as a sum over the heavy neutrino 

states. This simplification enables us to study the behaviour of these form factors in the 

heavy neutrino limit. 

For the purpose of illustration, we will discuss the results of this asymptotic limit in a 

model with two heavy Majorana neutrinos. Employing Eqs. (5.1) and (5.2) for the mixing 

matrices Band C, we find that for >.N1 = m~)M'fv » 1 and p = m~2 /m~1 » 1, 

F U' z ---+ 

Fu' z 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

~From Eqs. (B.19)-(B.24), it is obvious that all the composite form factors, F~1', G~', FM', 

and F~~;/2 , violate the decoupling theorem [27]. Such a violation is a common feature for 

all theories based on the spontaneous symmetry breaking mechanism. We emphasize again 

the fact that terms of 0( (si )2
) in Fff' increase logarithmically with the heavy neutrino 

mass, mN1 , while terms proportional to (s';;)4 in Eqs. (B.23) and (B.24) show a strong 

quadratic dependence in mN1 and should not be neglected for mN1 > 200 GeV [29]. 
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C Three-body phase-space integrals 

As we have seen from Eq. (4.6), the ')'-mediated amplitude of the decay 1(p) ---+ 

1'(p')h(p!)l2(p2 ) contains a non-local interaction which leads to an infra-red singularity 

in the limit q2 = (p1 + p2 )2 ---+ 0. This divergency can only be avoided if one assumes 

that the leptons, 11 and 12 , coupled to the virtual photon are not strictly massless, i.e. 

mh = mz2 = c =I 0. Thus, after performing phase-space integration, we neglect all those 

terms that vanish as c ---+ 0. On the other hand, the mass of l' can safely be set to zero. 

Then, the phase-space boundaries can be given by 

(0.1) 

where 81 = (p' + p2)
2

, 82 = (Pl + p 2 )
2

, m is the mass of the decaying lepton 1, and si(-) is 

the upper (lower) limit of the Mandelstam variable s 1 . 

The divergent phase-space integrals relevant for the decay l ---+ l'ltZ2 (with l' #12 ) are 

(0.2) 

(0.3) 

(0.4) 

Note that a different result would have been obtained in Eqs. (0.2)-(0.4) if we had origi­

nally expanded the square root existing in s~ in terms of c and then performed the phase­

space integration. Apparently, this technical problem seems to have caused some confusion 

in the literature, as far as the correct analytic expression of the non-local interaction in 

Eqs. ( 4.9) and ( 4.10) is concerned. In the three-body leptonic decays of 1 where l' = 11 = 12, 

one may have to take into account an additional divergent phase space integral when in­

terfering the two possible, s1-channel and s 2-channel, ')'-exchange amplitudes, i.e. 

P4 = j j ds2ds1-
1
- =- 7!"

2 

-ln2 2 + ~ ln2 m
2 

+ O(c). 
s281 12 2 c2 

(0.5) 

The integral P4 in Eq. (0.5), however, is always multiplied by the small mass c of the final 

leptons and therefore goes to zero as c ---+ 0. As a result, the only type of divergency for 

c ---+ 0 that appears in Eqs. ( 4.9) and ( 4.10) is the logarithmic one, ln( m 2 
/ c- 2

). 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Figure Captions 

Feynman graphs responsible for generating the effective vertex 'Yll' (l =f:. l'). 

Feynman graphs responsible for generating the effective vertex Zll' (l =f:. 1'). 

Feynman diagrams relevant for the leptonic decays l--+ l'l1l2 • 

B(r---+ e-e-e+) (solid line) and B(r---+ e-J-L-J-L+) (dashed line) as a func­

tion of the heavy neutrino mass mN(= mN1 = mN2 ) assuming (s~'") 2 = 0.07, 

(s~e)2 = 0.015 and (si) 2 ~ 0. Numerical results obtained when seem­

ingly suppressed terms of 0( ( s£ )4 ) are neglected, are also presented for 

B(r---+ e-e-e+) (dotted line) and B(r---+ e-J-L-J-L+) (dash-dotted line). 

Fig. 5: B(r---+ e-e-e+) (solid line) and B(r---+ e-J-L-J-L+) (dashed line) as a func­

tion of the heavy neutrino mass mN(= mN1 = mN2 ) using (s~'") 2 = 0.035, 

(s£e)2 = 0.010 and (si)2 ~ 0. We also display numerical results obtained 

by neglecting seemingly suppressed terms of 0( ( s£ )4 ) in the calculation of 

B(r---+ e-e-e+) (dotted line) and B(r---+ e-J-L-J-L+) (dash-dotted line). 

Fig. 6: B(r- --+ e-e-e+) as a function of the ratio of the two heavy Majorana 

neutrinos mN2 /mN1 for mN1 = 200 GeV (solid line) and 500 GeV (dashed 

line). We have assumed (s~'") 2 = 0.07, (s~e) 2 = 0.015 and (si)2 ~ 0. The 

corresponding numerical results for B(r---+ e-J-L-J-L+) are shown for ffiN1 = 

200 GeV (dotted line) and 500 GeV (dash-dotted line). 

Fig. 7: Numerical estimates of B(Z --+ e-r+)+ B(Z --+ e+r-) as a function of the 

heavy neutrino mass mN( = mN1 = mN2 ) for three representative values of 

the mixing parameters (s~'") 2 and (s~e) 2 ((si)2 = 0): (i) (s~'") 2 = 0.070 and 

(s~e) 2 = 0.015 (solid line), (ii) (s~'") 2 = 0.035 and (s~e) 2 = 0.010 (dashed 

line), and (iii) (s~'") 2 = 0.020 and (s~e) 2 = 0.010 (dotted line). 

Fig. 8: Numerical estimates of B(Z --+ e-r+)+ B(Z --+ e+r-) versus the ratio of 

the two heavy Majorana neutrinos mN2 /mN1 for selected values of ffiN1 = 

200 Ge V (solid line), 400 Ge V (dashed line), 600 Ge V (dotted line), and 

1 TeV (dash-dotted line). We have used (s~'") 2 = 0.07 and (s~e) 2 = 0.015. 
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