




respectively. We calculate production rates using the MRSDO' parton distributions[!?] at 

scale Q = m1 for both the signal and the backgrounds, assuming m1 = 150 GeV throughout. 

Since the b-quark distribution is inferred via QCD evolution from descriptions of deep in­

elastic scattering data, there is room for controversy here; however, both the signal and the 

"true" background of Eq.(4) depend on the same input b-distribution. The net signal and 

background cross sections, with these cuts and branching/tagging factors, are illustrated in 

Fig. 1 for pp collisions at vs= 14 TeV. 

Figure 1, which does not include tag-factors, shows that the charged-Higgs signal has an 

appreciable size for some ranges of the parameters mH± and tan ,B. The tan,B dependence 

is given by a factor (mt/tan,B)Z + (mbtan,8) 2, with a minimum at tan,B = Jmt/mb. The 

neighbourhood of this minimum is unpromising for H± detection, but many SUSY- GUT 

models suggest that tan ,8 lies near 1 or alternatively is very large[18]. Tagging reduces the 

major ttg and ttq backgrounds by a factor 1/30 relative to the signal, making them roughly 

comparable for favourable tan,B. To improve the signal/background ratio further and to 

estimate the mass mH±, we propose the following strategy for event reconstructions. 

(a) Reconstruct the missing neutrino momentum, by equating PT(v) = Pr and fixing the 

longitudinal component pL(v) by the invariant mass constraint m(fv) = Mw. The 

latter gives two solutions in general; if they are complex we discard the imaginary 

parts and the solutions coalesce. We note that the sign ± of this W (and hence by 

inference the other W too) is determined by the sign of the lepton charge. 

(b) There are now 6 ways in which two of the b-jets can be paired with the two W's to 

form top candidates (unless some of the b-jets are also lepton-tagged and thus have 

known signs). Together with the two-fold ambiguity from (a), this gives 12 candidate 

reconstructions, in each of which there are two top mass values m11, m12 . We select 

the assignment with best fit to the top mass (that will be known), determined by 

minimizing Jm11 + m12 - 2m1J subject to the requirements Jmn- mtzl <50 GeV and 

Jmn + m 12- 2m1J < 60 GeV. If these requirements cannot be met, we reject the event 

as unreconstructable. 
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(c) In the selected best-fit assignment above, there are 2 ways in which the remaining b-jet 

can be paired with one of the top candidates, so we have 2 candidate values for the 

reconstructed charged-Higgs mass mH± = m(b, tl), m(b, t2). Unless the charge ofthe b­

jet can be identified, there is no way to choose between them and we retain both values; 

thus even the signal events contain an irreducible combinatorial background. However, 

the correct pairings will give a peak in the my± distribution while the incorrect pairings 

and background events will be more broadly distributed. 

This strategy is more ambitious than that of Ref.[15], where ab-jet is combined only with 

a reconstructed t-+ bjj hadronic system. 

Figure 2 compares the signal and background contributions to the my± distributions, 

for my± = 200, 300, 400, 500 Ge V with either tan ,8 = 1 or tan ,8 = 50; there are two 

possible values and hence two counts per event in this graph. For the most favourable of 

the cases illustrated, namely my± = 200 GeV with tan,B =50, the signal integrated over 

the range 180 < my± < 220 GeV is 5 counts over a total background of 4 counts for each 

fb- 1 of luminosity. With 100 fb- 1 of luminosity (one year running at design luminosity 

1034 cm-2 s-1) this signal would be very significant. As my± increases, both the signal and 

background fall at comparable rates; for my± = 500 GeV, the signal in a 60 GeV bin is 

1.0 over a background of 1.6 counts/fb-1 that would still be very significant with 100 fb- 1 

luminosity. If we take tan ,8 = 1 (2) instead, the background remains essentially the same 

while all the signals drop by a factor 2.8(11); hence the regions tan,B 1 and tan,B;:::: 30 are 

very promising while the region 2 tan ,8 15 is problematical. Thus far we have assumed 

m1 = 150 GeV; for m1 = 180 GeV instead, the tan ,8 = 1 signals shown here increase by 

about 50% (except near threshold my± m 1) while the net background falls by about 20%. 

Lastly we remark that the assumed cuts above are rather stringent, reducing the Higgs signal 

by factors of order 10-30 depending on my±, and the tagging effi.ciencies may prove to be 

better than we have assumed here[14]; in these respects our event rates may be viewed as 

conservative. 

6 



We conclude that the outlook is promising. With our assumed tagging efficiencies and 

cuts, significant H --+ tb charged-Higgs signals would be detectable for a limited but inter­

esting range of the parameters mH± and tan ,B. 
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Figure captions 

Fig. 1: Comparison of charged-Higgs signal and principal backgrounds in the pp--+ ttbX chan­

nel at y's = 14 TeV, including branching fractions and acceptance cuts but excluding 

b-tag factors, with m1 = 150 GeV: (a) cross sections versus tan,B for mH± = 300 GeV; 

(b) cross sections versus m H ± for tan .B = 1. 

Fig. 2: Comparison of charged-Higgs signals and summed backgrounds in the distribution 

versus reconstructed charged-Higgs mass mH±, with two counts per event. The cases 

mH± = 200,300,400,500 GeV are shown for (a) tan,B = 1 and (b) tan,B =50. 
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