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2 Satellite observation of SST and detection of global change 

1 Summary 

This report presents the scientific case for the development of a 10-12-year data-set 
of consistent, accurate, global observations of sea surface temperature (SST) from 
the Along-Track Scanning Radiometer (ATSR) and its successors, the ATSR-2 and 
AATSR. The case focuses on the role such data will play in detecting and quantifying 
evidence for anthropogenic climatic change. Four key areas in which data from the 
ATSR series can play a useful role are identified. They are: 

• Providing high spatial and temporal resolution data for the validation of 
climate models. Reducing the uncertainty in model-based climate predictions is 
essential before confident, quantitative estimates can be made of the potential 
social and economic impact of climate change. Many key processes, particularly 
at the atmosphere-ocean interface, are represented only crudely, if at all, in the 
current generation of models. Improving the representation of these processes 
in the models will require consistent, accurate, high-resolution observations of 
the present climate. Since many processes vary from year to year, multi-year 
data-sets are essential. The resolution of the ATSR data allows it to be used in 
the direct validation of the latest generation of eddy-resolving ocean models. 

• Providing independent corroboration of in situ observations of SST. Current 
surface-based observations of SST rely on a sparse network of research vessels 
and drifting and tethered buoys, together with larger numbers of non-specialist 
"ships-of-opportunity". If decisions are to be based on data from these sources, 
errors must be quantified as accurately and objectively as possible, to ensure 
that a warming trend, if detected, is not an artefact of the observing system. 
Quantifying errors in ship-of-opportunity data is particularly difficult, since 
observations are made by non-specialists using a wide variety of techniques. 
Independent satellite observations of ocean skin temperature, together with an 
appropriate model to relate this to the bulk temperature measured by ships, are 
needed urgently to check for spurious drifts due to decade-time-scale changes 
in ship design or the pattern of trading routes, particularly in poorly covered 
regions. The Advanced Very High Resolution Radiometer (AVHRR) instrument 
has been shown to be useful for climate purposes only when "anchored" to in 
situ observations (essentially filling in the gaps between them). Thus it cannot 
be used to provide an independent check in this way. 

• Providing direct evidence of global changes taking place. Without knowing 
precisely what form anthropogenic climate change will take, and at what speed 
it will occur, we cannot state categorically the probability of it being detected 
directly by the ATSR series of instruments. If, however, we make some relatively 
conservative assumptions about natural climate variability on interannual time­
scales, and assume the current "best guess" for the rate of warming, we can say 
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that there is reasonable ( >80%) chance of our being able to reject the hypothesis 
of no secular change at the 97.5% ( ""'2 standard deviations) confidence level 
after 10-12 years of consistent observations of the global mean sea-surface 
temperature. This confidence is improved if we model and remove the effect 
of ENSO. These assumptions also imply that 10-12 years of data provide a 
>80% chance of rejecting the hypothesis that the warming rate is at the lower 
end of the current range of uncertainty indicated by climate models if it is, in 
fact, at the higher end and vice versa. 

These statements assume that we can be confident of negligible drift in the 
observing system. The method of on-board calibration of the ATSR makes 
the instrument much more stable than the AVHRR and less dependent of 
complex, fallible corrections for non-linearity. This reduces the probability 
of instrumental drift, and also increases our confidence that, should such a 
drift occur, we would be able to detect, characterise and quantify it. The 
dual-angle view significantly reduces the impact of variations in atmospheric 
parameters such as water vapour and volcanic aerosol on retrieved SSTs. With 
appropriate surface validation data, this should allow us to discriminate between 
a secular change in SST, a secular change in these atmospheric parameters 
(some of which may themselves prove important indicators of global change) 
and a secular change in instrument characteristics. Identifying the origin of 
a trend in this way is much more complicated and uncertain with AVHRR 
data. Likewise, without direct knowledge of the sources of error in ship-of­
opportunity observations, we cannot quantify our confidence in them in the 
way we can quantify our confidence in ATSR, and so exclusive reliance on ship­
of"opportunity observations carries an additional risk of some unknown source 
of spurious drift going undetected. 

• Allowing the detection of global patterns of change extending into the Southern 
Hemisphere extra-tropical regions. An important component of the spatial 
"fingerprint" of anthropogenic climate change, as predicted by the current 
generation of models, is a north-south asymmetry, with warming being 
suppressed in the high-latitude Southern Ocean. Additional structure in the 
warming pattern near the edges of ice-shelves is also a feature of some models. 
Detecting the "correct" (model-predicted) pattern of change, in addition to 
detecting a warming trend in the global mean temperature, would considerably 
enhance our confidence that any global warming is attributable to the enhanced 
greenhouse effect, and not the consequence of some other effect such as a natural 
climate fluctuation or drift in the observing system (provided, of course, that the 
patterns associated with these fluctuations were different from that associated 
with greenhouse warming). 

Detecting global patterns of change requires consistent coverage with the same 
observing system covering the entire globe. For example, a key component 
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of the predicted pattern is that land areas will warm faster than oceans, but 
the fact that land surface temperatures are measured in a different way to 
SST complicates detection of this component of the pattern. ATSR is the 
only available SST-observing instrument providing global coverage which is 
considered stable enough for climate change detection purposes. Current in situ 
observations alone are considered inadequate even to define seasonal mean SSTs 
on a 2° x 2° spatial resolution south of 35°S. Use of unsupported AVHRR data for 
climate purposes is not justified by the instruments' stability and accuracy. Use 
of blended AVHRR-in situ data is, in turn, problematic, since if a north-south 
assymetry were detected in blended data it might be attributed to the different 
weight given to satellite data in the Northern and Southern Hemisph~re. 
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2 Background: the role of data in climate mod­
elling 

If an anthropogenic change in the global climate is taking place, then it is clearly 
important that it is detected and quantified as soon as possible. At present, 
quantitative predictions of the climate's response to greenhouse gas ( GHG) emissions 
rely entirely on computer models 1

. Models alone, however, cannot provide a 
reliable basis for climate prediction. Because of our inadequate knowledge of key 
physical processes, many important parameters in these models must be determined 
by some form of "tuning" procedure, optimising the fit between model output and 
observational data. The available data are generally inadequate to determine these 
parameters unambiguously, and the possibility remains that all models may simply 
have omitted some unknown process which is having an important effect. 

Validating models against climate observations is therefore essential to improve our 
confidence in model-based predictions of climatic change [15). The usual starting point 
for the validation process is to optimise the model's representation of the present-day 
mean climate. The next step is to investigate the model's ability to simulate climatic 
variations on interannual time-scales, such as the El Ni:iio / Southern Oscillation 
(ENSO) phenomenon. The global coverage and high spatial and temporal resolution 
of data provided by Earth-observing satellite instruments like the ATSR mean they 
have a clear, and undisputed, role to play in both these tasks, discussed in section 4 
below. 

An improved understanding of the present day climate and interannual climate 
variability must, ultimately, improve our ability to forecast climatic change. To put 
it another way, if a climate model is incapable of simulating interannual climate 
variations such as ENSO, we would be justified in treating long-term climate 
predictions based upon it with some scepticism. Many basic physical processes 
governing the climate system apply to all time-scales, so, for example, an improved 
cloud-parameterisation scheme developed for a numerical weather prediction (NWP) 
model can be implemented in a model for climate studies. There are, however, 
practical considerations which have forced climate research to become, to some 
extent, compartmentalised by time-scale in the past. The models used for long­
term climate prediction are seldom identical to those used for studying shorter-term 
phenomena, being generally of a much lower spatial and temporal resolution. Simple 
computational constraints mean that key processes have to be handled differently 
depending on the objective of the model. This situation may be changing. For 
example, the introduction of the Unified Model at the UKMO means that essentially 
the same model will be used both for climate studies and for NWP. Such developments 

1 Some attempts have been made to quantify the climate sensitivity to changes in greenhouse gas 
levels using statistical analyses of paleo-climatic (ice-core) data: for example (23). All such analysis 
(that the author knows of) depend to some extent on computer model predictions, and paleo-climatic 
studies are primarily used for model validation. See (21) for a useful review 
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should make validation of models against short-term climatic processes (for which the 
high-resolution data provided by the ATSR is ideal) even more readily applicable to 
global change research. 

By far the most convincing confirmation of climate-model-based predictions of a 
long-term climatic change would, however, be the detection of such a change taking 
place. The reason is that a climate model might perform excellently at the simulation 
and prediction of ENSO while failing to represent some important effect, such as the 
cooling due to anthropogenic sulphate aerosols [10], which has significant implications 
for longer-term climate predictions. Hence the interest in what is normally thought of 
as "global change detection", viz. compiling long-term climate records and examining 
them for evidence of secular changes which might be attributable to the enhanced 
greenhouse effect . The role of satellite data in this type of climate research is less 
clear-cut than its use for direct model-validation . Because of its conceptual simplicity, 
such research tends to attract the most attention outside the scientific community. It 
is, however, important to keep it in context. 

Ultimately, a long-term climatic data-set is a tool for model validation. Results 
which are reported from "purely observational" statistically-based research still 
involve fitting data to models. No statistical test is possible without a hypothesis, 
which amounts to a model of the system under investigation. Often, such models are 
remarkably simple, such as the assumption that a climatic data record consists of a 
linear trend underlying a simple stochastic ("noise") process. Inevitably, reducing 
data to a form to which statistical tests can be applied involves discarding or 
neglecting much potentially important information: consider the loss of information 
involved in averaging sea-surface temperatures (SSTs) over the whole globe to give 
a single number. Results based on simple statistical models which take no account 
of our prior knowledge of the physical processes governing the climate system will 
always be of limited value in advancing scientific understanding. 

Climate data-sets also have an important role to play in model "initialization": 
providing realistic initial conditions for a model-based experiment. At present, this 
role is only indirectly important for global change research, since most climate change 
experiments tend to begin with a climate model in an approximately steady state 
which is then perturbed by an externally-imposed change in boundary conditions, 
such as increasing C02 ("climate prediction of the second kind" [7]). As models 
become more sophisticated and higher-quality forecasts of changes over the next few 
years are required for the development of adaptation strategies, direct prediction from 
"present day" initial conditions will become a priority (prediction of the first kind). 
High spatial and temporal resolution data such as that provided by the ATSR may 
prove essential if not only the initial state but also the initial trajectory of the climate 
system represented by the model is to be determined. 
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3 Quantifying the impact of satellite data on 
climate research 

The previous section reviewed the fundamental roles of climate data in model 
validation and initialization. In conclusion, the most convincing argument for 
extending the ATSR data-set with the AATSR instrument is that the ATSR 
observational record will then be 

• long enough for the investigation of the low-frequency climatic phenomena most 
relevant to global change research. 

• of a high enough resolution, both in time and space, to allow it to be 
used directly, in conjunction with other data sources, for the validation and 
initialization of models of many important physical processes. 

Consider an example, to illustrate how such a 10- to 12-year data-set may be 
uniquely suited for the investigation of certain classes of important phenomena. 
Climate models generally indicate that the surface layers of the oceans will warm 
much faster than water immediately below them. Suppose, purely as an illustration, 
that this change in the mean vertical temperature profile were to cause a global change 
in oceanic eddy activity, which in turn (because eddies may play an important, but 
difficult to quantify, role in ocean heat transport) were to influence the pattern of 
global warming. None of the present or immediately forseeable generations of climate 
models .would be able to predict such an effect, since their ocean components are 
not eddy-resolving. Nor would global SST observations based on ship or buoy data 
allow the detection of such a change taking place, since they do not distinguish eddy 
activity. Measurements of sea-surface height based on satellite altimetry provide an 
indication of overall eddy activity, but if these are to be translated into estimates of 
eddy heat content, they will, ultimately, need to be supported with eddy-resolving 
models and high-resolution observations of ocean surface temperature. The only 
instrument capable of observing SST on this level of resolution, and stable enough for 
the detection of long-term changes, would be a self-calibrating imaging radiometer 
like the ATSR. 

This is only one of a number of scenarios of difficult-to-detect climatic changes 
which may occur over the coming decades. It is intended simply to illustrate that 
there might be climatic changes taking place which we would only be able to detect 
with an instument like the ATSR, and these changes may have important implications 
for global change. Because such high-resolution SST data have never been available 
until now, and the eddy-resolving ocean models required to interpret it are only just 
being developed, it is impossible to predict what developments we should expect. 

Inevitably, therefore, any attempt to quantify the impact of ATSR data on the 
basis of our present knowledge is likely to underestimate substantially the data's 
true value. We simply do not know enough about the climate system on the 
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short space- and time-scales resolved by the ATSR to predict the quantitative 
impact of ATSR data at the scales where it is, ultimately, likely to prove most 
useful. In response to the Department of the Environment (DoE)'s requirement for a 
quantitative assessment, this report attempts some very crude investigations, which 
involve implicitly discarding much of the information potentially contained in ATSR 
data. In section 5 below, we investigate the potential impact of a 12-year data­
set on the detection of a secular trend in the global monthly mean SST. Given the 
data coverage achieved by the ATSR to date, this means implicitly averaging over 2 
million 0.5° longitude by 0.5° latitude "ASST" observations, which themselves consist 
of an average of up to 2,500 pixels at the full instrument resolution, to give a single 
number, the monthly mean temperature. We sincerely hope that the ATSR data will 
be exploited more intelligently than this, but since the ability of an instrument to 
detect a change in the global mean temperature appears to have become some sort of 
benchmark of its relevance to global change research, we feel obliged to present these 
results. 

In section 7, we make a very preliminary investigation of the impact of spatial 
observational coverage on global change detection, with the eventual objective of 
quantifying the impact of the additional coverage provided by polar-orbiting satellites 
over that provided by ship and buoy observations. Again, since we do not know 
enough about the evolution of spatial patterns of SST on long time-scales to use 
real data, we use output from a climate model as a test data set. The model has 
a spatial resolution of 3. 75° X 2.5°. If the real ocean surface temperature were to 
vary as smoothly as the ocean in such a model, we would not need a high-resolution 
radiometer to observe it. Thus again, this investigation is likely to understate the 
true value of the ATSR data. 

Before proceeding to these "quantitative" analyses, the following section aims to 
illustrate the potential impact of the space- and time-resolution of the ATSR, ATSR-
2 and AATSR instruments for global change research, using examples from ongoing 
scientific investigations involving data from the present instrument. 

4 The use of high-resolution satellite SST data 
for the validation of climate models 

The utility of satellite SST observations for meso-scale oceanography has been 
accepted for some time [27). The objective of this section is to illustrate that the high 
absolute accuracy, spatial and temporal resolution provided by the ATSR data make 
it also directly applicable to research into processes and phenomena which are relevant 
to climate research relating to much longer time-scales. The instrument-validation 
phase of the first ATSR mission is drawing to a close, and overall results indicate 
that the instrument is performing to within its design specifications, delivering, in 
particular, global SST observations with a 0.5° x 0.5° spatial resolution and an 
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accuracy better than 0.5K. This report will not dwell on instrument validation (key 
results are summarised in Mutlow et al. [26]), but it is useful to quote one example, 
reproduced from Barton et al. [5], which serves to illustrate several important points. 

Figure 1 shows a particular transect in the Coral Sea in which data from both the 
ATSR (dotted line) and from the Multi-Channel SST (MCSST) product derived from 
the Advanced Very High Resolution Radiometer (AVHRR) instrument (solid line) 
were available, as were both "skin" and "bulk" temperature observations taken by 
the observing ship. Essentially, the skin temperature is the temperature ofthe top few 
microns·ofthe ocean surface, which is what is observed by a satellite-borne radiometer 
like the ATSR and also, in this case, by a ship-mounted radiometer (asterisks in the 
figure). The bulk temperature is the mean temperature of the top few meters of the 
water column. It is observed from bucket measurements, engine-intake observations, 
drifting and tethered buoys, and, most accurately, a ship-borne thermosalinograph 
(crosses in the figure). 
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Figure 1: Ship and satellite measurements of SST. Solid line: AVHRR data. Dotted line: ATSR 
data. Crosses: skin temperature measurements made by a ship-mounted radiometer. Asterisks: 
bulk temperature measurements made by a thermosalinograph. 

Figure 1 indicates that the skin temperature is consistently 0.2-0.3K cooler than 
the bulk temperature. This is consistent with other observations on this and other 
validation campaigns, and also consistent with an observed 0.2-0.3K bias between 
ATSR and drifting buoy data found by Mutlow et al., with the ATSR (skin) 
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SSTs being cooler than the buoy (bulk) data. This suggests that the correction 
scheme to compensate for the effect of atmospheric IR absorption has been largely 
successful, and the ATSR is providing essentially unbiased observations of ocean 
skin temperature (Barton et al. find no significant bias between the ATSR data and 
observations made by their ship-mounted radiometers). 

The ATSR is the first satellite instrument to attempt to deliver an absolute 
measurement of radiometric skin SST. The AVHRR series provide a set of brightness 
temperatures which are converted into a pseudo-bulk temperature, the MCSST 
product, using a completely empirical regression formula based on buoy observations. 
Thus the same algorithm is used for AVHRR both to correct for the skin-bulk 
temperature difference, and to correct for effect of the atmosphere. Wick et al. [46] 
discuss the deficiencies of this scheme. The AVHRR observations are inherently less 
reliable than ATSR, since they include, with the instrument variance, the variance of 
the buoy observations used to develop the empirical model. The correction algorithms 
can also be subject to regional bias, being dominated by conditions in regions where 
buoy data exists. 

The climate modelling and NWP communities, however, are accustomed to dealing 
with bulk SST, a factor which may have delayed initial utilisation of ATSR data. 
Developing physically-based algorithms to derive bulk from skin SST using local 
wind and sea-state data is currently a priority for the ATSR Science Team at RAL. 
The skin-bulk temperature difference has also been a persistent issue in validation 
campaigns. 

While providing problems for immediate validation and use, the fact that the 
ATSR measures the ocean skin temperature may, ultimately, provide an opportunity 
to investigate an issue which is of crucial importance for global change: atmosphere­
ocean exchange of C0 2 . Very recently, it has been observed that the skin-bulk 
temperature difference may play a crucial role in modulating oceanic uptake of C0 2 

[34], with the small inter-hemispheric assymetry in the average skin-bulk temperature 
difference possibly accounting for a large fraction of the well-known "missing sink" 
of C02 in the northern hemisphere [40]. In the study presented in ref. [34], a simple 
model was used to calculate the skin-bulk temperature difference as a function of 
local wind speed and solar radiation. The authors were obliged to use monthly-mean 
climatological data for their calculations, and emphasised that their confidence in their 
results would be considerably enhanced by higher resolution data. Provided adequate 
surface-based radiometric skin temperature observations were made to validate the 
ATSR data for a wide range of locations and atmospheric conditions (also currently a 
priority activity at RAL ), it might be possible to use ATSR data in conjunction with 
surface-based bulk temperature observations to develop observationally-based global 
maps of the skin-bulk temperature difference. The importance of such research would 
extend well beyond atmosphere-ocean C02 exchange, since the skin-bulk temperature 
difference is a key indicator of the vertical heat flux at the atmosphere-ocean interface. 
Direct observation of this heat flux represents something of a holy grail in studies of 
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atmosphere-ocean interactions. 
Although the short length of the present ATSR data-set precludes the direct 

investigation of interannual time-scale climate phenomena, a number of research 
projects making use of ATSR data are already proposed or in progress which are 
of direct relevance to our understanding of processes important for global change. 
They include: 

• using ATSR data to validate a near-eddy-resolving general circulation model 
(GCM) of the Mediterranean Sea for studies of deep-water formation (with the 
University of Edinburgh). Deep-water formation, the process by which surface 
waters, containing dissolved anthropogenic GHGs and (potentially) anomalous 
heat due to global warming, penetrate to the ocean depths, is a key factor for 
the oceans' role in climate change. It takes place in a relatively small number 
of locations, the most accessible being in the Mediterranean. 

• using ATSR data in conjunction with stratospheric water-vapour observations 
from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite 
to investigate stratosphere-troposphere exchange of water vapour (with the 
University of Reading). Stratospheric water vapour is a very potent greenhouse 
gas, so an improved understanding of its sources and sinks is clearly important 
for climate research. The dual-view configuration of the ATSR instrument may 
improve our ability to observe penetrative convection events in the tropics, 
which play an important role here. 

• using ATSR data to study the optical properties of thin cirrus cloud in the water 
vapour window region of the spectrum. The ATSR channels were specifically 
selected to lie in the region of the infra-red (IR) spectrum where absorption 
by atmospheric water vapour is weakest. For the same reason, this may 
be thought of as one of the few spectral regions through which the Earth's 
surface sheds energy directly to space. Quantifying the impact of clouds on the 
Earth's radiation budget is a priority for global change research. Thin, high 
cirrus clouds pose particular problems, because they are difficult to identify 
with the visible frequencies used by meteorological satellites to quantify cloud 
cover. Prata and Barton (28] have observed that the information contained 
in the different radiance channels of the ATSR, in conjunction with the high­
quality SST retrievals possible with dual-view observation of the surface, may 
be used to study the optical properties of such clouds. For example, on the 
upper right-hand corner of figure 2 we observe an ocean front near Japan with 
an overlying thin cloud (the white band running across the corner). In this 
situation, we have an accurate estimate of SST under the cloud, inferred from 
SSTs immediately adjacent to it, and there is also a strong SST gradient under 
the cloud. Radiation from the surface is partially transmitted through the cloud 
(the front is clearly visible in this image), allowing the way the cloud absorbs 
IR radiation to be studied in detail. 
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Figure 2: ATSR llp.m nadir image of Japan. Snow-covered mountains appear white (radiatively 
cold) in this figure. Note thin cirrus cloud (cold, and thus white, in this figure) overlying a strong 
ocean front in the upper right hand corner. 

• using ATSR data in conjunction with a medium-resolution ocean GCM of the 
Pacific basin for studies of equatorial atmosphere-ocean interactions (with the 
University of Oxford). Such interactions play a crucial role in interannual 
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climate vatiability, particularly ENSO. As was argued above, an improved 
understanding of the behaviour of the climate on these time-scales must improve 
our confidence in longer term climate prediction. 

This last item provides an excellent example of the type of model-data interaction 
which, this report has argued, represents the best use of the ATSR data. The following 
results are unpublished, and are presented here on the understanding that this report 
will not be widely circulated. Figure 3 shows a time-longitude section ( "Hovmoller 
diagram") across the Pacific basin of SST generated by a medium resolution ocean 
GCM forced with daily wind-stress data from the European Centre for Medium 
Range Weather Forecasting (ECMWF) analyses [22]. The horizontal scale represents 
longitude from 120°E to 60°W, and the vertical scale represents time, increasing 
upwards. The period shown is 1992, and the latitude is 2.25° north. The colour 
scale, red-yellow-green-blue, represents warm to cold SSTs respectively. The annual 
seasonal cycle, modulated by the 1992 El Niiio event, is clearly visible in the East 
Pacific (the right hand side of the image). In addition, we observe remarkably regular 
waves propagating from east to west near the centre of the image. 

Similar waves have been observed in equatorial models before, and were commonly 
assumed to be due to shear instabilities on the edge of the equatorial current 
("Legeckis waves"). If this were the case, however, we would expect such waves 
to be initiated at random, with random phases. Figure 4 shows ATSR combined day­
and night-time ASST (0.5° x 0.5° spatial resolution) data, interpolated to the model 
grid, for the same period [3]. The regular pattern of gaps in the data is due to the 
35-day repeat cycle of the ERS-1 satellite through most of this period. Remarkably 
similar wave activity also appears, at the same time and in the same region. 

The fact that these waves appear at precisely the same time and have the same 
propagation velocity in both data and model suggests that they are not simply an 
instability, but are forced by, or at least phase-locked to, some periodic signal in 
the wind-stress. They appeared much weaker, if at all, in 1991, indicating they are 
probably related to the 1992 El Niiio event. The very slow propagation velocity 
of these waves means they would take over a year to traverse the basin. Slowly­
propagating equatorial waves almost certainly play an important role in ENSO, 
although the significance of these particular waves remains to be investigated. 

These waves were originally identified by the application of a novel signal­
processing technique, Singular Spectral Analysis (SSA) [45] to the satellite data, 
but we were initially sceptical of their origins because the period is coincidentally 
very close to that of the orbit repeat cycle. Their appearence in the model, which 
only receives data on the real world via the ECMWF analysed wind-stress, indicates 
that their origin is almost certainly geophysical, and neither an artefact of the model 
numerics nor of the satellite orbit. This is a classic example of the interaction between 
models and data increasing our confidence in both. 

This section has attempted to indicate how the high spatial and temporal 
resolution of ATSR data may be used to improve our understanding of key climatic 
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Figure 3: Time-longitude section of SST at 2.25°N across the Pacific basin (from 120°E on the left 
to 60°W on the right) from a medium-resolution ocean model forced with daily wind-stress analyses. 
Warm SSTs are red, blue cold. Note regular east-to-west propagating waves above the centre of the 
image. 

processes, and thus improve our confidence in the climate models used for global 
change prediction. This, in the view of the author of this report, represents the aspect 
of ATSR data-utilisation which will be of most interest to the scientific community. 
There is, however, a case to be made for using such data to address much simpler 
issues, such as attempting to detect a secular trend in the global mean sea-surface 
temperature. The case rests not so much on the scientific value of such research 
in furthering our understanding of the climate system (simply detecting a trend in 
a data-set without any attempt to fit the data to a physically-based model of the 
underlying system is inevitably a somewhat meaningless activity), but on its value 
to the wider community in confirming the overall thrust of global change research. If 
ATSR data is to be used for this purpose, the question needs to be addressed as to 
whether we can expect to detect any significant trend in a data-set of only 12 years. 
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Figure 4: Time-longitude section of SST at 2.25°N across the Pacific basin (from 120°E on the left 
to 60°W on the right from ATSR combined day-time and night-time ASST data. Colour scale has 
been adjusted to correct for a 2K warm bias in model, but is otherwise identical to previous figure. 
East-to-west propagating waves also appear, coherent with waves in previous figure, indicating these 
are not in.stabilities, but have a common origin in some form of ocean-atmosphere interaction. 

This is considered in the next section. 

5 Prospects for global change detection in a 10-
12-year dataset 

Recently, there has been considerable interest in the detection of a secular trend in 
global temperatures using newly-emerging satellite data-sets such as those derived 
from the Microwave Sounding Units (MSU) on the Tiros-N series [38] and MCSST 
data from the AVHRR instrument [39). In the case of the MSU data, concern has been 
expressed that individual climatic events such as the very strong 1982-3 El Niiio event 
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and the volcanic eruptions of El Chic6n (1982) and Mount Pinatubo (1992) may have 
introduced significant biases into such short records [13]. Even more serious doubts 
have been raised about the use of unsupported AVHRR data for climate research (see 
section 6 below for a discussion of calibration of the AVHRR and ATSR instruments 
and the problem of stability of AVHRR data). 

Issues of data accuracy and stability must be addressed through technical 
evaluation of specific instruments. A more general issue is whether, given the level 
of natural variability in the climate system, we should expect to be able to detect a 
global warming trend of the magnitude predicted by climate models in a decade-long 
data-set. This question is clearly pertinent to the direct application of data from the 
ATSR series to global change detection. Should we find that the chance of detecting 
a significant trend in global temperatures in a 10-12-year data-set was virtually nil, 
then it would be unjustifiable to suggest that the ATSR data would be likely to make 
a direct contribution to the detection of such a trend. 

Even in this situation, the ATSR data-set could still make an important indirect 
contribution, by providing much-needed corroboration of in situ observations, in 
particular to look for systematic variations due to secular changes in sampling in data­
sparse regions. This is an obvious application of the data-set, guaranteed to be of value 
to global change research. The reason the ATSR instruments provide an independent 
data-set in this way is that the effect of the atmosphere is taken into account in 
the analysis of ATSR data using a physically-based model determined prior to the 
instrument's launch and validation. In contrast, the AVHRR-MCSST product uses 
an empirical regression formula between satellite-observed brightness temperatures 
and collocated in situ observations to convert the former into an estimate of SST. 
This formula is revised with each new instrument. Thus long-term trends in AVHRR 
data will be entirely determined by the low-frequency behaviour of the in situ data 
used in this empirical model, and as such cannot be used as an independent data-set 
to check the in situ record. 

For global change detection, however, the benefits of independent validation of 
the in situ record would be indirect: should the ATSR increase our confidence in the 
accuracy of the ship-based record, then we would clearly be more inclined to believe 
evidence of global change derived from the ship data. But should we expect to be 
able to detect a global change in SST based on the ATSR data alone? 

For the purposes of this section, we will focus on the global mean sea-surface 
temperature. Clearly, this is a very crude detection statistic, and (as was remarked 
above), not a parameter which demands (and thus "shows off") the precision and 
resolution of the ATSR data-set. But it is, at least, familiar, and if we can show there 
is a reasonable chance of the ATSR data allowing a significant trend to be detected in 
this very crude statistic, then the use of a more sophisticated statistic must increase 
that chance. The IPCC [19] estimated that we should expect to detect an increase 
in the global mean temperature some-time between 2002 and 2047, depending on the 
true rate of warming, but this was based on the completely arbitrary criterion that we 
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should not accept a warming as significant until a further 0.5K rise was realised above 
present-day temperatures. This section investigates whether the expected detection 
time can be estimated more objectively. 

5.1 The problem of inter-decadal oscillations 

Detecting evidence of a secular climatic change is complicated by the extent and 
complexity of natural climate variability on all time-scales. For example, Ghil and 
Vautard [16] claim to identify an interdecadal oscillation in global temperatures which, 
they claim, accounted for a significant proportion of the anomalous warmth during 
the 1980s. Should such an oscillation exist, then whether or not we detect a warming 
trend in a 10-year data-set would be as much a function of where we are relative 
to the phase of this oscillation as it would be a function of the magnitude of the 
underlying trend itself. This remains an area of considerable controversy. Alien 
and Smith [4] demonstrate that the stationary component of the global annual mean 
temperature record can be adequately characterised as a simple linear stochastic 
("red noise") process, calling into question the observational evidence for interdecadal 
oscillations. Decomposition of an observational record into secular, oscillatory and 
stochastic components is particulary problematic near the end-points of the series 
[1]. Unfortunately, these are generally the areas we are interested in: if we need to 
know the state of an interdecadal oscillation in order to interpret results from a new 
satellite data-set, we are far more likely to be interested in the period 1984-93 than 
the period 1954-63, although statistically, the problem of what the oscillation was 
doing in the 1950s is much better constrained. 

Thus the case for genuine (in the sense of significantly predictable) oscillations 
in global temperatures on interdecadal timescales remains to be proven. Should 
such os<;:illations exist, then no 10-12-year data set, from any instrument, could be 
correctly interpreted without explicitly taking them into account. If this proves to 
be the case, then the first priority for the ATSR data-set will be the understanding 
of natural decadal time-scale climate variability. The hope here would be that, given 
the high resolution of the ATSR data, it may be possible to develop and validate 
physically-based models of any decadal and interdecadal oscillations which would 
allow us to estimate and predict their influence on global temperatures, somewhat as 
Jones [20] advocates we take into account the effect of ENSO. We would then look for 
evidence of secular trends in the residual. On the other hand, the most conservative 
assumption at present seems to be that no genuine interdecadal oscillations exist, 
and the considerable variability in global temperatures on such time-scales represents 
nothing more than auto-correlated ("red") noise. 
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5.2 Using past observations of global mean SST to esti­
mate probable detection times for global change under 
different scenarios 

We can obtain an approximate upper limit on the estimated natural variability of the 
global monthly mean SST by using data from past observational records and assuming 
that the stationary variability observed in the past results from genuine natural 
climate fluctuations which will continue in the future. This is only an approximate 
upper limit, since the observational record could either overestimate or underestimate 
the magnitude of the natural variability. It probably overestimates it, since the record 
will also include noise due to measurement error and variations in sampling coverage. 
Increasing coverage will not invariably reduce the level of stationary variability, since 
it is always possible that newly-covered regions may be strong sources of interannual 
climate variability. 

The question we wish to address in this section is as follows: if the stationary 
component of the natural variability of the global temperature remains as observed 
over the past 90 years, and there really is a linear underlying warming trend, then 
what is the probability of our detecting this trend at a given confidence level in a 12-
year data-set? This question is sufficiently obvious that it must have been addressed 
at some stage, but being unable to locate a reference, we are obliged to present some 
simple calculations here. 

Figure S (dotted line) shows the monthly mean SST compiled by taking a global 
average of so X so monthly anomalies about the 19S1-80 climatology, where-ever data 
was available, weighting by the cosine of latitude to take into account the variation of 
the area of grid-squares. The data is taken from the UKMO MOHSSTS data-set [8], 
kindly provided by M. Jackson and D. A. Parker. We have not corrected for coastal 
grid-squares being partially covered by land, which would introduce a bias towards 
coastal observations, but comparing seasonal anomalies calculated in this way with 
those shown in ref. [8] indicates that the overall effect of this approximation is quite 
small. 

All variability on timescales of >40 years has been extracted using a sliding window 
technique, based on SSA, which allows for the presence of a non-linear trend, adapted 
for unbiased trend-reconstruction near the series end-points as advocated in ref. [2]: 
see appendix A for details. The window width used is 480 months ( 40 years). We 
also extract all variability on the period of the annual cycle. This is already low, since 
these data are expressed as anomalies about the 19S1-80 climatological annual cycle, 
but it cannot be assumed to be zero throughout the series, since the geographical 
pattern of coverage was very different in the last century to the pattern today. Nor 
would we be justified in calculating a single annual cycle for the complete series, since 
its amplitude (and even phase) may vary over time due to the changing .coverage. 
The combined reconstructed trend and annual cycle are shown in figureS (solid line). 
The appearence of a small annual cycle during 19S1-80 is simply a consequence of 
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Figure 5: Dotted line: Monthly values of global area-mean SST for the years 1861-1990, 
averaging anomalies about the 1951-80 climatology from the UKMO MOHSSTS data-set. Solid 
line: reconstructed trend and annual cycle using a 480 month sliding window. 

the sliding window technique. The annual cycle in the years immediately before and 
after 1951-80 will have "contaminated" the reconstruction during that period. 

The low-frequency component of the reconstruction shows some evidence of a 
warming trend, with some 50-100 year time-scale variability superimposed upon it. 
Analysis of this record alone cannot tell us whether this apparent trend represents 
a secular change or if it is simply one component of a multi-century time-scale 
oscillation. Nor can it tell us whether the 50-100 year activity represents oscillations, 
random fluctuations or a deterministic aperiodic process. The record is simply too 
short. Climate models used to simulate the response to an exponential increase in 
greenhouse gas concentrations (approximately what is occuring at present) tend to 
indicate a warming which is close to linear on >40-year time-scales: the radiative 
forcing 'change due to an increase in C02 , in particular, is proportional to the 
logarithm of the perturbation C02 concentration [17]. If all the changes in figure 
5 represent real climate variations, there are ( unsurprisingly) processes taking place 
on >40-year time-scales which are currently not well represented by the models. 
Investigating these processes requires physically-based models, validated against much 
longer data-sets such as climate reconstructions over the past few thousand years from 
tree-ring and ice-core records. 

If these low-frequency phenomena were to compensate for the warming trend over 
the coming decade, as they appear to have compensated for whatever warming trend 
there is in figure 5 during the period 1940-75, then no observing system, however 
sophisticated, would be able to detect a trend in the global mean SST over the next 
few years. This does not necessarily mean that we would be unable to detect an 
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anthropogenic climatic change, because the global mean SST is by no means the only 
detection statistic available. In a sense, we have already detected an anthropogenic 
climatic change, in the form of a steadily rising global mean radiative forcing due 
to long-lived GHGs, inferred from GHG concentrations. The following section will 
discuss one of the alternatives to simply focussing on the global mean temperature. 
The detection of climate change is much more subtle problem than a simple question 
of "is it warming up yet?" [47). The use of more sophisticated detection statistics 
requires precisely the sort of global, high-resolution data provided by the ATSR. 
However, should we fail to detect a rise in the global mean temperature (or should 
we place an upper limit on the rate of warming which is lower than that predicted by 
some climate models), this would at least indicate that those models which predict a 
warming larger than that found in the data are omitting something important. 

Our concern here is not to evaluate the significance of the warming trend in figure 
5 itself, but to assess the implications of the stationary variability in this series, which 
we assume to correspond to the variability on <40-year timescales, for the detection 
of such a trend were one to exist. To do so, we will adopt a simple, relatively 
optimistic scenario for the components of variability in figure 5 concerning which we 
have no quantitative information: we will assume that, from now on, all the >40-year 
variability in global temperatures will conform to a linear trend with a gradient which 
we will specify. The statistics of the <40-year component of variability in figure 5 
are, as far as we can tell, stationary for the period 1901 onwards. The variance is 
somewhat higher before that time, presumably due to poorer coverage (the accuracy 
of individual ship-of-opportunity observations has apparently changed very little: P. 
Jones pers. corn.). 

We therefore construct a set of 11 artificial 90 year (1080 month) timeseries, using 
the following model 

T(t) = {3(t- t0 ) + S(t) (1) 

where S(t) is the stationary component of the observed global monthly mean SST 
with the annual cycle removed (the dotted line minus the solid line in figure 5), t 
is the time, with t 0 arbitrarily set to January 1946. Thus we have replaced all the 
variability shown by the solid line in :figure 5 with a linear warming trend, the {3( t- t0 ) 

term. 
{3 is an externally specified parameter t~king one of the values 0, 0.005, 0.01, 0.015, 

0.02, 0.025, 0.03, 0.035, 0.04, 0.045 and 0.05 in each of the 11 series. These span the 
range of warming rates in degrees per year proposed by the IPCC [24] on the basis 
of model simulations of the climate's response to increasing GHG levels. The IPCC's 
"best estimate" of the warming rate over the coming century is 0.025°0 per year, with 
a confidence range of 0.015 to 0.04°C per year, depending on the climate sensitivity 
(see :figure Ax.2 in ref. [24]) . Whether we should expect this rate of warming to be 
realised during the 1990s depends on how fast the warming "takes off" in response 
to GHG emissions to date. Integrations of coupled models forced with the observed 
pattern of increase of GHGs over the past century are still in progress (Stouffer, 
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pers. comm.). 0.025°0 per year seems a reasonable estimate of the expected warming 
through the 1990s given our current knowledge [24]. 

We now investigate the number of years of data required, on average, to detect 
this trend in each of our 90-year test data-sets. Our interest in this issue arises from 
the fact that the ATSR series of instruments will generate a 12 year SST data-set 
which, it is claimed, will be applicable to the problem of global warming detection. 
Should we find that, even if there is a perfectly genuine linear warming trend in these 
artificial time-series, the number of years required to detect it is considerably greater 
than 12, then it would be possible to question the relevance of the ATSR data-set to 
this problem. As we will see, this is not the case. 

Detecting anything invariably means ruling out a null hypothesis at a prescribed 
confidence level. The present section shall focus on the hypothesis that there is no 
warming trend in the global mean SST: i.e. that the climate sensitivity to increased 
GHGs is effectively zero. Since no realistic climate model suggests this is the 
case, this may appear a rather pointless hypothesis to consider. It is, however, 
the hypothesis almost invariably adopted in "purely observational" studies of global 
change detection, so we are at least following general practice. We shall look at a 
couple of more realistic hypotheses in conclusion. 

The number of years of data required for trend-detection depends on the size of 
the trend in the detection statistic and on the properties of the stationary variability, 
or "noise", represented here by S(t). In addition, the probability of detecting a trend 
in a given number of years of data depends on the level of risk which we are prepared 
to accept of a false-positive result: viz. detecting a spurious trend in data where there 
is none. This is specified by the level of significance demanded in a statistical test. 
Clearly, if we are cautious, demanding a very low probability of a false-positive, then 
we also increase the amount of data required for the detection of a trend of a given 
amplitude, or conversely, increase the risk of our failing to detect a genuine trend 
in a given length of data. We adopt a confidence level of 97.5% throughout, which 
corresponds to approximately two standard deviations for a one-tailed t-test (we are 
only attempting to detect a positive trend: hence the test is one-tailed). 

Ordinary least squares regression is inappropriate for data of this nature, since the 
noise component S( t) is heavily auto-correlated in time (1-month lag autocorrelation 
of 0.84). Instead, we use estimated generalised least squares (EGLS) regression 
[11] with a first-order auto-regressive, or AR(1), noise model. Maximum-likelihood 
estimators give similar results, but were found to be subject to a larger bias when 
tested on artificial data. 

The monthly mean global SST series has not yet been investigated in detail to 
establish the adequacy of an AR( 1) noise model as a representation of its detrended 
component. However, a detailed analysis of the annual mean series [4] indicates that 
the AR(1) model is appropriate in that case, and subsequent analysis along the lines 
pursued in this section using annual-mean data give very similar results to those 
quoted here. 



22 Satellite observation of SST and detection of global change 

We test overlapping short segments of the artificial series T( t) for a positive 
linear trend, using EGLS regression with time as the independent and T(t) as the 
dependent variable. Figure 6 shows how the probability of detecting a significant 
trend (i .e. rejecting the null hypothesis of no trend at the 97.5% significance level) 
in a segment of a give length varies with {3 , the magnitude of the actual trend in 
T(t). Probabilities have been estimated simply by calculating the proportion of trial 
segments to give a positive result. For all trend and segment-length combinations 
lying above the solid line in figure 6 there is a ~50% probability of detecting a 
significant positive trend in a selected short segment of T( t). Likewise, for all trend 
and segment-length combinations lying above the dashed (dotted) lines we have a 
~80% (2:95%) probability of detecting a significant positive trend. 

Detecting trends in global monthly mean SST 
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Figure 6: Number of years required for EGLS regression to indicate a significant positive trend 
in a short segment of T(t) = f3t + S(t) (S(t) is the detrended, deannualised monthly mean SST 
from 1901 to 1990 and t represents time), as a function of the actual magnitude of the trend, (3, 
in 50% of trials (solid line), 80% of trials (dashed line) and 95% of trials (dotted line). Detection 
implies rejecting 1i(f3 :::; 0) at the 97.5% confidence level. 12.5 years of data are required for an 80% 
probability of detection if the trend is only 0.025°C per year (point a), and 18 years are ~;equired for 
an 80% chance if the trend is only O.Ol5°C per year (point b). 

Point a in figure 6 indicates that, with the 12.5-year data-set provided by the 
ATSR series, we have a >80% chance of rejecting (at the 97.5% confidence level) the 
hypothesis of no trend in T(t) if the background trend is 0.025°C per year (the "best 
guess" proposed by the IPCC) . Point b indicates that we require 18 years to have a 
>80% chance of rejecting H({3 = 0) if the background trend is 0.015°C per year (the 
IPCC's "low" estimate). 

These probabilities are not small, and indicate that we do indeed have a relatively 
high chance of detecting a global change in SST in a 12 year data-set if the predictions 
of current climate models are correct and we assume a perfectly stable observing 
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system. On the other hand, detection of a perfectly genuine trend is far from 
guaranteed, particularly if the gradient is at the weaker end of the uncertainty range. 
Much of the popular discussion about the implications of the absence of any significant 
trend in MSU data over the 1980s is therefore somewhat misleading. 

We have been optimistic in our assumptions concerning the trend itself, in 
assuming it to be perfectly linear, and therefore ideally suited to detection using linear 
regression-based algorithms. On the other hand, we have also been very conservative 
in the way we have handled the stationary variability of the series, assuming we 
know nothing more about it than that it more-or-less conforms to an AR(1) noise 
model. .This is not, in fact, the case. For example, we know that a proportion of 
the interannual variability in global temperatures can be accounted for by the ENSO 
phenomenon. An effective indicator for the state of ENSO is the Southern Oscillation 
Index (SOl), defined, in the version shown here following ref. [20], as the normalised 
difference in sea-level pressure between Tahiti and Darwin, with the individual station 
data themselves normalised and centered about their respective 1951-80 climatological 
annual cycles. The dotted line in figure 7 shows the monthly SOl extended back to 
1870: data kindly provided by P. D. Jones of the Climate Research Unit of East 
Anglia, and the solid line shows the annual cycle and >40-year variability extracted 
as above. 
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Figure 7: Monthly mean normalised Southern Oscillation Index 1870-1992, normalised and 
centered about the 1951-80 mean annual cycle (dotted line), and residual annual cycle and trend 
extracted with a 480-month running window (solid line). Data provided by P. D. Jones of the CRU, 
East Anglia. 

The relationship between the SOl and the global temperature is clearly shown by 
figure 8, which shows the product-moment correlation between the two series after 
their respective trends and annual cycles have been removed. No further time-domain 
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filtering has been applied. We see a remarkably clear peak of negative correlation 
with the SOl leading global SST by 4-5 months . The positive peak occurring 
approximately 20 months earlier is a consequence of the cyclic nature of ENSO (its 
dominant period is of the order of 40 months). 

Log -correlation, SOl on g lobal SST, both detrended and deannualised 
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Figure 8: Product moment correlation between the normalised SOl and the global SST series, 
both with trends and residual annual cycles removed, as a function of lag in months by which the 
SOl leads the global SST. A negative SOl, corresponding to a warm El Niiio event, is a precursor 
of anomalously warm global SSTs at a lead of 4-5 months. 

Suspecting that this relationship between ENSO and the global temperature might 
only apply to the latter part of the time-series, since coverage of the Pacific was so 
poor in the last century, we apply a sliding window based regression technique to 
the two series (see appendix), to see if there is a secular trend in the magnitude and 
significance of the coefficient relating them. Results are shown in figure 9. We are 
interested in explaining variability in global SST in terms of the SOl, so we take the 
SOl as the independent variable in the regression and SST as the dependent variable. 
For this reason, it is necessary to noise-filter the SOl by applying a 9-month running 
mean prior to the regression. With only a short data set, it would not be possible 
to filter the SOl in this way, thus the method described here should not be taken 
as a practical method for eliminating ENSO-related variability from SST data-sets, 
although after further work, it might form one component of such an activity. 

If the relationship between ENSO and the global temperatures really did emerge 
only in data from this century, we would expect to see a clear trend in the regression 
coefficient (solid line) , and also expect the 2u limits (dotted lines) to lie on either 
side of the zero line in the last century. Neither expectation is borne out by figure 
9: ENSO is clearly a sufficiently global phenomenon that it appeared in the global 
temperature records of the last century, even though the coverage of the Pacific was 
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Figure 9: Variation of a running window regression coefficient between the global monthly mean 
SST and a 9-month running mean SOl, with the SOl leading the SST series by 4 months. Solid line 
shows regression coefficient, dotted lines show upper and lower 2u limits, all averaged over a 40-year 
window. Coefficients are significant and negative throughout the period considered, and there is no 
evidence of a significant secular trend in the relationship between SST and ENSO. 

so poor. 

We reconstruct the component of the global SST which is "explained", in 
a statistical sense, by the SOl, using this regression model with time-varying 
coefficients, and subtract it from the SST series along with the trend and residual 
annual cycle. We then repeat the analysis applied to the original detrended, 
deannualised SST series to see if removing the variability attributable to the SOl 
has improved our ability to detect secular trends in global temperatures. Figure 10 
shows the result. There is some improvement: we now only need an 11-year data-set 
to have an 80% chance of detecting a positive trend given the lPCC's "best" estimate 
of the rate of warming (point a) . 

This figure is simply intended to illustrate how an understanding of interannual 
climate variability may improve our prospects for global warming detection. The 
improvement in detection time between figures 6 and 10 will definitely contain some 
level of "artificial skill", since the same data-sets used for developing the statistical 
model of the relationship between the SOl and the global SST were also used for 
testing the impact of the model on global change detection. Rather than relying on 
purely statistical methods, as here, it would clearly be preferable to develop a physical 
understanding of the mechanisms relating ENSO to global temperature and model its 
impact explicitly. This is one example of the benefits which accrue to global change 
research from reseach into shorter time-scale climate variability. This analysis is only 
intended to indicate what might be achieved by such an exercise. 
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Figure 10: Number of years required for EGLS regression to indicate a significant positive trend in 
a short segment of T(t) = f3t + S2 (t), where S2 (t) is the detrended, deannualised monthly mean SST 
from 1901 to 1990 with the component explained by a best fit on a 40-year window to a 9-month 
running mean SOl also removed. Dotted, dashed and solid lines as in figure 6 above. Only an 
11-year data-set is required for a >80% chance of detection if the trend is 0.025°C per year (point 
a). 

Thus far, we have focus sed on rejection of the null hypothesis of no. trend in 
global temperatures (zero climate sensitivity). As was remarked above, this is not 
necessarily a particularly interesting hypothesis on which to focus, since no realistic 
model suggests it might be true. A question which is likely to become more pressing 
as time goes on, is not whether climate change is taking place, but what chance 
we have, given a 12-year data-set, of narrowing the range of uncertainty in climate 
model predictions. Precisely the same analysis as before can be applied to the global 
SST data with trend, annual cycle and SOl component removed, this time testing 
the hypothesis that the trend is less than 0.015°C per year, to see at what stage 
we may expect the data to begin to allow us to reject the lowest rates of warming 
currently predicted by climate models. The result simply reproduces figure 10 with 
the lines shifted 0.015°C to the right (I trust the reason, by now, is obvious). We 
need rv 11 years of data to have a 50% ( 80%) chance of rejecting the hypothesis that 
the warming rate is less than or equal to 0.015°C per year if the true warming rate is 
0.025°C (0.04°C) per year. 

We can apply the same methodology to investigating the number of years of data 
required to place an upper limit on the rate of warming. Figure 11 shows that, to 
have a 80% chance of rejecting the hypothesis the warming rate is greater than or 
equal to 0.04°C per year, we would need rvll years of data if the true warming rate 
was O.Ol5°C per year (point a) . 

This section aimed to demonstrate that a data-set of the length likely to be 
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Figure 11: As previous figure, but considering the null hypothesis that the trend in global 
temperatures is greater than 0.04°C per year, the highest end of the range given by the IPCC. 

provided by the ATSR series of instruments has a high chance of making a singificant 
contribution to narrowing the uncertainties regarding the rate and magnitude of 
global change. One final point must be made before we move on. We have assumed 
throughout that there is a negligible drift in the ATSR instruments. This point is 
discussed in the following section. 

6 The impact of instrument drift on global change 
detection 

If an instrument or system of instruments is to be used for the detection of a long 
term change, then the instrument( s) should clearly be as stable as possible over the 
time-frame in question. Even more importantly, we should be able to characterise and 
place objective and quantitative confidence limits on any residual instrument drift, or 
systematic error. It is this latter requirement which marks out the ATSR programme 
as particularly well suited, among the various observation systems available, to 
monitoring any global change in SST. 

6.1 Quantifying drift in data from the ATSR and AVHRR 
instruments 

As a self-calibrating radiometer, the short-term (month-to-month) time-scale drift in 
the ATSR is likely to be minimal. The instrument design and pre-flight calibration 
programme were specifically aimed at minimising the need to rely on post hoc 
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corrections for non-linearities, which play an important role in the interpretation of 
AVHRR data. Such corrections are always based, at least implicitly, on a model of the 
measuring instrument. If they are not to introduce secular changes in measurement 
bias, it is important that the relationship between the true instrument characteristics 
and the characteristics assumed in this model does not change over time. Clearly, the 
more complex the model, the less confidence we have that this will be the case. The 
low level of pre-flight calibration, lower stability, and inherently greater non-linearity 
in the AVHRR instrument are the key reasons why it remains so difficult to use and 
rely on AVHRR data for climate research. 

Reynolds et al. [33] demonstrate that the warming trend found in AVHRR­
MCSST data by Strong [39] was almost certainly attributable to instrument biases 
and to the effects of the El Chic6n volcanic eruption early in the series. Bates and 
Diaz, comparing AVHRR-MCSST data with surface observations through the 1980s, 
conclude that unsupported use of MCSST data for climate research was unjustified 
[6]. 

In the same study, Bates and Diaz also find that the surface observation data from 
ships-of-opportunity is inadequate even to resolve the annual cycle of SST south of 
about 40°8. They therefore advocate using blended MCSST and ship observations to 
obtain the required stability and global coverage. Use of blended data in this way is 
also problematic, because it introduces more possibilities for spurious drift than in 
data from a single instrument. The proportional weight given to the two data-sets may 
vary systematically over time, or the assumptions inherent in the blending procedure 
may break down. For example, the relationship between MCSST data and ship 
data may vary systematically both with location and with time: after the eruption 
of Mount Pinatubo, the stratospheric aerosol released was confined to the northern 
hemisphere for some months. During that time, AVHRR observations were seriously 
affected in the northern hemisphere, while remaining relatively unaffected south of 
the tropics. The standard blending procedure [30] effectively involves assuming that 
the MCSST data gives an accurate representation of SST gradients in areas which are 
not covered by surface observations, allowing these gaps to be filled in with satellite 
data "anchored" to the surface data where it is available. The presence . of strong 
gradients in the concentration of a contaminant such as volcanic aerosol would render 
this assumption unjustified. 

A more fundamental problem with the use of blended data from more than one 
source is that the two data-sets cannot then be used to cross-check each other. For 
example, there is a very good correlation between the blended analysis of Reynolds 
and Marsico [31] with the ship-only record of Bottomley et al. [8], but Folland et al. 
[13] note that this correlation is relatively meaningless, since the two data-sets contain 
much common data. The ATSR series of instruments should significantly improve 
this situation, since the dual-angle view appears to be able to deliver adequately 
accurate SST observations despite the presence of volcanic aerosol, with near-global 
coverage. Smith and Saunders [36] found the dual view to be crucial in compensating 
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for the effects of aerosols released by Mount Pinatubo. In contrast, Reynolds [32] 
documents the substantial degradation of the (single view) AVHRR data through the 
period following the Pinatubo eruption. 

As well as being able to check for any drift due to changes in the instruments' 
characteristics and overcome the effects of relatively short-term events like volcanic 
eruptions, we also need to be able to check for a drift in satellite-measured radiances 
due to a secular change in atmospheric thermal emission and absorption properties. 
Such a change might well be caused, for example, by a moistening of the lower 
troposphere, which is predicted to be one of the consequences of global warming. Such 
a moistening would itself be an important indicator of global change. An ability to 
distinguish between a secular change in SST, a drift due to instrument characteristics, 
and a drift due to secular changes in non-temperature climate variables, is clearly 
essential if an instrument is to be useful for global change research. 

The dual-angle view will also be important here, since it allows the effect of 
the atmosphere to be characterised much more precisely than is possible with 
a simple nadir sounding instrument. The fact that no significant bias is found 
between skin SST as measured by the ATSR and as measured by a ship-mounted 
radiometer indicates that the present algorithm is successful in compensating for 
the effects of atmospheric water vapour, even with a relatively crude model of the 
atmospheric moisture field (see below). No such check can be made on AVHRR 
data, since the algorithms used to convert AVHRR satellite radiances to SST rely 
on an empirical regression between radiances and in situ buoy observations of bulk 
SST. No attempt is made to derive surface skin temperature from AVHRR data 
using physical principles. AVHRR retrievals deal with the effects of the skin­
bulk temperature difference, atmospheric emission and absorption and changes in 
characteristics between instruments within in a single algorithm. This makes it 
impossible to distinguish between an increase in atmospheric absorption and a change 
in instrument characteristics using AVHRR data. 

Work is in progress, however, on actually retrieving information on lower­
tropospheric water vapour from ATSR data. It has already been shown (Barton 
pers. eo mm.) that the required information may, in principle, be contained in the 
ATSR data, although algorithms to extract it have yet to be developed and validated. 
Once this is achieved, it will be possible to perform a simultaneous retrieval of lower 
tropospheric water vapour and SST from the ATSR data. Better still, the water 
vapour field from an operational weather analysis like that of the ECMWF can 
be used as the first guess in the retrieval, making it, in effect, a one-dimensional 
variational data assimilation problem [12]. This cannot but improve the accuracy of 
the retrieved SST. Thus the current validation results on the ATSR should be seen 
as an upper limit on the instrument's accuracy, since they are based on a retrieval 
algorithm which, although physically based, assumes an atmospheric water vapour 
profile which varies only with latitude, not with longitude or time. 

Any drift on longer time-scales can be monitored and, if necessary, corrected 
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for by calibration against in situ measurements of skin SST made by ship-mounted 
radiometers. This is clearly a priority for the development of a reliable SST data-base 
for climate research purposes. A project is already in progress in RAL to develop a 
robust and accurate radiometer to be mounted on the masts of research vessels to 
provide "ground truth" observations of surface radiometric SST for ongoing ATSR 
validation work. A few such radiometers are in existence and have been extensively 
used in the initial validation exercise, but extending surface observations to give a 
wider geographical coverage and range of atmospheric conditions is clearly a priority. 

A key characteristic of the ATSR project is that we are able to quantify and 
characterise any long-term drift in this way. The implications of such a validation 
exercise would be much less clearly defined for the AVHRR instrument. Since 
individual AVHRR instruments have their own retrieval coefficients based on an 
empirical regression on buoy data, then any monitoring for long-term drift in AVHRR 
data would, in effect, be monitoring for drift between the validation data-set and the 
buoy data. Such an exercise would be useful to check these data-sets, but it is not 
clear what it would mean for the AVHRR. 

6.2 Quantifying drift in ship-of-opportunity data 

Monitoring any secular change in systematic error in ship-of-opportunity observations 
is even more complicated, because we are not then dealing with a single measuring 
instrument. Trenberth and eo-workers [42 , 43] have investigated sources of error 
in in situ data from the GOADS dataset, which is based on ship-of-opportunity 
observations. He identifies a number of sources of error, including 

• Errors in individual observations, which includes the errors introduced by the 
different observation systems used. There is a significant bias between engine 
intake temperatures and bucket measurements, which also depends on the size 
of the engine intake and its depth below the surface. The concern for long-term 
climate monitoring is that a secular change in average ship design (which might 
be caused by an actual change, or simply by bringing a higher proportion of 
smaller vessels into the observation network in an attempt to improve coverage) 
could introduce a spurious drift in reported engine intake temperatures, just 
as the change in bucket design created the need for the well-known bucket­
corrections in ref. [8] . 

• Incomplete sampling of the diurnal and seasonal cycles, and incomplete 
sampling of spatial gradients within a 2° x 2° (1 ° x P in ref. [8]) grid square. 
Again, this could introduce spurious trends should trading routes and popular 
sailing times alter systematically during the period of monitoring. 

Trenberth estimates the cumulative effect of these various sources of error to be an 
anticipated 1.2°C standard error in the observation of a monthly mean SST in a 2° x 2° 
grid square, which is confirmed by the results of Harrison and Jones [18]. In contrast, 



Myles R. Alien: November 28, 1993 31 

the observed standard error between ATSR and buoy data in a daily observation on 
a 0.5° X 0.5° grid is less than 0.5°0. An average of 240 such observations (assuming 
the day-time and night-time coverage achieved by ATSR to date) would contribute 
to a monthly mean observation on a 2° x 2° grid. The standard error would not, of 
course, be reduced by a factor of .J240, since many of the sources of noise will be 
autocorrelated, but the final result would clearly be much less than 1.2°0. 

The key point to note here is not so much size of the errors in the ship-of­
opportunity data, but the difficulty of characterising and quantifying these errors 
in order to check for the presence of a long-term systematic drift. Trenberth uses a 
variety of post hoc methods based on an analysis of the statistics of the ship reports. 
This is the best that can be done, given that we have very little control over those 
making the original observations. But it is clearly vastly inferior, in terms of the 
confidence we have in the derived confidence intervals, to a systematic analysis of 
error sources and validation against an independent data set, such as is possible with 
the ATSR. With the ATSR, we can predict the error variance on the basis of the 
instrument's design characteristics and uncertainties in the retrieval algorithm. If 
the observed error against a validation data-set is within the predicted error, we can 
conclude with some confidence that the instrument is working and measuring what we 
think it is measuring. With the ship data, we have to devise, often quite complicated, 
models of error sources, and generally the only way we have of checking whether these 
models are adequate is whether they account for the statistics of the data themselves. 
This can be quite a sophisticated art, and is clearly essential if we are to make use 
of ship data from past decades. But it leaves open the possibility of an unexpected 
source of error going undetected. 

Finally, exclusive reliance on the ship-of-opportunity observations carries a strong 
risk of a significant change going undetected simply because it occurs in the southern 
hemisphere. Trenberth concludes 

With the marked exception of the eastern tropical Pacific . . . there are 
insufficient numbers of in situ SST observations to reliably define SST or 
surface air temperature monthly mean anomalies over most of the ocean 
south of about 10°N .... For seasonal means, SST anomalies cannot be 
reliably defined south of 20°8 in the eastern Pacific, and south of ""35°S 
elsewhere except near New Zealand. 

The implications of this problem are discussed in the following section. 
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7 Impact of spatial and seasonal observational 
coverage on fingerprint detection of climate 
change 

The usual argument put forward in favour of supplementing surface observations with 
satellite data is the vastly improved spatial coverage provided by satellites. We are, 
however, unable to locate an exact comparison in which satellite and ship data have 
been treated in precisely the same way. Figures 12 to 1S, showing work carried out 
with Mike Panter at RAL, attempt to redress this situation. Following the procedure 
of Bottomley et al. [8], updated with the documentation accompanying the UKMO 
ATLASC data-set, we begin by averaging all ATSR ASST observations which lie 
within a 1° x 1° x S-day spatia-temporal location and which satisfy simple quality 
control criteria (lying within the range -2°Cto 37°C; within 6°C of climatology) to 
give a single "super-observation". Bottomley et al. express this as an anomaly about 
the climatology for that location and month in the year: with only two years of 
ATSR data, we cannot do this, but it does not affect our figures on spatial coverage. 
Trenberth remarks that a 1° x 1° x S-day resolution is approximately the minimum 
allowable for SSTs not to be significantly affected by undersampling of spatial and 
temporal gradients. 

Figures 12 and 13 show the number of such "super-observations" made by the 
ATSR instrument in a so X so grid square in the months of January and July 1992 
respectively. Most regions achieve between 100 and 200 super-observations, out of a 
maximum possible of 300 (2S 1° x 1° squares in a so x so square, and 6 pentads in a 
month, with both day-time and night-time data treated as independent observations.). 
Producing the equivalent figure for the ship-of-opportunity data-set would be very 
informative, but the necessary data is not available to the author of this report at 
this time. 

Bottomley et al. calculate a so XS 0 x 1-month average SST anomaly if at least 2 (out 
of a possible 1SO) such "super-observations" are defined in a given month. Figures 14 
and 1S show the proportion of months covered by ship-of-opportunity observations 
for the months of January and July during the period 1980-1989 (from the MOHSSTS 
data-set [8], updated to version S in October 1992. Data provided by D. E. Parker 
and M. Jackson, UKMO). Coverage is clearly erratic in the Southern Hemisphere, 
particularly in the southern winter, even if we accept only 2 SST observations as 
defining a so x so x 1-month average. 

Figures 16 and 17 show the equivalent coverage for the ATSR instrument. 
To compensate for the fact that we have treated day and night-time ASSTs 
independently, we require at least 3 ATSR super-observations in a so X so grid square 
to define a monthly anomaly. Coverage is virtually complete, except in regions where 
we would expect large amounts of sea ice. 

Because we are only two years into the ATSR mission, only sample months can 
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Figure 12: Number of "super-observations" (successfully observed 1° x 1° x 5-day spatia-temporal 
locations) made by the ATSR in a 5° x 5° square as a function of the position of the square for 
January 1992. The maximum possible number is 300. White corresponds to no observations. 

be provided for the satellite coverage, but there is no reason to believe these are 
unrepresentative for an instrument on a polar-orbiting platform. Likewise, there 
is no reason to believe that the ship-of-opportunity coverage is likely to improve 
significantly from that achieved during the 1980s, unless substantial resources are 
devoted to deploying research vessels or tethered buoys in the Southern Ocean, since 
this is largely determined by the pattern of trading routes. 

The key point to note from these figures is that the satellite provides near­
complete coverage of the region 70N-70S at this spatio-temporal resolution, while 
large proportions of the Southern Ocean and South Pacific are not consistently covered 
by the ship-of-opportunity observations. Before assessing the potential impact of this 
incomplete coverage on the detection of global change, we need to clarify exactly what 
it is we are trying to detect. The simplest possible manifestation of a global climatic 
change would be a uniform warming, i.e. (if we are focussing on SST) a change in 
SST which is independent of season and geographical location. The optimal way to 
detect such a change in a noise-contaminated data-set in which the noise amplitude is 
also independent of location and season would be to take a simple annual area-mean. 
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Figure 13: Number of "super-observations" (successfully observed 1° x 1° x 5-day spatio-temporal 
locations) made by the ATSR in a S0 x S0 square as a function of the position of the square for July 
1992. Note the greater extent of ice reducing coverage around Antarctica. 

Taking into account the variation with latitude of the area of a square on a 5° X 5° 
grid, this is given by 

T(t) = "L-x,y,mT(x,y,m,t)w(x,y,m,t)cos(y) 
"L-x,y,m w( x, y, m, t) cos(y) 

(2) 

where T(x,y,m, t) represents SST at longitude x and latitude y in month m of year 
t. w(x,y,m,t) is a weighting factor which is equal to 1 if an SST observation was 
recorded for that particular location, month and year, and 0 otherwise. Ifthe noise 
is correlated in space and/or time, or the noise amplitude is non-uniform, then the 
efficiency ofT as an estimator of the "true" (noise-free) mean of the data may be 
improved by introducing more complex weighting functions on the RHS of equation 
(2). Since the purpose of this study is simply to investigate the impact of spatial 
coverage on detection-times rather than attempt any actual detection, we will not 
attempt a detailed review of such issues. 

There are two problems with T(t) as a detection statistic: first, a global climatic 
change with important socio-economic implications, such as a warming of high 
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Figure 14: Proportion of Januarys during the 1980s in which at least 2 "super-observations" (out 
of a possible ISO) appear in a S0 x S0 grid square in the MOHSSTS ship-of-opportunity data-set 

and mid-latitude regions accompanied by a corresponding cooling of the tropics, 
might have an insignificant impact on T(t). In other words, there might be a 
significant climate change without any accompanying global warming. This is an 
extreme scenario: current models consistently indicate that a change in T( t) will be 
one component of GHG-induced climate change. However, averaging temperatures 
over the globe and simply inspecting T( t) must involve discarding a great deal of 
information, some of which might allow us to detect climate change sooner than we 
would do if we relied solely on T ( t). 

Second, a systematic drift in measuring instrument characteristics might introduce 
a spurious trend into T( t), making it difficult to attribute an observed change in T( t) 
to the enhanced greenhouse effect. Both these problems may be overcome if we use 
prior knowledge, gained from physically-based climate models, of the characteristics 
of the signal which we are looking for, to develop a more specific detection statistic 
than T( t). This approach is known as statistical fingerprinting. 

Statistical fingerprinting, in essence, involves looking for a pattern of change rather 
than simply a change in a single number like the global mean temperature. The 

100.% 
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Figure 15: Proportion of Julys during the 1980s in which at least 2 "super-observations" (out of 
a possible 1SO) appear in a S0 x S0 grid square in the MOHSSTS ship-of-opportunity data-set 

current generation of climate models indicate, for example, that warming will be 
greater over land than over sea, and greater in the northern hemisphere than the 
southern. It seems to be generally accepted in the scientific community [ 4 7, 35] that 
for a change to be attributable to the enhanced greenhouse effect, not only must 
the change in T( t) be of the correct sign and magnitude, but the overall pattern 
of change must also be similar to the pattern predicted by climate models forced 
with increasing GHGs. If a global warming were to be observed which was much 
more pronounced over sea than over land, we might be inclined to suspect either that 
whatever instrument(s) were being used to measure SST were subject to a positive 
drift, or that whatever change was taking place was not that which was predicted by 
the climate models. 

Insisting on the "correct" pattern of change cannot, of course, be an absolute 
stipulation. If the warming were eventually to become so strong that it exceeded all 
credible sources of instrument error, but the pattern of change remained inconsistent 
with that predicted by climate models, we would have to conclude that the models 
must have mis-represented something important, and simply got the pattern wrong. 

100.:P. 
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Figure 16: Coverage achieved by the ATSR in January 1992. Squares in which at least 3 "super­
observations" (out of a possible 300) are shown as red, others blue. 

At these early stages of detection, however, our confidence that we have detected a 
change which is genuinely attributable to the enhanced greenhouse effect would be 
considerably enhanced if the pattern of change were found to correspond reasonably 
closely to that predicted by the models. 

The SST components of two such "fingerprints" from the UKMO Transient 
Response climate change simulation [25] are shown in figures 18 and 19, both 
corresponding to July. The difference between these two figures is that the first shows 
a simple fingerprint derived from the results of the increasing-C0 2 experiment, while 
the second shows the same fingerprint after an attempt has been made to correct for 
the drift in the control run the UKMO study. Both fingerprints have been "centered" 
(their annual mean components sets to zero), to ensure that an increasing projection 
onto such a pattern is not attributable to a change in the mean. The key point to note 
that significant structure appears south of 35°S, which would not be well observed by 
the ships~of-opportunity. 

Our preliminary results may be summarised as follows: if all we are interested 
m 1s the detection of a significant change in T( t), then the additional coverage 
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Figure 17: Coverage achieved by the ATSR in July 1992. Squares in which at least 3 "super­
observations" (out of a possible 300) are shown as red, others blue. 

offered by the satellites appears to make very little impact on the expected detection 
time. Simply detecting a change in T(t), however, is unlikely to satisfy the scientific 
community that GHG-induced climate change has begun: witness the fact that there 
has already been a significant warming trend in T( t) over the past century (although 
the significance of this trend does depend to some extent on the precise statistical 
model assumed), yet few climatologists are yet prepared to acknowledge that this 
trend is definitely attributable to the enhanced greenhouse effect. If, in addition to a 
significant trend in T( t), we also insist on detecting a significant trend in a centered 
fingerprint statistic (i.e. one which does not depend on T(t)), then the additional 
spatial coverage afforded by satellites over ships-of-opportunity may have a much 
larger impact on detection time, although this result does depend on the details of 
the model-predicted pattern of change. 

100.r. 
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Figure 18: July component of centered "fingerprint" -pattern associated with warming trend- in 
the increasing-C02 run ofthe UKMO Transient Response climate change simulation. Note structure 
around the fringe of Antarctica, which would not be observed by ship-of-opportunity data. 
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Figure 19: July component of centered "fingerprint" in the increasing-C02 run of the UKMO 
Transient Response climate change simulation after a correction has been made for the trend in the 
control. Note reversal of strong signal near Antarctica from previous figure, and introduction of a 
strong north-south dipole signature. 
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A Data-adaptive removal of locally-linear trends 
and cyclic components from a short time-series 

This appendix describes a method for the removal of a trend and oscillatory 
components from a time-series. The key "data-adaptive" features of the procedure 
are that we do not assume that the trend is globally linear (i.e. we do not assume 
that it has the same gradient throughout the length of the series); and we allow 
for intermittent or gradual phase- and/or amplitude-modulation of the oscillatory 
component(s). The "paradigmatic" problem which this method is intended to address 
is the removal of trends and annual cycles (either natural or artificial) from geophysical 
data. It should be understood, however, that the method could also be applied to 
the removal of very-low-frequency stationary variability (treating it as a time-varying 
trend), as well as any cyclic component whose period is known a priori. 

We emphasise that we do not attempt to address the problem of testing the 
statistical significance of trends or oscillations. We assume that the user wishes to 
reconstruct any trend or annual cycle, regardless of whether the data indicates it 
to be statistically significant. Tests are available, based on surrogate data [37, 41], 
designed to evaluate the significance of components extracted from a time-series in 
this way [4]. We strongly advocate their use if conclusions are to be drawn directly 
from the statistical properties either of the reconstructed trend and/or cycles or from 
the properties of the residual after the trend/ cycles have been removed. 

The method is derived from Singular Spectrum Analysis (SSA) [9, 14, 44] but 
avoids the problems of systematic bias in the estimated value of the trend near the 
end-points of a stationary series, as identified by ref. [1]. In a straightforward but 
(as far as we know) novel extension of SSA, we also allow for unbiased reconstruction 
of specific components of a time-series containing intermittent missing observations. 
We address the scalar problem here, although the extension to a vector series is 
conceptually straightforward. 

The traditional method of removing a trend from data is a linear fit over the full 
series. This obviously gives rise to problems if the trend is non-linear, which might 
well be the case with historical data-sets if data-sampling and collection methods 
were particularly poor near the beginning of the series, but have since stabilised. 
Likewise, the standard method of removing an annual cycle is to assume a particular 
period to be "characteristic", calculate the mean annual cycle for that period to give 
a "seasonally-varying climatology", and subtract this climatology from the full series. 
This approach runs into problems if either the amplitude or the phase of the annual 
cycle component of the series in fact changes over time. This, again, might result 
from changing sampling patterns or observation procedures. 

The method described here only assumes the trend to be linear, and the phase and 
amplitude of the annual cycle to be constant, over a user-prescribed time-scale: the 
"window width", M. This may be much shorter than the total length of the series. In 
standard SSA, problems of statistical estimation arise if the total time-series length 
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is less than 3-4 times the window width [45]. Here, however, we are exploiting prior 
information in the form of our prior expectation of a locally linear trend (which SSA 
assumes in any case when applied to non-stationary series) and prior knowledge of 
the period of the annual cycle. This allows us to use any window width up to and 
including the full length ofthe time-series. In this latter limit, the method degenerates 
into a traditional, global fit to a straight line and regular sinusoid . 

Consider an N-point time-series, Xt : t=l,N· We suspect this series to be contam­
inated with a trend which is approximately linear on time-scales less than or equal 
to M; and a cyclic component with (known) frequency f which is approximately 
sinusoidal but whose phase and amplitude may vary on time-scales greater than M. 
Generalisation of the method to deal with more than one cyclic component is straight­
forward . 

Imagine sliding a window of width M down the length of the series. For each 
position of the window, we can estimate the local trend and the local amplitude and 
phase of the cyclic component by solving the following multiple regression problem, 

· · · · '"'M 2 • m1mm1s1ng L.Ji=l vi m 
4 

Xi+j-1 = L eikPfj +Vi (A.1) 
k=l 

The index i indicates position within the window, 1 :::; i :::; M, while j indicates the 
position of the window in relation to the original time-series. Specifically, j equals 
the index t of the first element contained in the window. If we stipulate that the 
overlap between the window and the series should always be complete, then there are 
N- M+ 1 allowed window positions, hence2 1:::; j :::; N- M+ 1. The Pik: k=1,4 are 
coefficients to be estimated for this window position. The eik: i =l,M ; k=l,4 make up a set 
of "basis vectors" . They play an equivalent role to the EOFs of standard SSA, except 
that they are not assumed to be mutually orthogonal. For the reconstruction of a 
locally linear trend the required vectors are a zero-gradient-constant-mean straight 
line and a constant-gradient-zero-mean straight line: 

(A.2) 

where the r,. are normalisation factors. We choose r,. such that L:t;!1 ef,. = 1 to 
maintain consistency with standard SSA (since we do not subsequently assume the 
basis to be orthonormal, the r,. can take any computationally convenient value) . For 
a cyclic component of frequency f the required vectors are a pair of sinusoids in 
quadrature: 

eia ra cos [ 211" f ( i - M; 1 
) ] 

ei4 = r4sin [21rj (i- M; 1 
)] 

2 
••• although C-programmers may prefer a different indexing convention. 

(A.3) 
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Equations (A.2) are, of course, simply equations (A.3) in the limit f ---+ 0. 

The vectors formed by the eik are not mutually orthogonal for all choices of M 
(i.e. L:f;!:1 eiieik' f: 0 for all k f: k'), although they converge to orthogonality for large 
M. Thus we identify Pik which minimise l: v'f in equation (A.l) using the standard 
approach of multiple linear regression, calculating a Hessian matrix and inverting it: 

T 
Pki 

M 

L efieik' 
i=l 

4 M 

L L hj;~,ef,ixi+i-1 
k1=1 i=l 

(A.4) 

(A.5) 

If some of the Xi+j-1: i=l,M are missing observations, terms with the corresponding 
values of i are simply omitted from all summations over i, including the calculation of 
the elements of the Hessian, hkk'· If a Jacobi-based method is used for the inversion 
[29], then the fact that some of the vectors made up by the eik may be mutually 
orthogonal can be exploited to minimise the computational cost of the procedure. 

All we have done is "explain", in an ordinary-least-squares (OLS) sense, the 
behaviour of Xi+j- 1: l:Si:SM in terms of a non-zero-mean straight line and a frequency 
f sinusoid with arbitrary amplitude and phase. In doing so, we have assumed 
implicitly that the rest of the behaviour of x can be modelled as an independent, 
gaussian-distributed "white noise" term. This will not, in general, be the case, but 
parameters estimated using OLS regression are, at least, unbiased for a wide variety of 
noise characteristics. OLS estimators are, however, not necessarily the most efficient 
available (in the sense of having the lowest possible variance) unless the white noise 
assumption is satisfied. Given that we will, subsequently, be averaging over large 
numbers of OLS estimators to obtain the reconstructed trend and cyclic component, 
this sub-optimal efficiency does not seem likely to have a significant effect in this 
application, but the extension of this work to accomodate auto-regressive (AR) or 
auto-regressive-moving-average ( ARMA) processes, using generalised linear regression 
[11], would be an interesting subject for further study. 

For this particular position of the window (value of j), we can reconstruct the 
trend and cyclic component of the senes simply by writing down equation (A.l) 
omitting the noise term: 

4 

Yii = L eikPf; (A.6) 
k=1 

The term Yii represents an estimate of the trend plus cyclic component at time 
t = i + j - 1. We have up to M such estimates, corresponding to the positions 
of the window which overlap the point with time-index t. If all the data are of equal 
accuracy and there are no missing observations, all these estimates should be given 
equal weight, and an optimal single estimate of the trend and cyclic component at 
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time t is given by their arithmetic mean: 

where 

1 i2 

Tt = . . + 1 L Yi(t-i+I) 
~2 - ~1 .. 

~=•t 

max(1,t- N +M) 
min(t, M) 

(A.7) 

(A.8) 

If there are missing observations, we should weight the terms Yi(t-i+l) on the RHS of 
(A.7) by the number of observations used for the estimation of each term. 

An obvious drawback of this technique, applied to the problem of removing an 
annual cycle, is that the cyclic component is assumed to be approximately sinusoidal. 
The simplest check on this assumption would simply be to calculate the annual cycle 
in the traditional manner and inspect it for any obvious departure from a sinusoid. 
If such a departure is observed, then it may be worth calculating a semi-annual cycle 
at the same time as the trend and annual cycle, by including two more basis vectors, 
with frequency (6 monthst\ in the regression model. We clearly want to ensure 
that the total number of basis vectors used is always much less than M minus the 
maximum number of missing observations to occur within the window' or we risk 
"over-fitting", i.e. including either noise or signals not related to the trend or annual 
cycle into Tt. The choice of M will always be determined by a compromise between 
the need to maximise the amount of information used for the estimation of the local 
trend or annual cycle, and the need to minimise the length of time over which these 
are assumed to be constant. 

A natural extension of this technique is to allow the eik to be determined by some 
other time-series, Wt, which is supposed to explain a proportion of the variability in 
Xt. If we have a model such as 

4 

Xt = b1(t)wt + L eikPf(t-i+l) + Vt (A.9) 
k=l 

and we assume that the coefficient b1 varies only slowly over time, we simply introduce 
a fifth basis vector which, unlike the first 4, depends on j: ei5 = Wi+j-1 : i=l,M; i=t-i+l· 

This gives a sliding-window based regression algorithm. 
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