
DYNAMIX: an Operating System Teaching Assistant

Edward Grabczewski and Xiaohui Liu
Department of Computer Science

Birkbeck College
University of London

Malet Street
London WC 1E 7HX

Tel. 071 631 6468
Fax: 071 636 4971

E-mail: hui@uk.ac.bbk.dcs

Our experience shows that students have difficulty understanding how operating systems
work. A theoretical study of the main functions of an operating system does not give
students a feel for how these functional components interact to provide a service to the
user. Some way is needed to help teach the theoretical material more effectively. We have
chosen a simple graphical technique to develop DYNAMIX, a tool that displays the
internals of a popular operating system and demonstrates the interaction among its
functional components. In this paper we describe the development of DYNAMIX and show
how it can be used in the classroom.

Topics: Educational Tools, Learning and Cognition, Classroom Experiences
Format: Workshop
Computer: IBM PC XT/AT Compatible

E Grabczewski currently works for ORACLE Corporation (UK). Please direct any correspondence regarding this
paper to X Liu.

1

mailto:hui@uk.ac.bbk.dcs

1. Introduction

In text books, operating systems concepts are typically analysed under headings such
as processes, memory management, file systems and input/output. Our experience in
teaching operating systems over the past few years shows that most students can manage
these isolated concepts well, however they have difficulty in synthesizing them back into a
coherent picture of how an operating system works. This is partly due to the lack of
adequate coverage of the interactions among various parts of an operating system in the
literature. It is also partly due to the lack of a practical tool to model the interaction among
different software components and allow lecturers to present the difficult concept in a
simple way.

We have been looking at ways to address the problem. One approach has been to
develop a software tool which helps visualise how the internal components of a real
operating system cooperate with each other to execute a user command. As a result, we
developed DYNAMIX, a modified version of the MINIX operating system.

MINIX (mini-UNIX) [10, 11] is based on UNIX Version 7. It was developed by
Andrew Tanenbaum to give students an opportunity to study a real operating system pro-
gram instead of just reading about them in books. MINIX has the virtue of being relatively
small, simple, modular and freely available. It runs on a standard IBM PC XT/AT
compatible.

DYNAMIX (dynamic-MINIX) is an extension of the MINIX kernel. It allows the
user to see the internal workings of MINIX as it executes commands. DYNAMIX displays
a dynamic "window" into the MINIX operating system, allowing the user to literally see the
main components and how they interact.

Normally MINIX takes a tiny fraction of a second to execute a command but for
classroom teaching this needs to be slowed down considerably, allowing the lecturer time
to adequately explain what is happening. To this end a number of useful control functions
are provided in DYNAMIX. For example, the lecturer can adjust the speed of groups of
software components to get the best effect in the window. The entire demonstration can
also be paused during lengthy explanations.

DYNAMIX has been used to assist in the teaching of operating systems concepts at
Birkbeck College and initial findings are encouraging. In this paper we will describe the
development of DYNAMIX and discuss how it can be used for classroom teaching. In
section 2 the background and motivation for this work is given. This is followed by a
description of the development of DYNAMIX in section 3. In section 4, we describe our
experience in using DYNAMIX for classroom teaching and feedback from our students. In
section 5, further improvements to DYNAMIX are suggested. Finally, the concluding
section summarises our work.

2. Background

Those who teach operating systems concepts are rather spoilt for choice. Excellent
textbooks have been written by: Bach [1], Comer [2], Deitel [3], Fortier [4], Leffer[6],
Lister [7], Silberschatz [8], Switzer[9], and Tanenbaum [10, 12]. Each of these texts ana-
lyses to some extent the design and implementation of operating systems. Some texts
contain sample program listings of operating systems for students to study. Most of these
programs run on IBM PC XT/AT compatibles, making them easily available to students
both at college and home.

2

There appear to be two principal methods to teach operating system concepts at
academic institutions. One is the "theoretical" approach where the concepts are taught using
textbooks and course notes. This is typical of short courses where no further time is available
for a more in-depth study.

An alternative is to supplement the theoretical material with a practical element, such
as studying the programs for a given operating system. This normally requires the student to
have some pre-requisite knowledge of:

• Computer hardware (eg. 8086 micro-processor, memory)
• Low-level programming language (eg. 8086 assembler)
• High-level programming language (eg. C)
• Use of data-structures in programs (eg. linked-lists)
• Software tools to build or debug the programs (eg. cc, make, sdb)

Typically this "integrated" approach can only be considered in long-term courses where
the student can devote much of their time to such a study; for example, a three year bachelor
degree in computing science. Obviously, from an engineering point of view
a practical approach would give the student a wealth of experience. This could result in a
better understanding of the theory.

One issue which prevents the use of an integrated approach at Birkbeck is that the MSc
conversion course in Computing Science accepts students from a wide variety of
backgrounds. Not all of them meet the above requirements. In a year of full-time (or two
years part-time) education they must develop an appreciation of all these pre-requisites to
understand the process of software development. The full-time students sit the course on
operating systems in parallel with other subjects, whereas the part-time students start
operating systems in the second year.

Another issue is the number of lecturing hours for the course. Students have 20 hours
of lectures - 15 lectures at 80 minutes each. Typically, a course which combines the
theoretical and practical approaches to studying operating systems programs would need
considerably more time than is available for our students; probably between 40 to 60 hours of
lecture time and a number of practical sessions.

As a result, the theoretical approach was taken for operating systems teaching at
Birkbeck, with course materials heavily based upon [2,6,7,9]. In this way students can refer
to these texts for an alternative explanation of any particular area should they become stuck.

Operating systems comprise a number of sub-systems, most of which are complex. One
of the problems we find when teaching operating systems to students is the problem of
synthesizing the concepts about individual sub-systems back into a coherent picture of how
an operating system works, e.g. how various components of an operating system interact to
serve a user's request.

Unfortunately, this study of operating systems behaviour, crucial to the students'
understanding of whole subject, is not really one of the issues that most text books treat in
any depth. They tend to offer a static analysis of the system, breaking it down into smaller
and smaller components but then forgetting to put them back together again to show the
student how they interact, e.g, when executing a user command.

This deficiency has led us to develop a graphical tool to supplement the theoretical
approach. We believe that one of the advantages in using a graphical tool is the efficiency
with which the main concepts are transmitted. The display provides an animated picture of
the major components of the operating system. With only a little theory and computing
experience the student can appreciate how the basic components co-operate to perform the
overall system operations. We call this tool DYNAMIX and introduce it next.

3

3. The Development of DYNAMIX

DYNAMIX started life as an MSc dissertation by Grabczewski, supervised by Liu
[4]. It was developed largely for the purpose of teaching. We felt it would prove useful to
students of operating systems and was unlike any other tool available at the time.

The approach we took was to base DYNAMIX on the MINIX operating system. By
modifying and extending the kernel programs, written in C, we found it possible to inform
the user about the internal state and behaviour of the operating system as it runs.

The MINIX implementation is influenced by more recent thinking about operating
systems design. This design is based upon the old concept of a layered software architec-
ture for operating systems and the newer concept of using client-server processes within
the kernel itself. This implies a set of kernel processes which communicate with one
another by passing messages.

DYNAMIX works by intercepting any messages and interrupts. It displays these in a
graphical way on a character-based terminal.

The graphical display for DYNAMIX shows four layers. The top three are MINIX
processes and the bottom layer is the kernel. Messages are passed among the top three
layers and the mechanism for passing messages is implemented in the bottom kernel layer
[Figure 1].

FIGURE 1: THE DYNAMIX WINDOW

3.1. MINIX

The architecture of MINIX is based upon a traditional onion skin model, building up
layers of functionality. The bottom layer is the most fundamental and the higher layers give
more and more value to the system by a hierarchy of virtual machines. Eventually

4

we reach the top layers, which are closest to what we think of when we use a computer. It
comprises application programs, command interpreters and tools such as compilers.

The layered architecture is as follows:

l. User Processes
2. Server Processes
3. Input/Output (I/O) Processes
4. Kernel

Contained within each layer are the MINIX processes shown in Figure 1. The top
layer shows those MINIX user processes, created by the user either directly or indirectly.
The only exception to this is the "init" process, which is created by the MINIX operating
system when it starts or "boots".

Server processes include the Memory Manager and File system. These processes
handle all system calls made by user processes.

The I/O processes are responsible for driving various I/O devices such as disks and
terminals. Tanenbaum also calls these processes "tasks".

The kernel is a single controlling process. It comprises the Process Manager (PM)
and the Inter-Process Communication Manager (IPCM) functions.

User processes and server processes are preemptable by the MINIX scheduler

whereas the I/O processes are not. This means that once an I/O process is allocated to the
processor it uses it for as long as necessary without interruption from other processes,
including other I/O processes.

Logically, the highest level of control in the operating system rests with the kernel. It
is possible to think of it as sitting above all the MINIX processes at some meta-level, from
which it takes charge of the underlying hardware and software. Unfortunately the layered
architecture model for MINIX inverts this, implying that the processes in the top layers
have ultimate control. Since this can confuse students we normally show them a diagram to
help visualise the controlling forces within the operating system [Figure 2].

FIGURE 2: MINIX PROCESSES

5

Interrupts are displayed entering the system at the bottom left-hand corner of the
screen. They are handled by the Inter-Process Communication Manager (IPCM) module and
converted into messages for one of the MINIX processes.

The Process Manager (PM) is simply a name given to the scheduling functions which
model the current state of all MINIX processes on the system.

MINIX processes interact in only one way, by passing messages to one another. A
message usually contains control data and raw data in some specific format.

Any MINIX process can both send and receive messages using a special protocol
incorporating the rendezvous mechanism. Hence, if a message is sent to a MINIX process
that is already processing another one, the sender waits for the receiver to finish processing
the previous message. Conversely if a receiver finds there is no message from a sender, it
waits until one arrives. At some point in time the sender and the receiver meet to pass-on the
message, hence the term "rendezvous".

An important concept to grasp is the way messages are transformed into interrupts and
I/O data and vice versa, depending on whether a process is sending or receiving messages.
This is done by I/O processes when they wish to communicate with devices in the external
world. Thus one of the main functions of DYNAMIX is its ability to intercept messages and
interrupts and to display them in a meaningful way on the screen.

3.2. Extending MINIX to give DYNAMIX

The standard MINIX operating system routines for message passing, terminal output
and input need to be modified to create the DYNAMIX display. Moreover, a number of
control functions need to be provided for the use of DYNAMIX in the classroom. Below we
outline these developments and the details can be found in [4].

3.2.1. Displaying Messages and Interrupts

Let us suppose that the file system (FS) server process sends a message to the memory
(MEMORY) I/O process. DYNAMIX displays this message in a concise notation on the
screen, as follows:

Example Field COLOUR

FS Sender Name CYAN
1 Sender Process Number GREEN

MEMORY Destination Name CYAN
DISK_WRITE Function requested CYAN

RAM_DEV Function parameter CYAN

Table 1: Sending Message

Table 1 shows that FS is the sender of the message and MEMORY is the receiver or

destination of the message. Each process has a process number in MINIX, as well as (but
distinct from) a process identifier. The FS process wishes to write to a disk in memory, which
is shown by the requested function, DISK WRITE. An additional parameter is passed to the
MEMORY process telling it which particular memory device is to be written to; in this case
the RAM disk. The colour of the message on the screen, cyan, shows

6

the message is being sent, while green is used to indicate a process number.

To display this sent message we have embedded a DYNAMIX C function,
dmp_smess(), inside the standard MINIX message sending function mini send(). Likewise,
whenever a process wishes to receive a message it displays this in the following way:

Example Field COLOUR
CLOCK receiver Name RED

-3 Receiver Process Number GREEN

Table 2: Receiving Message

Table 2 shows the CLOCK process is ready to accept messages from any other pro-

cess on the system. The process number is shown again in green and the colour of the
message on the screen is red to indicate that the process is ready to receive a message.

The received message is displayed by embedding another DYNAMIX function,
dmp_rmess(), inside the MINIX message receiving function mini_rec().

Finally, any incoming interrupts or traps are displayed by embedding the DYNAMIX
function dmp_interrupt() inside the MINIX C functions interrupt() and sys call(). The
interrupts and traps are shown in the bottom left-hand corner of the display.

3.2.2. Displaying Graphics

Under normal circumstances, if a user process wishes to print some text to the ter-
minal screen it will call a C runtime library function such as printf(). This would involve
the user process passing a message to the file system (FS) server process, which in turn
would pass a message to the terminal (TTY) I/O process requesting that some characters
are output to the screen.

As we can see, a number of messages are passed among operating system processes.
These would all be visible on the DYNAMIX screen, a fact which prevents us from using
any runtime library routines to print characters when implementing DYNAMIX. Instead we
use the MINIX printk() function, which outputs directly to the terminal video RAM, thus
allowing output to be displayed on the screen without affecting the normal operation of
MINIX.

The terminal in MINIX supports a subset of the ANSI X3.64 escape sequences which

allows setting colour attributes and positioning text on the screen. Special characters can be
embedded in strings to control the screen layout.

The following example defines a C pre-processor macro with arguments. This
positions the screen cursor at a particular row and column:

#define POS(r,c) " 33[%d;%dH",r,c

printk(POS(20,12));

This is the basic technique used to create the DYNAMIX screen. Other macros are
defined where necessary. None of them are essential, they simply aid program readability.

7

The next example is taken directly from the DYNAMIX source code and shows the
function responsible for displaying the list of blocked processes owned by the Process
Manager:

#define LABEL(lab) "6s",lab
#define VALUE(val) "6s",val
#define CLEOLN " 33[OK"
#define COMMAND_HOME " 33[24;1H"

PRIVATE dmp_blkd_list()
{

/* display blocked process list */
printk(POS(22,21));
printk(LABEL("BLKD_L:"));
printk(CLEOLN);
print_blocked_queue();
printk(COMMAND HOME);

When dmp_blkd_list() is called it positions the screen cursor at row 22, column 21
and prints the string "BLKD L:". After clearing the rest of the current line it calls a func-
tion to display the blocked process numbers. Finally it positions the cursor at the bottom
left hand corner of the screen and waits.

3.2.3. Controlling Graphics

Special function keys are defined in DYNAMIX to help control the display. The
following functions have proved to be useful for classroom teaching:

• User process message-passing speeds [F6]/[Ctr1+F6]
• Server/task process message-passing speeds [F7]/[Ctr1+F7]
• Interrupt/trap speeds [F8]
• Disable/enable clock interrupts [F4]
• Stop/start the demonstration [F10]/[F9]
• Redraw DYNAMIX screen [Ctrl+F5]
• Enter/exit DYNAMIX screen [FS]

4. The Use of DYNAMIX in the Classroom

In this section, we discuss how DYNAMIX can be used to help lecturers explain the
dynamics of operating systems behaviour. In particular, we address the questions of when
it should be used, what can be demonstrated, and how the demonstration can be given.
We shall also consider the feedback from students and discuss the pros and cons of
DYNAMIX.

DYNAMIX can be used at various points in the course to supplement the teaching
material, especially at the beginning and end of a course. At the start of the course
DYNAMIX can be used to help students get a feel for the complexity of a real operating
system and how its various components interact when serving a user's request. This initial
impression of the dynamic system behaviour can then be used as a point of reference to
clarify ideas and help unify concepts throughout the course.

8

To achieve this objective, there are a number of things we need to do during the pre-
course demonstration:

• To introduce the basic components of an operating system
• To show how the components co-operate to do some useful work
• To demonstrate the concept of an interrupt
• To explain the concept of a user process and how they are scheduled

We also envisage that another demonstration of DYNAMIX at the end of the course

could help students consolidate many of the topics, add a behavioural dimension to the
theory and obtain a coherent picture of how various parts of operating systems work.

To achieve this in the post-course demonstration we need to:
• Understand the main functions performed by the components
• Explain how the components co-operate (by messages)
• Explain what the messages are and what they mean
• Explain the clock interrupt cycle and how time is kept
• Show how interrupts are converted into messages for a component
• Demonstrate preemptive scheduling of processes and quantum expiry

The post-course demonstration is fairly comprehensive, showing how a command is

typed, read, forked, executed, scheduled and run. Much of the demonstration consists of an
explanation of selected messages passed among components of the operating system. This
gives the student some idea about how the system works at the interface level. A more
detailed examination of the system would reveal how each message is processed by a
component and would lead naturally to a study of the operating system programs them-
selves. At the time of writing we are about to give a post-course demonstration and should
be able to report its impact on our students to the conference.

Below, we outline the main issues involved in the pre-course demonstration given in

the second lecture. In the first lecture, students were given some appreciation of what
operating systems are and why we need them.

The lecture was given in the college lecture theatre where a colour video (Barco)
system is used to project the images from the PC onto a big screen. A DYNAMIX
demonstration can be run on an IBM PC XT/AT compatible computer with the following
minimum configuration:

• Colour EGA/VGA monitor
• 640 KB of RAM
• Chip compatible hardware

Having explained the components of MINIX, the graphics of DYNAMIX, and other
important concepts such as interrupts and processes, the pre-course demonstration was
primarily concerned with studying how a user command is executed and of how various
components of MINIX interact with each other during execution. This demonstration was
brief and students were asked to take particular note of the operating system components,
the scheduling queues and how interrupts bypass the normal processing mechanism.

Following our pre-course demonstration we questioned students about their initial
impression of DYNAMIX. After explaining what we hoped to achieve by using it, we
asked them if they felt it met the objectives.

9

We had 39 responses; 12 from the part-time and 27 from the full-time students and
classified the responses into the following five categories.

GROUP RESPONSE

1. Entirely positive
2. Positive but with remarks on demonstration speed
3. Positive and with some helpful suggestions
4. Neutral and with some helpful suggestions
5. Entirely negative

Table 3. Group Classification

The results of the pre-course demonstration are summarised in Table 4.

GROUPS PART-TIME FULL-TIME TOTAL %
1 0 4 4 10
2 1 3 4 10
3 6 14 20 51
4 4 4 8 21

 5 1 2 3 8
All 12 27 39 100

Table 4. Feedback from the Students

We consider the first three groups to be a positive response and so conclude that

71% of the students found our DYNAMIX demonstration useful at the start of the course.
Of the remainder, 21% were neutral but made some suggestions to improve the demons-
tration and 8% reacted negatively.

On the whole, the results are encouraging. Apart from creating a lasting impression
on students of how a real operating system works, DYNAMIX can also be used to support
some form of interactive learning sessions. For example, at any stage the student is
encouraged to experiment with and ask questions about DYNAMIX, to explain what has
just happened and to predict what might happen next. For example, the student might be
asked:

• What components will become active when we mount a floppy disk?
• Let us see what happens when I print a file
• Will the system hang if I try to kill the init process?

Our students were also particularly helpful with comments about the pre-course

demonstration and we have noted them for future improvements. Several points have
arisen from this demonstration.

Firstly, the pace of the demonstration should be sufficiently slow to allow students
time to adjust to the DYNAMIX screen. More time is needed to familiarise students with
the screen layout just prior to the demonstration. This could be incorporated into the
preparatory talk just before the demonstration.

10

Secondly, the demonstration equipment needs to be chosen carefully to give a satis-
factory performance. One of the major problems is the choice of IBM PC. There are many
hardware configurations which will not work with MINIX. For example, MINIX 1.3 will
not run on the latest IBM PS/2 hardware. Even on compatible hardware there can be
problems with the demonstration speed.

Thirdly, the clock interrupt cycle needs to be carefully tuned to provide a fluid flow
of messages in the DYNAMIX display. This is something of an art at the moment.

Finally, there is a need to filter and abstract some of the current output of DYNAMIX
to suit the particular demonstration so that lecturers don't have to show irrelevant details.
For example, some of the messages sent in MINIX do not need to be shown for many
demonstrations.

These concerns have led to a number of possible improvements in DYNAMIX which
are discussed below.

5. Potential Improvements
There are a number of ways DYNAMIX can be developed further.
Hardware independence: By implementing the DYNAMIX concept in MINIX we

have constrained ourselves to a particular type of hardware. It would be preferable to
implement DYNAMIX on a more hardware independent platform. One approach is to
embed DYNAMIX into an operating system which itself runs on a virtual machine. Switzer
[8] has used this approach to develop an operating system kernel that runs on a standard
UNIX System V Release 3.2 operating system. This allows a level of portability not
available on the current system.

Extra Functionality: The virtual machine upon which MINIX and DYNAMIX run
could be extended to provide a memory paging mechanism. This would allow us to
demonstrate the concept of virtual memory to students. Process swapping should also be
incorporated into the operating system.

Extended graphics: By implementing DYNAMIX in an operating system that runs
on a virtual machine, such as the UNIX operating system, we can use any graphics facilities
available on the virtual machine system (eg. X) to create a clearer graphical model of the
operating system internals.

Towards a Tutoring System: In its present form DYNAMIX is an assistant or tool
to aid the teacher transmit concepts effectively. A long-term objective of this work would
be to move DYNAMIX into a tutoring environment providing an interactive learning
program for students without the aid of a real teacher. This tutoring system can then be
made available for students to study at their own pace.

A considerable amount of work needs to be done to develop such a system. One of

the pre-requisites of developing a tutoring system for operating systems is to develop a
simulator that models operating system components at various levels of detail and
abstraction. Our experience of using DYNAMIX in the classroom has given us a starting
point from which to analyse the requirements for such a simulator and tutoring system. This
analysis of requirements should always be the first step to developing a tutoring system.

11

6. Concluding Remarks

In this paper we have described the development of DYNAMIX, a tool to assist in the
teaching of operating systems. DYNAMIX was developed to meet the real needs of
students who were finding the subject complicated to learn in the short time available.

The graphical display of DYNAMIX comprises an animated screen showing all the
relatively static processes of a real operating system and their dynamic interface interac-
tions. We have some evidence to show that DYNAMIX helps students to comprehend the
subject of operating systems, especially in obtaining a complete picture of how an operating
system works. This is so because the key concepts are already abstracted and visualised for
the student in the display itself. This allows the student to literally see the ideas they are
expected to grasp. The display is a concise way of representing a lot of information all at
once and the use of vision allows us to do this without overwhelming the student with
details.

This method is contrasted with the pure textbook approach where the student is given
a detailed analysis of operating systems theory and expected to synthesize the mental model
for themselves. Unfortunately, there is no guarantee that all students will come up with the
same synthesis. This is sometimes viewed as an advantage, especially in the arts; but in the
precise world of technical subjects it can be an obstacle to learning.

References
1. Comer, D and Fossum, T V, Operating System Design: The XINU Approach, Prentice-

Hall, PC Edition, 1988.
2. Deitel, H M, Operating Systems, Addison Wesley, 2nd Ed, 1990.
3. Fortier, P J, Design of Distributed Operating Systems - Concepts and Technology,

McGraw-Hill, 1986.
4. Grabczewski, E, DYNAMIX - A Window into the Internals of MINIX, MSc Dissertation,

Birkbeck College, London, 1991.
5. Leffer, S J and etc., The Design and Implementation of the 4.3 BSD UNIX Operating

System, Addison Wesley, 1989.
6. Lister, A M and Eager, R D, Fundamentals of Operating Systems, Macmillan, 4th ed

1988.
7. Silberschatz, A, Peterson, J, and Galvin, P, Operating Systems Concepts, Addison

Wesley, 3rd Ed 1991.
8. Switzer, R, Operating Systems - A Practical Approach, Prentice-Hall, 1993.
9. Tanenbaum, A S, Operating Systems - Design and Implementation, Prentice-Hall,

1987.
10. Tanenbaum, A S, MINIX 1.3 Binaries and Sources for IBM PC's, Prentice-Hall, 1988.
11. Tanenbaum, A S, Modern Operating Systems, Prentice-Hall, 1992.

12

	London WC 1E 7HX
	Tel. 071 631 6468
	Fax: 071 636 4971
	Computer: IBM PC XT/AT Compatible

	Introduction
	Background
	The Development of DYNAMIX
	MINIX
	Extending MINIX to give DYNAMIX
	3.2.1. Displaying Messages and Interrupts

	Function parameter

	Table 1: Sending Message
	3.2.2. Displaying Graphics
	3.2.3. Controlling Graphics

	The Use of DYNAMIX in the Classroom
	5. Potential Improvements
	6. Concluding Remarks
	References

