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Abstract 

A theory of spin dynamics in the classical 
two-dimensional Heisenberg magnet 

S. W. Lovesey and E. Engdahl, 
DRAL Rutherford Appleton Laboratory 

Oxon OX11 OQX, England, U.K. 

A. Cuccoli and V. Tognetti 
Dipartimento di Fisica, Universita' di Firenze, 

Largo E. Fermi 2, 1-50125 Firenze, Italy. 

The wave vector-dependent spin autocorrelation function of a classical 

Heisenberg model on a square lattice is calculated from the coupled-mode theory of 

spin dynamics. This theory is consistent with the spherical model for static spin 

correlations; as the temperature, T, approaches zero the inverse correlation length K ,..., 

exp (- const./1). For a ferromagnetic exchange coupling, the decay rate of long 

wavelength fluctuations, r(q), is proportional to c/T112 in the limit (q/K) --7 oo, whereas 

in the opposite, hydrodynamic limit f'(q) a c/ {TIn (K:/q)} 112
• At the wave vector for 

incipient antiferromagnetic ordering, the decay rate is proportional to K T112, while the 

corresponding decay rate near the Brillouin zone centre is proportional to (c/T112
/K). 

The coupled-mode equations for ferromagnetically and antiferromagnetically coupled 

models are solved numerically on a fine grid of wave vectors. The spin autocorrelation 

function, and its power spectrum, are surveyed over a wide range of temperatures and 

wave vectors. 
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1. Introduction 

Magnetism in two dimensions is known to possess a variety of subtle features. 

Perhaps the best known, and the most firmly established, example is that the isotropic 

Heisenberg model does not support magnetic long range order at a finite temperature 

(Mermin and Wagner, 1966) whereas the Ising model orders at a finite temperature. 

However, it has been conjectured that the Heisenberg model at a finite temperature has 

a phase transition for which the susceptibility is infinite. To date, the type of transition 

in question, where the signature is an infinite correlation length without magnetic 

ordering, has only been established for an anisotropic version of the model 

(Berezisnkii, 1971; Kosterlitz and Thouless, 1973). These and other features of 

magnetism in two dimensions are reviewed by Mattis (1985). 

Here, we address the nature of time-dependent spin correlations in the classical 

Heisenberg model on a square lattice. In our calculations, the equilibrium spin 

correlations are described by the spherical model. This estimate of the correlations is 

consistent with the Mermin-Wagner theorem (1966) since the spherical model has no 

phase transition for spatial dimension :::; 2. For two dimensions, as the temperature, T, 

approaches zero the correlation length is proportional to exp(const./1). 

We describe time-dependent spin correlation functions by the so-called 

coupled-mode theory of critical and paramagnetic fluctuations. For three dimensional 

magnets, this theory is unrivalled in its quantitative value (Cuccoli et al., 1989). 

In subsequent sections, the spin autocorrelation function F( q,t) is calculated for 

the full range of wave vectors in the Brillouin zone. Temperatures span the range 

T = oo down to a value where the correlation length is approximately 30 times the 

lattice spacing. Both ferromagnetic and antiferromagnetic exchange models are 

treated. In addition to F( q,t), equal attention is given to its power spectrum S( q,ro) 

which is proportional to the signal monitored by inelastic neutron scattering from a 
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simple magnetic material (Collins, 1989). (As of now, no magnetic material has been 

discovered which is well described by the isotropic two dimensional Heisenberg model. 

The quasi-two dimensional magnets that have been studied possess significant 

magnetic anisotropy, which has a pronounced influence on the observed static and 

dynamic spin response functions.) 

The Heisenberg magnet, spherical model, and coupled-mode theory are 

introduced in §§2,3. Numerical results i:0r F( q,t) and S( q,ro) are reviewed in §4. 

Estimates of the decay rates given in §5 characterize the very low temperature spin 

dynamics. Our findings are discussed in §6. 

2. Model 

Unit vector spins, {Sa}, are arranged at sites labelled by the index a on a square 

lattice with a unit length a0 • Nearest neighbour spins interact through a Heisenberg 

exchange interaction of strength J. Hence, the Hamiltonian of our classical two

dimensional model is, 

n.n. 

Jt =±tii sa. sb. (2.1) 
a.b 

Here, the sum is restricted to all pairs of nearest neighbours. The upper and lower 

signs in (2.1) will be referred to as antiferromagnetic and ferromagnetic exchange 

couplings, respectively. 

The theory utilized to describe the dynamic properties of (2.1) is consistent with 

the spherical model of equilibrium spin correlations. In this model, the isothermal 

susceptibility, X( q), is expressed in terms of a dimensionless parameter, ~. which is 

related to the temperature, T(kB = h = 1). Let us define, 

(2.2) 
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The spherical model susceptibility is, 

x(q) = {41(~ ± Y qn-1, (2.3) 

and ~ satisfies the transcendental equation, 

(27t~ J I 3T) = K(1 I~). (2.4) 

where K(x) is the complete elliptic integral. Fig. (1) shows graphically the relation 

between~ and a reduced temperature variable 8 = (3TI4J). As 8 approaches zero, ~ 

tends to unity from above, and for a sufficiently small 8, which is found to be 8 < 0.6, 

(~ -1) - 8 exp( -7t I 8). (2.5) 

At low temperatures, the susceptibility is peaked at q = O(w = 7t(1,1)1ao) for a 

ferromagnetic (antiferromagnetic) exchange coupling. Near these special wave vectors 

one obtains an Omstein-Zemike expression for the susceptibility, 

(2.6) 

in which the inverse correlation length, K, satisfies, 

ao K = 2 (~ - 1) 112 
- 4../2 exp ( -7t I 28); 8 ~ o. (2.7) 

Representative values of 8 and K as a function of ~ are gathered in Table 1. 

3. Coupled-mode Theory 

The coupled-mode theory of critical and paramagnetic spin fluctuations is 

reviewed in several articles, e.g. Lovesey (1986) and Cuccoli et al. (1989). In view of 
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this, the following account is very brief, and aims to do no more than define our 

notation and essential equations. 

Our spin autocorrelation function, F( q,t), is normalized to the value one at time 

t = 0 for all values of the wave vector, q. Denoting the thermal average of variables by 

angular brackets, 

F( q, t) = < S( q, t) · S( q,O) > /3Tx,( q), (3.1) 

where S(q,t) is a spatial Fourier component of the spin density, and X(q) is the 

isothermal susceptibility introduced in the previous section. 

Coupled-mode theory can be viewed as a closure approximation to the infinite 

hierarchy of equations of motion for spin variables in the model (2.1). The 

corresponding set of equations for F( q,t) are conveniently expressed in terms of a 

memory function, K( q,t), which is defined through the equation, 

I 

a1F(q,t)=- f dt' F(q,t')K(q,t-t'). (3.2) 
0 

In this format, closure is expressed as an approximation to K( q,t) in terms of a spatial 

convolution of the product of two spin autocorrelation functions. A useful form of the 

expression forK( q,t) is, 

K(q,t)={T(4J) 2 /x(q)}(}) L (yk -Yq-k)2 x(k)x(q-k)F(k.t)F(q-k,t). 
k 

(3.3) 

Here, the susceptibility is defined by (2.3), and N is the number of spins on the square 

lattice. 
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An expansion ofF( q,t) in powers oft begin with the terms, 

(3.4) 

From the defining equation (3.2) it follows that, the second frequency moment, 

ro~ ( q), in (3.4) is the initial value of the memory function, viz., 

K(q,O) = ro~(q). (3.5) 

The expression (3.3) provides the estimate, 

ro~(q) = 2T(1- y q)(Jll (Jl) -1) I X( q), (3.6) 

in which I (Jl) is the extended Watson integral. For the square lattice, /(Jl) can be 

expressed in terms of the complete elliptic integral, encountered already in §2, 

l(Jl) = 2K(1 Ill) I nJl. (3.7) 

4. Numerical results 

Numerical results for F( q,t) have been obtained from (3.2) and (3.3) using a 

method described by Cuccoli et al. (1989). In the present case, the Brillouin zone is 

spanned by a mesh of equal square elements with a side of length (nl24a0 ). Results for 

F( q,t) are given at three wave vectors denoted by qt, q2 and q3 ; in units of ( n/24ao) 

these vectors are q1 = (1,1), q2 = (12,12) and q3 = (24,24). Note that, q3 is the 

ferromagnetic zone boundary, and also the incipient antiferromagnetic ordering wave 

vector, i.e. q3 = w and 'Yw = - 1. The wave vector q2 = 1hw is the antiferromagnetic 

zone boundary at which "{q = 0. Perhaps it is useful to observe that, in the limit of very 

low temperatures the second frequency moment, ro~ ( q), given in (3.6) is proportional 
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to the square of the spin-wave frequency, i.e. co~ a.(1- y q)2 and co~ a.(1- Y!) for 

ferromagnetic and antiferromagnetic exchange couplings, respectively. This result 

leads us to expect that at low temperatures the response function, 

~ 

S( q, co) = (1 I 27t) f dt exp(- icot) F ( q, t), (4.1) 

is very narrow for small q, e.g. q1. For antiferromagnetic coupling, S(q,co) will also be 

narrow at q3, and relatively broad at q2. On the other hand, for ferromagnetic coupling 

the response function will broaden steadily by increasing q from zero through to q3• 

At infinite temperature the properties of the Heisenberg model are independent 

of the sign of the exchange interaction, i.e. they are the same for ferromagnetic and 

antiferromagnetic interactions. Hence, the infinite temperature limit provides a 

sensible starting point for a study of dynamic spin fluctuations in the two model 

systems. Results for F( q,t) and S( q,ro) for T = oo are shown in figs. (2) and (3). 

Looking at F( q,t), the decay rate increases with increasing q and oscillations occur for 

the two largest wave vectors. Therefore, the corresponding response functions differ 

significantly from a gaussian function of co, which might be one's first guess for the 

shape of the response function at infinite temperature. 

Figs. (2) and (3) also contain results for F( q,t) and S( q,co), respectively, at low 

temperatures, cf. Table 1. The dramatic changes in S(q3,ro) with decreasing 

temperature are a signature of incipient antiferromagnetic ordering. Looking at the 

corresponding values of F(q3,t) in fig. (2c), the slowing down of spin fluctuations with 

decreasing temperature is readily apparent. By comparison with what is found at 

q3 = was a function of temperature, the fluctuations at q2 = ~ w are relatively benign 

functions of the temperature. The "squaring up" of S(q2,ro) with decreasing 

temperature might be interpreted as a premonition of a collective spin oscillation (spin

wave) in the ordered state. Turning attention to the smallest wave vector, qh the 
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decay rate increases with decreasing temperature, which is the opposite of the trend at 

q1 for a ferromagnetically coupled system. 

Data for a ferromagnetic exchange coupling are displayed in figs. (4) and (5). 

Slowing down of the spin fluctuations with decreasing temperature is quite apparent at 

q 1• However, the changes in F(q,t) and S(q,ro) at all three values of q brought about 

by decreasing the temperature from ~ = 1.1 (8 = 0.744) to ~ = 1.01 (8 = 0.472) are 

quite modest. Results for ~ = oo (8 = oo) are included for comparison. 

At very low temperatures, such that a0 K << 1, there is a dramatic slowing down 

of spin fluctuations at the wave vector which defines the incipient ordering. The decay 

rates at these special wave vectors are obtained from coupled-mode theory by an 

analysis which is outlined in the next section. 

5. Decay rates 

For a ferromagnetic coupling, the numerical results display the anticipated 

slowing down of long wavelength fluctuations as the temperature is decreased. This 

process in the autocorrelation function can be characterized by a decay rate, r(q), 

which we will now estimate. 

In the limit of low temperature and a small q equation (3.3) for the memory 

function approaches the result, 

K(q,t)=(2JT(K 2 +q2 )q2 a~)}; L F(k,t)F(q-k,t)/(K2 +k2
). (5.1) 

k 

Here, the inverse correlation length, K, is determined as a function of temperature by 

the relation (2.7). When the integral on the right-hand side of (5.1) is dominated by 

the slow processes at long wavelengths, the associated decay rate satisfies the integral 

equation, 
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r(q) = Aoq2 (q2 + 1C2) I kdk I { r(k)(1C2 + k2)}, (5.2) 
q 

whereAo is proportional to the temperature. For a square lattice, 

Ao = (JTa: I 21t). (5.3) 

One finds the following limiting forms for the decay rate: 

(a) (lC/q) ~ oo; the hydrodynamic limit, 

(5.4) 

and, 

(b) ( lC/q) ~ 0; the critical limit, 

(5.5) 

As might be expected, in the critical limit the decay rate does not depend explicitly on 

the inverse correlation length. The results (5.4) and (5.5) are limiting cases of the 

general solution to (5.2). For the latter, it is prudent to introduce a dimensionless 

variables= (qiK)2
• We find, 

r(q) = q2 (1 + s){Ao [ ln (1 + 11 s) -1 I (1 + s)]}112 
, (5.6) 

in whichAo is defined by (5.3). 

The corresponding analysis for the antiferromagnetically coupled model is 

slightly more complicated. One needs equations for the decay rates at the zone centre, 

ro, and at the ordering wave vector, r. The necessary equations for r(q) and ro(q) are 
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formed from (3.3) by using the reasoning that leads to (5.1) which is valid for 

ferromagnetic coupling. (NB, in r( q) the wave vector q is measured from the 

antiferromagnetic ordering wave vector, w.) After some algebra, one finds, 

(5.7) 

and, 

(5.8) 

Hence, at the ordering wave vector the temperature dependence of the decay rate is 

provided by 1C T112
, i.e. a slowing down occurs as the temperature tends to zero. Near 

the zone centre, for a fixed wave vector the decay rate increases with decreasing 

temperature. 

6. Discussion 

To the best of our knowledge, this is the first report of results from coupled

mode theory applied to the classical Heisenberg magnet in two dimensions. Given the 

unmatched success of coupled-mode theory to describe critical and paramagnetic 

fluctuations in three-dimensional magnets, there is, clearly, good reason to believe that 

the theory yields a reasonable account of fluctuations in the case of a two dimensional 

system. Looking at our results for the ferromagnetically and antiferromagnetically 

coupled systems, all features are in accord with physical intuition. However, as a 

caveat to our confidence in coupled-mode theory applied to a spatial dimension less 

than three recall that, the standard coupled-mode theory, which is used here, is known 

to fail in one dimension. In this case, it does not reproduce the weakly damped 

collective spin oscillations, reminiscent of linear spin waves, that are known to exist at 

low temperature. For our two-dimensional model, at the lowest temperature 

investigated, e = 0.308, there is no collective mode peak inS( q,ro) at q = w (w/2) for 

ferromagnetic ( antiferromagnetic) coupling. 

10 



For a ferromagnetically coupled system the decay rate of long wavelength 

fluctuations is proportional to c/T112 if the wave vector, q, is large compared to the 

inverse correlation length, lC. In the other extreme, q << 1C, there is a logarithmic 

correction to the expected q2 
- dependence, namely, r(q) a c/ {TIn (1C/q)} 112

• This 

implies that, for ferromagnetic coupling, the conventional theory of spin-diffusion does 

not apply. At the wave vector at which there is incipient antiferromagnet ordering, the 

decay rate decreases with decreasing temperature, and we find a temperature 

dependence given by 1C T112
• Near the zone centre, the decay rate of the 

antiferromagnetically coupled system increases with decreasing temperature, namely, 

ro(q) a q2 T112 
/lC. 

For a complete picture of the spin dynamics the coupled-mode theory must be 

analysed by a numerical method. We provide a comprehensive survey using a wide 

range of temperatures and wave vectors. 
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Table 1 

J.l e aoK: 

1.001 0.350 0.063 

1.01 0.472 0.200 

1.03 0.569 0.346 

1.10 0.744 0.632 

3.0 2.914 2.288 

Representative values of the reduced temperature, 8 = (3T/4J), and the inverse 

correlation length, K:, as a function of the dimensionless parameter J.l that arises in the 

spherical model of spin correlations, cf. fig. (1). 

Figure Captions 

1. A graphical representation between the reduced temperature, 8 = (3T/4J), and 

the parameter J.l which arises in the spherical model; 1 = 8/(J.L) where l(J.L) is the 

extended Watson integral (3.7). 

2. F( q,t) is displayed as a function of time for three wave vectors, qb q2, q3, 

specified in §4. Three temperatures are used, J.l = 1.01, 1.10 and oo, cf. Table 1. 

The exchange coupling is antiferromagnetic. Solid line J.l = oo; dashed line 

J.L = 1.10; dash-dot line J.l = 1.01. The energy constant satisfies 4J = 1, and the 

unit increment of time in the plots is 1.330. 

3. The response function (power spectrum) defined by (4.1) is displayed for the 

states used in fig. (2). The unit increment of frequency in the plots is 0.752, and 

4J = 1. 
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4. This figure and fig. (5) show F(q,t) and S(q,ro) for a ferromagnetic exchange. 

The three wave vectors used are defined in §4. The temperatures are 

~ = 1.01(8 = 0.472), 1.10(0.744), and~= oo; the labelling of the different types 

of lines are defined in the caption to fig. (2). 

5. Values of S(q,ro) obtained from the data for F(q,t) shown in fig. (4). 
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