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A New Theory of Critical Flow Velocities in Superfluid ~He 

J Mayers (Rutherford Appleton Laboratory 

Abstract 

It is shown that the critical flow velocities of superfluid 4He through narrow channels can 

be understood using only simple quantum mechanics. The predicted variation of critical 

velocity with channel size is in good agreement with experimental data over range of 

channel sizes covering three orders of magnitude. 



Superfluids are so named because of their ability to flow through narrow tubes or thin 

films without dissipation of energy. Experimental data on superfluid flow 1 of liquid 4He 

through narrow channels shows that the liquid is only a superfluid at flow velocities below 

a certain 'critical velocity' v c and that v c increases as the channel gets narrower. Landau2 

showed that the critical velocity is determined by the nature of the collective excitations 

(ie those involving all atoms) in the superfluid. In particular he showed that the critical 

velocity is determined by the relation 

Vc =(El q)min (1) 

where ( E I q) min is the minimum value of the ratio E I q, E is the energy and q the 

momentum of the excitation. However the critical velocity derived from the excitation 

spectrum measured by neutron scattering is -60 m/sec, orders of magnitude higher than 

experimental values, which are typically less than lcm/sec. Atkins3 has attributed the 

discrepancy to the creation of excitations in the form of vortex motions in which the liquid 

rotates about a vortex line in a similar way to the rotation of a whirlpool in an ordinary 

liquid. Feynman4 derived a similar expression to Atkins by considering the flow of helium 

from the end of a slit into a vessel of still liquid. However the theory is in an 

unsatisfactory state. For example it is asssumed that the vortex motion carries no linear 

momentum and that the momentum q in equation 1 is the "integrated impulse" required to 

create the angular momentum of rotation in the fluid. The way in which the linear 

momentum required to reduce the flow rate is transferred to the liquid is not known. The 

critical velocity is calculated in terms of the maximum diameter of the vortex ring and the 

core radius, both of which can only be estimated. 

Superfluid helium has strikingly similar properties to superconductors and it has long been 

evident that these two phenomena must have an underlying common origin. It has recently 

been showns that the original postulate of London6, that the 'Bose Condensation' of a 

macroscopic number of particles into a single momentum state is responsible for both 

superfluidity and superconductivity, is correct and that when there is a Bose condensate 

present, a macroscopic wavefunction of the form, 

\f(r) = exp[ip. r] (2) 

exists, where p is the atomic momentum. The motion of all atoms in the fluid is 

determined by the phase S(r):::: p. r of this macroscopic wavefunction and the momentum 

is p = n'VS, as is postulated in standard text book treatments of superfluid 4He7. In this 

letter it is shown that the observed critical velocities can be explained by the form of the 

wavefunction in equation 2, using only simple quantum mechanics. 
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The macroscopic wavefunction 'I' must satisfy the usual Bohr-Sommerfeld quantisation 

rule which states that the only orbits allowed are those which include an integral number 

of de Broglie wavelengths (otherwise the wavefunction will destructively interfere with 

itself and give zero amplitude for the orbit). Using the de Broglie relation p =hI A., where 

A is the wavelength and h is Planck's constant, this condition is, 

fp.dr=nh (3) 

This condition is satisfied for every path if the wavefunction has the form, (in cylindrical 

coordinates r, </J ) 

'P(r) = g(r)exp(in</J) (4) 

In this case the momentum is , 

-\TJ 'fit'1\II ·t;.( a ~ 1 a 3.)\TI t.( . (}¥ ~ n'J' 3.) pr =-l v r =-ln -r+--'1' r =rt -l-r+-'1' 
ar r a</J ar r 

(5) 

~ 

The term parallel to the unit vector r does not contibute to the integral in equation 3 , 
~ 

whereas the term parallel to (j) gives nh, in agreement with equation 3. Providing that 

g(r) is real, there is no particle flux along the direction r. 

For simplicity, we consider flow along a tube of rectangular cross-section and assume that 

the tube wall interacts with the fluid to create a rotational motion of the atoms around a 

vortex line. The minimum velocity for this to occur will be when n= 1 in equation 3 and 

when the vortex line is created perpendicular to the widest face of the tube and 

perpendicular to the direction of flow, since the torque exerted by the tube walls will be a 

maximum for this case. The problem then reduces to a two-dimensional one (see figure 2) 

with the vortex core centred at some position (x0 ,y0 ) and with radius a. It is assumed that 

the wavefunction is given by equation 4 over the whole volume of the tube, with g(r) a 

constant except at the tube walls and in the vortex core. The exact form of g(r) in the 

region near the walls and within the core is unimportant in macroscopically large samples 

as these regions are of microscopic dimensions and can be neglected. It follows from 

equation 5 that a wavefunction of the form 'I'= exp(i<j>) implies that the velocity 

distribution in the fluid is of the form v = hI (M r), with the velocity always directed 

perpendicular to the radius vector as shown in figure 1. 
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The Landau condition requires that the energy and momentum of the excitation are 

calculated in a frame of reference in which the liquid is stationary. The integrated 

momentum component parallel to the flow over the tube volume in this frame is, 

i phi sin<j> 
q= pvdQ=- ~rd<f> 

n M n r 
(6) 

where the integration volume Q excludes the core region of radius a. The kinetic energy 

of the excitation is, 

e = r pv2 dQ = ph2 r drd<j> 
Jn 2 2M2 Jn r 

We assume that the critical velocity is given by equation 1 and that e and q can be 

calculated using the last two equations. 

(7) 

Assuming a tube of length Land width d, (see Figure 2) the vortex line must be situated 

midway along the tube at x0 = L I 2, otherwise the liquid will gain a net momentum 

perpendicular to the direction of flow. This is not possible since any viscous forces must 

be parallel to the direction of flow. The ratio e I q is a minimum when the vortex is as 

close to the tube walls as possible (ie when y0 = a or y0 = d- a). This is easily shown 

numerically, but is also evident since virtually all the liquid will be flowing in the same 

direction in this case (ie to the left in figure 3) and the momentum q will be a maximum. 

The minimum distance of approach of the vortex line must such that the flow velocity at 

the walls is less than the velocity of sound in the liquid, otherwise sound waves will be 

generated at the tube walls and the friction between the walls and the vortex will prevent 

the generation of the vortex. This suggests a value for the core radius of 

a= hI (Me )=0.794A, where c- 200 m/sec, is the velocity of sound and this value was 

used in the calculations. This is relatively close to the value a=1.2A derived by Rayfield 

and Reif8 from measurements on the velocities of ions trapped in vortex rings. The results 

are insensitive to the exact values of a or x0 • 

Assuming that the vortex core is at ( L I 2, a), the integrals in equations 6 and 7 are 

q = 
2
;{ [Iq(LI 2,d -a, a)+ I/L I 2,a,a)] (8) 

where 

I,(L, w,a)=[: + '; -wtan-t)-a] (9) 
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and 

where 

h2 
e = -

2 
[ I.(L/ 2,d- a, a)+ le(L/ 2,a,a)] 

M 
(10) 

(9) 

The experimental values and the values calculated at L=lOd, L=lOOd and L=lOOOd are 

given in table 1. It can be seen that £I q is insensitive to the value of L for L> 1 Od, 

varying by less than than 5% for values of L between lOd and lOOOd. Figure 3 shows 

measured values of Vc and values calculated from equations 1, 8 and 9, assuming L=lOOd. 

It can be seen that the agreement between theory and experiment is excellent when the 

tube diameter is greater than- w-3 cm. The disagreement between theory and data ford 

values below w-3 cm is probably due to the fact that the relevant d value required by the 

theory for rectangular apertures is the largest dimension perpendicular to the flow 

direction, whereas the experimental d values quoted are the minimum aperture dimensions. 

Points 3 and 4 were measured by flow through slits and 10 by film flow and in these cases 

the slit height or the film width rather than thickness determines the critical velocity. 

To summarise the results of this work, a new first principles theory of critical velocities of 

flow in superfluid 4He has been presented which gives excellent agreement with 

experimental data. The theory has the advantage over previous theories that it contains no 

unknown parameters. A further advantage is that the necessity to estimate the 'integrated 

impulse' required by previous theories disappears and the way in which the liquid flow is 

reduced by transfer of linear momentum between the tube walls and the liquid can be 

seen. The theory relies essentially only on the quantisation of circulation (equation 3) a 

result which has been known for the last 40 years. The change intoduced by equation 2 is 

only conceptual, but suggests that it may be possible to explain other striking phenomena 

in superfluids and superconductors in a simple way. 
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Table 1. Measured and Calculated Critical Flow Velocites. 

The measured critical velocites (which were compiled by Wilks1) are given as a function of 

channel width d in columns 1 to 3. Columns 3 to 6 contain the values calculated from 

equations 1 ,8 and 10 for three ratios of Ud. 

Measurement d (c.m.) Measurement Theory Theory 

(cm/sec) L=-lOd L=-lOOd 

1. Staas and Taconis 9 0.026 0.42 0.333 0.323 

2. Kidder and FairbankiO 0.11 0.12 8.57x1o-2 8.32x10-2 

3. Winkel et al11 4.3x10-5 13 122 119 

4. " " 3.1x1o-4 8 20.3 19.8 

5. Brewer and Edwardsl2 5.2x1o-3 1.0 1.50 1.46 

6. " 11 0.011 0.5 0.746 0.724 

7. Vinen13 0.24 0.051 0.0410 0.0398 

8. 11 0.4 0.033 0.0253 0.0245 

9. Peshkov and Stryukov14 0.38 0.02 0.0265 0.0258 

10. Wilks 2x1o-6 30 1820 1778 

11 . Atkins 0.021 0.62 0.406 0.395 

12. " 0.069 0.26 0.133 0.129 

13. Heikkila and Hall et IS 0.1 0 .07 0.0937 0.0910 
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Figure 1. Flow of helium around a vortex line. The line is perpendicular to the plane and 

centred at the point ( x0 , y0 ). The flow velocity is perpendicular to the radius vector r and 

the component of velocity along the tube length is v sin tJ. The shaded core region is 
excluded from the integrations in equations 6 and 7. 
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Figure 2. Position of vortex line for minimum value of e I q. The line is centred at 

( L 12, a). The direction of the flow of the liquid is also shown. 
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Figure 3o Experimental values of critical velocities v c for apertures of various sizes. The 

values of v c and references are given in table 1. 
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