
~

~
cr-

·....J
~

'2 N'

~ AL RAL Report
~ RAL-94-091
~ atory

~
ton Laboratory . .

~ a u
d:.

RALPAR- RAL Mesh Partitioning Program
Version 1.1
R F Fowler and C Greenough

August 1994

Rutherford Appleton Laboratory Chilton DIDCOT Oxfordshire OX11 OQX

ORAL is part of the Engineering and Physical
Sciences Research Council
The Engineering and Physical Sciences Research Council
does not accept any responsibility for loss or damage arising
from the use of information contained in any of its reports or
in any communication about its tests or investigations

RALPAR - RAL Mesh Partitioning Program

Version 1.1

RF Fowler and C Greenough

May 1994

Abstract

This report describes the first release of the Rutherford Appleton Laboratory Mesh Partitioning Program ralpar.

Ralpar is a software tool to split up unstructured meshes into subdomains for parallel processing on MIMD

type architectures. A wide range of basic decomposition methods have been implemented within this tool. This

document describes the methods that have been implemented, how to run the tool and the measures of partition

quality that are provided.

Mathematical Software Group
Computational Modelling Division
Rutherford Appleton Laboratory

Chilton, Didcot

Oxfordshire OXll OQX

Contents

1 Introduction

2 Parallel processing and mesh decomposition

3 Measuring partition quality .

4 Mesh partitioning techniques
4.1 Geometric bisection methods
4.2 Greedy methods
4.3 Graph bisection method ...
4.4 Bandwidth minimisation methods .
4.5 Kernighan and Lin methods

5 Modelling parallel system performance .

6 Examples using ralpar

6.1 Partitioning a two dimensional mesh
6.2 Partitioning a three dimensional mesh .
6.3 Comparing methods using the table command

A The ralpar Command Summary
A.l CHANGE (Internal) - to change working directory
A.2 COPY (Internal) - to copy a file
A.3 DELETE (Internal) - to delete (remove) a file . . .
A.4 DISPLAY (Application)- to display partition results
A.5 HELP (Internal) - to access HELP system
A.6 INFORMATION (Application) - control message output
A. 7 INPliT (Application) - to read in mesh file
A.8 LIST (Internal) - to provide directory listing
A.9 MACHINE (Application) - to specify machine constants
A.lO OliTPliT (Application)- to write neutral file with partition numbers .
A.ll PARTITION (Application)- to partition the data
A.l2 PLIST (Application) - to list element numbers in a partition . .
A.13 QUIT (Application) - to quit program
A.14 READ (Internal)- to redirect the input stream to read from a file
A.15 RENAME (Internal)- to rename a file
A.16 SYNTAX (Internal) - to provide the syntax of a command .

A.17 TABLE (Application) - to evaluate or display table of costs .
A.18 WEIGHT (Application) - to define element weights .
A.l9 WRITE (Internal) - to provide monitoring of a session

B The avsralpar interface
B.l Starting up avsralpar

B.2 The control panel commands

C Interfacing to the RALBIC neutral file format

1

1

2

3
4
4

5
6
6

8

9
10
12
14

17
18
19
20

21
22

23
24
25
26
28
29
31
32
33
34
35

36
38
39

40
40
40

42

D Control of memory allocation . 43

ii

1 Introduction

This document describes Version 1.1 of the ralpar mesh partitioning tool. This tool implements a
wide range of basic mesh partitioning algorithms for unstructured finite element type meshes in two
and three dimensions. Mesh partitioning for unstructured meshes is important in the area of parallel
processing for grid based calculations.

The structure of this document is as follows. Section 2 outlines the requirements for parallel
processing of mesh based computations and Section 3 looks at some basic measures of partition
quality. We then present an overview of all the algorithms that have been implemented within the tool.
Sections 5 looks at how the measures of partition quality can be related to expected communication
time on some parallel systems. Much of this work is in an early stage within this release of the
software. Finally, Section 6 shows some examples of how the tool can be used.

Appendix A is a command reference Section for ralpar, while Appendix B gives a brief introduction
to the AVS interface to the partitioner, avsralpar. The interface to RALBIC neutral files and memory
management control are discussed in Appendices C and D respectively.

2 Parallel processing and mesh decomposition

The use of computing systems with some type of parallel architecture has grown significantly over
the past few years. These systems are seen as the path by which sufficient computing power can
be provided for accurate three dimensional simulations of complex phenomenon in areas such as
fluid dynamics, stress analysis and electromagnetism. Such simulations typically use meshes or
grids containing 105 to 106 nodes and may employ automatic grid refinement during the solution.
Unstructured grids are often necessary due to complex geometries and the need to place nodes in an
intelligent manner, to minimise the overall error in the solution.

Many of the parallel machines now being used are based on the MIMD form of parallelism where
the memory of the machine is distributed over a network of processors. A consequence of this is
that the program and its associated data must also be distributed between these processors. In finite
volume and finite element methods this leads to the problem of how to distribute large unstructured
grids and meshes initially, and how to redistribute them subsequently, if refinement is made. This
tool only addresses the problem of the initial partitioning and assumes that a single processor with
sufficient memory is available to partition the complete mesh.

When moving a large grid based computation to a distributed memory machine there are two main
approaches:

• Direct parallelisation of the existing solution algorithm. In this case data exchanges are made
between processors whenever required by the algorithm.

• True Domain Decomposition (DD) methods. In this case separate problems are solved on each of
the subdomains independently and then some method is used to "patch" together these solutions,
which again involves interprocessor communication. Two subclasses within DD methods are:

1. Overlapping subdomains. In this case a layer of mesh elements on the interface between
two subdomains is assigned to both of them. These allow methods based on the Schwarz
alternating procedure [1] to be used.

1

2. Non-overlapping subdomains. In this case it is necessary to solve a separate global problem

for the interface nodes between domains. One approach is to form the Schur complement

matrix for the interface.

The current version of ralpar only produces non-overlapping mesh decompositions.

Three of the major requirements for efficient parallel processing are:

1. To minimise the sequential part of the computation.

2. To ensure that all processors have the same amount of work to do.

3. To minimise interprocessor communication.

The fact that ralpar is a sequential program is not optimal with regard to the first point, but the cost of

partitioning is often quite small compared to the actual computations performed on the mesh.

Load balancing is often achievable by assigning the same number of elements to each processor.

However in many cases, such as with a mixed mesh containing several different element types, it can

be desirable to attach a computational weight w; to each element. Any partitioning of the mesh should

then aim to assign each domain a set of elements with weight W given by

w - L i Wi
- N (1)

The current version of the tool only deals with element partitioning, though there can be cases where

a partitioning of the nodes is more appropriate.

Another extension that is becoming important for computations on heterogeneous workstation

clusters is that of domain weighting. It may be that one machine is more powerful than the others and

hence should have a larger share of the work. This can also be included in the above scheme and is

available in the current version of ralpar.
Minimisation of interprocessor communication time is very important in distributed grid based

calculations. An ideal case would be where the subdomains could be completely decoupled and no

exchange of information was required. This is very rarely the case and main goal in mesh partitioning

methods is to find a splitting that gives the lowest communication cost. The actual communication

time will depend on the characteristics of the parallel machine, the solution algorithm and the nature

of the problem being solved.

3 Measuring partition quality

The true measure of interest for any mesh partitioning method is the effect it has on the run time for the

computations that are to be performed on a real parallel system. Generally, this effect is too sensitive

to the particular combination of algorithm and parallel hardware being used to be practical. Instead
simpler models are used which measure the size of the interface between subdomains and related

quantities~

Load balancing, by assigning the same amount of work to each processor, is built into all the

decomposition schemes discussed here. Hence it is not a good measure to compare decomposition

methods with.

As was noted in the previous section, the number of interface nodes that a mesh decomposition

produces can effect the size of the interface problem to be solved. This quantity is taken as our main

2

measure of interface size. For all methods ralpar reports the total number of interface nodes that are

generated.

Another measure that may be of importance is the number of neighbouring subdomains about each

subdomain. This can be important in matrix assembly operations for node based quanti ties where each
processor will have to exchange interface data with all its neighbours. While the total amount of data
to be exchanged will be proportional to the number of interface nodes, there is always a certain amount
of time involved in initiating a communication with another processor. Under some circumstances

this time can be a significant amount of the total communication time. In ralpar the user is provided
with the average number of neighbouring subdomains for the partition along with the minimum and
maximum number of neighbours for any one subdomain.

For the graph based partitioning methods (these are described in the following section) ralpar gives
the number of cut edges generated by the partition. These are links (or edges) in the communication

graph that go between two different subdomains. This measure is not identical to the number of

interface nodes, but they are roughly proportional to each other. For certain computations, such as
matrix assembly for element face based quantities, the amount of communication can be proportional
to the number of cut edges.

4 Mesh partitioning techniques

The following set of mesh partitioning techniques are available within ra/par:

• Geometric bisection (geo-bis)

• Cost Optimised geometric bisection (costgeo)

• Greedy algorithm of Farhat (greedy)

• Cost optimised version of Greedy algorithm (glutton)

• Malone bandwidth minimisation algorithm (bandwdt)

• Variation of Malone method with profile minimisation (profile)

• Geometric bisection on axes of inertia (inertia)

• Recursive version on Inertia method (r- inertia)

• Kemighan and Lin method with a Greedy start (kl-greedy)

• Kemighan and Lin method with a random start (kl-rand)

• Graph bisection method (graph)

• Kemighan and Lin with a graph bisection start (kl-rgb)

These methods are described in more detail in the following sections.

3

4.1 Geometric bisection methods

There are a number of methods that are based on the geometric location of elements (or nodes) in

space. These methods do not make any direct reference to the connectivity of the mesh. In the case

of element partitioning it is usual to use the centroid of each element, determined as the average over

the nodal position vectors, as the location.

A simple sort (costing about O(N logN) for N elements) can then give ordered lists of vertices

along any of the principal axes (x, y or z in three dimensions). A bisection then cuts the mesh in two

by first assigning all vertices to domain 1 and then transferring vertices to domain 2 according to the

order in the sorted list along one of the axes. We stop when the weight of vertices in the new domain

is equal to (or greater than) that left in domain 1. If more than 2 domains are required the bisection
process can be applied recursively to subdomains to generate 4, 8, 16, ... domains.

In the simplest version of this method (geo-bis), the first bisection is made on the x axis, the

second level bisections on the y axis and so on. This can give reasonable results on meshes that have

similar levels of refinement in all directions. However, it can give poor results for long thin meshes,

where a bisection parallel to the longest axis will generate a much larger interface than a bisection

perpendicular to it.

An improved version of geometric bisection is to use the cut axis that gives the smallest interface

cost each time. To do this we need to be able to measure the interface size in some way. In the

cost geometric bisection method (costgeom) we select the cut direction that generates fewest new
interface nodes each time.

The above types of geometric bisection always use the cartesian coordinate directions x, y, z.
However in general there is no reason for the mesh to "align" with these directions and the results will

not be invariant to rotation of the mesh. An alternative is to use the principal axes of inertia of the

mesh, determined by assuming unit mass at each vertex. The basic inertia method that has been
implemented just determines the principle axes for the initial mesh and then proceeds to use these in
all subsequent bisections, as in the geo-bis method.

The r-inertia method applies the process recursively, and determines a new set of principle

axes for each subdomain that is to be bisected. In addition it evaluates the interface node cost of each

of the possible cut directions and selects that with the lowest value.

4.2 Greedy methods

The Greedy algorithm ofFarhat [3] just tries to form one partition at a time withoutregard to how this
will affect partitions that are formed later. For each partition the algorithm finds a seed point in the
remaining mesh and gathers the required number of elements working out from this point. If we have

N elements and p partitions, and assume that NP = N fp elements are required for each partition, then
the algorithm proceeds as follows:

1. Form nodal weighting array of the number of elements about each node in the mesh.

2. do i = l untilp

2.1 Locate the node with minimum available weight

2.2 Label all elements attached to this node; they initiate the list of elements of
the ith subdomain

2.3 Recursively add to this list the elements adjacent to those already labeled,

4

starting always from the first labelled element in the previous step.

2.4 Remove used elements from list and update nodal weights.

This process is repeated until the complete mesh is partitioned.

Some variations of this method are possible. A modified Farhat method has been proposed by

Fowler et al [4].This is based on the observation that at each cycle the algorithm selects a new minima

as its next starting point. It is usually the case that there are a number of nodes which have the

minimum weight. In our implementation of the standard Farhat method we just select the first such

node that is found. The modified algorithm seeks to try a limited number of the alternative starting

points at each cycle of the algorithm. It does this by always selecting the mth minima found as its seed

point for each partition, where m is varied between 1 and (by default) 5. We then select the value of m

that gives the smallest interface, measured by the number of interface nodes generated. The number

of trials has to be limited because the total number of choices increases rapidly with the number of

partitions. This is available as the glutton option within the partition command.

4.3 Graph bisection method

4

7 6 8

Figure 1: A simple finite element mesh and its associated graphs. The middle figure is the edge

communication graph and the one on the right is the true communication graph.

The graph bisection algorithm uses just the connectivity information to bisect the mesh. This infor­

mation can be represented as the connectivity (or communication) graph of the mesh. In Figure 1 we

show a simple mesh and the corresponding communication graphs for the two cases of edge and true

communication [5]. Vertices in the graph representation are associated with elements in the mesh.

Links in the graph show the connectivity of the mesh. Thus, because element 1 is adjacent to element

2 there is a link between vertex 1 and vertex 2 in both graph representations. In the case of the edge

communication graph, we say that two elements are connected if they share a common edge (or in

three dimensions, a common face). Another possibility is to say that two elements are connected if

they have any node in common. This gives the true communication graph, which has many more links

than the edge graph, as can be seen in Figure 1. Which representation is most appropriate will depend

on the details of the calculation that is to be performed on the mesh.

To bisect the graph, we first try and find the two extremal points which define the greatest diameter

of the graph. In the case of the graph in Figure 1 these are the vertices 1 and 8. These points, or good

approximations to them, can be found by selecting any starting point and 1abeling levels out from it

5

until all vertices are labeled. The last point to be labeled is then used as a new starting point and the
process repeated. After a few such iterations the start and end vertices can be taken as the extremal
points.

The basic step of the graph partitioning algorithm is then to divide the vertices of the graph

according to their level numbers from the last seed point. In the case of the edge communication graph
in Figure 1, if vertex (1) was the seed point then (2) would be level2, (3,4) level3, (4,6) level4, (7)
level5 and (8) level6. The bisection would then assign (1 ,2,3,4) to domain 1 and the rest to domain 2.

The graph option within the partition command selects this method. There is also an option,
cgraph, to select whether the edge or true communication graph should be used.

4.4 Bandwidth minimisation methods

This method was proposed in [7] by Malone and is based on using a bandwidth minimisation algorithm
which renumbers the vertices of a graph. If we define a connection in the graph as Cij if it connects
vertex i to j, then a bandwidth minimisation will relabel vertices so as to minimise the largest value
of li - j I over all the graph.

The Malone method first requires a bandwidth minimisation on the nodal numbering. There are a

number of well known algorithms to do this and we use the Gibbs, Poole, Stockmeyer or Gibbs, King
variations [8]. Then the list of elements is sorted according to the lowest node number within each
element. The partition into p parts is then made be dividing this ordered list into the required number
of sections.

A simple variation on this method is to use an algorithm for profile minimisation, rather than
bandwidth minimisation. It is shown in [9] that in many cases this gives slightly superior results to
bandwidth minimisation. Another possibility is to use the Malone method in a recursive bisection
manner, though this is not implemented in this release.

4.5 Kernighan and Lin methods

The Kemighan and Lin algorithm (KL) [6] can be used to improve an existing partition of a mesh.
Like graph bisection, the KL method works in terms of the communication graph, rather than the
actual mesh.

The optimal bisection of the mesh is viewed as finding the mapping of vertices to domains 1 and
2 which minimises the number of cut edges in the graph. A cut edge is a link in the graph with its end
vertices in different domains. This criteria is not identical to that used in the cost geometric bisection
and glutton algorithms, of minimising the number of interface nodes.

Given an existing partitioning of the vertices into 2 domains, the KL method first requires an
evaluation of the net cost of swapping each vertex from its current domain to the other domain. This
cost is the change in the number of cut edges. In Figure 2 we show a possible initial assignment for
the vertices and the corresponding costs for each vertex if its domain assignment were to be swapped.
A reduction in the number of cut edges is taken to be positive.

One step in the first KL iteration involves:

1. Find the domain with most vertices (take the first one if equal).

2. Find the vertex in this domain with the best gain (i.e. gives the greatest reduction in the number
of cut edges if swapped). In the example this is vertex 2 (or 6).

6

3. Perform the swap of this vertex and update the cost values for neighbouring vertices, and record

the current cost.

4. Mark this vertex as being locked, i.e. it will not be swapped again on this pass.

Then another, unlocked, vertex is transferred from the domain 2 to 1 in the same way. This process is
repeated until all the vertices have been locked, even if at some stage the swaps actually increase the

total number of cut edges in the graph. The reason for accepting such moves is that at the end of one

pass the algorithm "back tracks" to find the point at which the edge cut cost was lowest. This point
might occur after a number of"bad" moves have been made and allows the method to perform limited
hill-climbing in its search for the global minimum.

After one such pass as described above, all the vertices are unlocked with domain assignments as
at the lowest cost point. The process is repeated over again until there is a pass which provides no
reduction in the number of cut edges.

4 +2

7 6 8 +1

Figure 2: The diagram on the left shows the graph of Figure I with half the vertices assigned to domain

1 (white circles) and half to domain 2 (black circles). The diagram on the right shows the reduction

in cut edges for swapping each of the vertices.

In implementing the KL algorithm it is important to perform the update of the cost list efficiently
after each transfer to avoid the method becoming excessively time consuming. This has been achieved
by using a linked list to store the cost values in, and by only adjusting neighbouring vertices.

The KL method requires a starting partition and there are a number of ways in which this can be
generated. Currently three variations have been implemented, as follows:

• Random start (kl-rand). A completely random assignment of vertices to domains can be
made. This method will give a different result each time it is run (depending on the random

number generation), but does not tend to force the result in any particular direction. It is of
course possible to perform several runs and select the best one with this method. This method
is usually slower than the non-random approaches.

• "Greedy" start (kl-greedy). Since the basic KL method produces an ordered list and then

always makes transfers from the domain with most nodes to the one with least, it is possible to

start from a configuration in which all the elements are in one domain and just continue to make

moves until balance is achieved. From this point the KL methods proceeds as normal. This is

7

similar to a "greedy" algorithm, just selecting those vertices that appear to be best in the first

pass.

• MinGraplz (kl- rgb). This is a similar approach to that used by Hu and Blake [2] whereby the
graph bisection method is used to generate a starting configuration.

All these variations can be run as bisection methods, which is the default. However, it is not necessary

to do so, as one can partition into unequal parts, e.g. splitting 1/3 : 2/3 on the first cut and
1/3 : 1/3 : 1/3 on the second. This option is available and allows non-power of 2 partitionings
to be made, though results are generally not as good as for the bisection approach. To select the
non-bisection version of any of the KL methods it is necessary to set the option klbisc=false in
the partition command.

5 Modelling parallel system performance

For a given algorithm and data distribution it is often possible to specify how much data needs to be

exchanged and between which processors this has to occur. The time to send n bytes between two

processors in a parallel machine can often be approximated by the equation

t = tstart + ntsend (2)

where tstart is the time to initialise communications and tsend is the time to send one byte. This
formula ignores many factors, such as contention (due to other messages in the system), multihop
costs, message length dependent buffering strategies and so on. However it is a reasonable first
approximation and the parameters have been measured for most parallel systems in common use.

If the knowledge of the algorithm communication requirements is combined with the data distri­
bution of a given partition and a communication cost model, like (2), then it is possible to estimate the
actual communication time.

As a first step in this direction, 2 simple cost modelling schemes have been built into ralpar. There
are two commands associated with these:

• Machine - this command allows machine communication parameters to be stored and viewed.
The parameters used at present are the t star t and tsend used above, expressed in units of
microseconds. Roo and N 112, which are the maximum communication rate and half performance

message length respectively, are calculated from tstart and tsend stored, though these are not
used. The Machine command also selects which machine type is to be used by the next table

calculation.

• Table - this command calculates or displays the results for a given mesh using a range of
partitioning methods. Results can also be written to file using this command.

The cost models currently implemented assume a simple matrix assembly calculation where each
processor will have to transmit or receive data proportional to the number of interface nodes that it has.
We assume that one 8 byte value will be associated with every interface node. For the first model we
assume communications on a bus type architecture, such as a network of workstations connected via
Ethernet. This is referred to as SEQCOMM as in this case only one message can be active at a time and

8

the total time spent in communication is just the sum of all the communication times for individual
subdomains. Thus we calculate the communication time T comm as,

p

Tcomm = L(8tsendli + Nitstard
i=l

p

NTtstart + 8tsend L f i

i=l

(3)

where Ii is the number of interface nodes associated with subdomain i and Ni is the number of
neighbour subdomains for i. NT is the total number of neighbours, given by summing Ni. Clearly,
there are a number of variations one could make in this formula, depending on the number of variables
to be evaluated and which processors need to know the result. However, (3) is one possible form and
we can make comparisons between methods using it, as long as we accept the results are qualitative
rather than quantitative.

The second model that has been implemented is referred to as P ARACOMM. This model allows
the case of all processors to performing communication in parallel. It is assumed that each processor
will have to send or receive 8 bytes of data for each interface node that belongs to its domain and
also to start communication with as many other processors as it has neighbours. Hence the total
communication time for one processor is just

(4)

Thus, communication tasks within a single processor will be done sequentially, but each processor
will do this in parallel with all the others. On some systems, such as the Intel iPSC/860, it is possible
to have concurrent communication on one processor using all the links available at once, though this
may result in increased network contention. This possibility is ignored in the PARA CO MM model. Note
that in this model we use the I i to represent all the interface nodes on subdomain i, where as in the
sequential model interface nodes were assigned to the first subdomain they appeared in. Hence we
have a larger amount of data interchange in this case.

Assuming that all the processors can operate in parallel without any contention, then the total
communication time will be given by the largest value of T comm (i). The PARACOMM model reports
both the maximum and average values of T comm (i). This model does not allow for any connection
between the messages, which will be likely on many real parallel machines, so is again only qualitative.

The Examples section shows how the Machine and Table commands can be used. Future
extensions will add to the number of models available.

6 Examples using ralpar

To start the standard version of ralpar, you need to be in a directory that contains the command
definition file commands. cmd. If this file is not present, ra/par will stop and issue an error message.
The RALBIC neutral file that describes the mesh to be partitioned should be copied (or linked) into
the same directory.

The partitioner is started by issuing the executable name, if it has been placed in your search path,
or the full pathname otherwise, e.g. . . I ralpar. This will cause a short introductory message to
be printed followed by the prompt Ralpar:. Any valid command can than be issued and these
commands are fully described in Appendix A. To get an online list of command names you just type

9

help. To get details of parameters for a specific command, such as the input command, you can

use help input. The system is reasonably simple to use and working through one or two of the

examples below should enable one to get to grips with it. The meshes used in these examples are

distributed with ralpar.

6.1 Partitioning a two dimensional mesh

The file CMPLXl. MSH contains the RALBIC neutral file description of a two dimensional mesh with
165 quadrilateral elements and 200 nodes. Note that all mesh files have the extension . MSH and that
the filename is in uppercase. The input command will automatically add the extension and convert
the name to upper case. Thus to read in this file we can use the command

Ralpar: input cmplxl

which is the same as

Ralpar: input file=cmplxl type=ralbic access=formatted

since the last two parameters are optional and default to these values .

. If you have a version of ralpar with the GKS interface for two dimensional mesh display, you can
than view the mesh using the command

Ralpar: display

This should give a plot of the mesh as shown in Figure 3.

Huh plot of CCl'I:Pl oPS

Figure 3: The mesh CMPLXl. MSH as displayed using the display command.

To partition the mesh the partition command is used. Thus, after having read the mesh with
the input command, one can type

Ralpar: part 4 geo

Ralpar: display

Ralpar: part 4 band

Ralpar: display

to compare the results of two of the methods for the case of dividing the mesh into parts. These results
are shown in Figures 4 and 5.

Note that after each partition command has been completed, the tool provides some informa­
tion on the number of interface nodes that have been generated, such as:

10

Mesh plot of COMP2 .PS using GEO-BISCECTION method

Figure 4: The mesh CMPLXl. MSH partitioned into 4 using the geometric bisection method.

Mesh plot of COMP4 . PS using MALONt method

Figure 5: The mesh CMPLXl • MSH partitioned into 4 using the bandwidth (M alone) method.

11

Inform: Interface node cost= 45
Neighbour domains: Ave.= 2.500 Max .= 3 Min.= 2

Inform: CPU time = 0.010 s

Also reported are the average number of domains about a domain and the minimum and maximum
value of this quantity. For methods which work on the communication graph, such as the Kemighan
and Lin ones, we also give the number of cut edges generated:

Ralpar: part 4 kl-gre
Inform: Edge cut cost= 26 for 4 domains
Inform: Interface node cost= 29

Neighbour domains: Ave.= 2.500 Max.= 3 Min.= 2

Inform: CPU time = 0.080 s

Note that the cut edge cost depends on the definition of the communication graph that is used. The
default is to use the edge communication graph (described in the section on methods). Using the true
communication graph with the same method, we get:

Ralpar: part 4 kl-gre cg=true
Inform: Edge cut cost= 62 for 4 domains
Inform: Interface node cost= 28

Neighbour domains: Ave.= 2.500 Max.= 3 Min.= 2

Inform: CPU time = 0.130 s

An important point to note here is that most optional parameters are retained, that is if you change the
default in one command, it will become the new default. Thus any partition commands issued
after the above one will use the true communication graph until it is explicitly changed.

Having made a partition of the mesh, the results can be written out to a new RALBIC neutral file
using the output command. This creates a new version of the neutral file in which the partition
number of each element is written in the element topology section. Thus to write the last partition
generated to the file CMPLX2. MSH one would issue the command:

Ralpar: output cmplx2

Appendix C explains how RALBIC format files can be convert from or to other formats.

6.2 Partitioning a three dimensional mesh

All the same commands used for two dimensional meshes can be used the three dimensional ones,
with the exception of the display command. The graphics are, at present, limited to display of two
dimensional meshes. However, the AVS version of ralpar, described in Appendix B, can be used to

visualise three dimensional partitioning results.
A simple three dimensional mesh, just consisting of one plane of hexahedral elements in the form

of a "T'', is given in the neutral file T. MSH which is provided with the standard ralpar release. This

mesh can be read and partitioned with a number of methods using the commands:

Ralpar: inp t
Inform: Data file read: Nodes= 3402 Elements= 1600

Ralpar: part 64 costgeo

12

Inform: Interface node cost= 1022
Neighbour domains: Ave.=

Inform: CPU time= 0.710 s
Ra1par: part 64 k1-greedy

Inform: Edge cut cost= 732 for
Inform: Interface node cost= 1438

Neighbour domains: Ave.=
Inform: CPU time = 1.360 s

Ralpar: part 64 kl-rgb
Inform: Edge cut cost= 604 for
Inform: Interface node cost= 1150

Neighbour domains: Ave.=
Inform: CPU time = 2.100 s

Ralpar: part 64 glutton
Inform: Interface node cost= 1022

4.844 Max.=

64 domains

4. 344 Max.=

64 domains

4.844 Max.=

Neighbour domains: Ave.= 4.844 Max.=
Inform: CPU time = 1.860 s

Ralpar: part 64 profile
Inform: Interface node cost= 2942

Neighbour domains: Ave.= 3.188 Max.=
Inform: CPU time= 2.680 s

Ralpar:

6 Min.= 2

6 Min.= 2

6 Min.= 2

6 Min.= 2

6 Min.= 1

For this highly regular case the cost-geometric and greedy (or glutton) algorithms give the best results
in terms of interface nodes.

If we wish to assign non-uniform weights to each element we can do this with the weight
command. In this case all the elements are of the same type, so using the weighting on number
of nodes (weight nodal) will have no effect. Instead we can use a file to specify the weights.
This can be a normal ASCII file with one number to a line which gives the weights in sequence.
For the T mesh there are 1600 elements, and if, as an example, we were to take the weight of
element i as wi = 1 + i/1600 then a suitable file would need to be created with the values 1.000625,
1.00125, ... ,2.0 . If we assume such a file (wfile) has been written, then it can be used in the following
way:

Ralpar: weight file wfile
Using element weights from file :wfile

Ralpar: info high
Ralpar: part 2 glutton

Inform: Target weight per partition = 0.120025E+04
Min. weight = 0.119931E+04 Max. weight = 0.120119E+04
Ratio (max. weight)/(ave. weight) 0.100078E+01

Inform: Using ISTART= 5
Inform: Interface node cost= 100

Neighbour domains: Ave.= 1.000
Inform: Workspace used 26210 out of

Max.= 1 Min.=
2800000 I*4 words

Minimum value of RALPAR MEMORY SF 15

13

1

Inform: CPU time = 0.730 s

Note that we have used the information command to increase the amount of detail that is reported

in this case. Much of the extra detail is not usually wanted, though in this case is allows us to see

how well the load balance has worked in the case with weighting. If highly non-uniform weighting

are used it is possible to get poor load balancing results. All weights must be strictly positive.

6.3 Comparing methods using the table command

The machine and table commands can be used to compare partitioning methods. Currently the
table command only implements the simple model for bus type communication architectures and
the parallel model, as described in the previous section. However, this command may be extended in
future version of ralpar.

Having read in a mesh file, such as T. MSH it is necessary to first select the machine parameters
to be used in the calculation. This is done with the machine command. To see what machines are

available you can use the command:

Ralpar: machine action=display

Machine Tstart Tsend n-half R-inf

i860 175.000 0.360 486.000 2.800

ipsc/2 612.000 0.360 1750.000 2.800
SuperNode 1200.000 1. 340 895.000 0.710
Transputer 8.730 1.130 7.844 0.898

This gives names and parameters of the available machines.
It is possible to extend this list within the current run of ralpar. For example to add the parameters

for PVM 2.4 running over a Ethernet at RAL the commands would be:

Ralpar: mach add new 1500 1.5 name=pvm24

This will cause pvm2 4 to be added to the list of available machines. Times are in microseconds and
communication rate in Mbytes/s. New machine names and parameters are not automatically saved
between runs of ralpar, though it is possible to use the write option of the machine command to
save the data and reload it in another run with the read option.

To compare selected methods over a range of partition numbers, one can then use the select
option of the machine command followed by the table command, e.g.

Ralpar: mach select pvm24

Ralpar: table compute methods=(kl-rgb,prof) part=(2,4,8)

Ralpar: table disp data=seqcomm

Table for: Sequ. Comm. model

2 4 8
kl-rgb

prof
3.984000E+03 1.646400E+04 4.838400E+04
4.104000E+03 1.111200E+04 2.628000E+04

14

The table gives the total time in microseconds for the communication based on the model discussed
previously. In this case the high cost of the start up times means that the profile method, which
minimises neighbour domains, gives better results than the kl-rgb method which gives a smaller
interface.

15

References

[1] HA Schwarz: "Uber einige Abbildungsauf-gaben", Ges. Math. Abh. 11 65-83 (1869).

[2] YF Hu and R Blake, "Numerical experiences with partitioning unstructured grids", Daresbury

Laboratory Report, DL/SCIJP865T, March 1993.

[3] C Farhat, W Wi1son and G Powell: "Solution of Finite Element Systems on Concurrent Processing

Computers" Engineering with Computers, 2, 157-165, (1987).

[4] RF Fowler, BW Henderson, and C Greenough, "Initial Experiences in Porting a Three­
Dimensional Semiconductor Device Modelling Program to the Intel iPSC/860", Rutherford
Appleton Laboratory Report, RAL-92-090 (1992).

[5] YF Hu and RJ Blake: "Numerical Experiences with Partitioning Unstructured Meshes", Dares­
bury Laboratory Report, DL/SCI!P865T, March 1993.

[6] B Kemighan and S Lin: "An efficient heuristic procedure for partitioning graphs", Bell System

Technical Journal, 29 (1970), pp. 291-307.

[7] JG Malone: "Automatic Mesh Decomposition and Concurrent Finite Element Analysis for

Hypercube Multiprocessor Computer", Comp. Meth. in Applied Mechanical Eng., 70, 27-58
(1988).

[8] Algorithm 582, Collected algorithms from ACM, ACM-Trans. Math. Software, Vol. 8, No. 2, p.
190, June 1982.

[9] C Greenough and RF Fowler: "Partitioning Methods for Unstructured Finite Element Meshes",
Rutherford Appleton Laboratory Report, (To be published).

[10] CRI Emson, C Greenough, NJ Diserens and KP Duffy, "RALBIC- A Simple Neutral F1le for

finite Element Data: File Definition", RAL Report RAL-87-102, 1987.

16

A The ralpar Command Summary

This Appendix provides a summary of all the commands available within ralpar. These commands

are listed below in alphabetic order, with full details of each in the corresponding section.

A.l CHANGE (Internal) - to change working directory
A.2 COPY (Internal) - to copy a file
A.3 DELETE (Internal) - to delete (remove) a file

A.4 DISPLAY (Application) - to display partition results
A.S HELP (Internal) - to access HELP system
A.6 INFORMATION (Application) - control message output
A.7 INPUf (Application)- to read in mesh file

A.8 LIST (Internal) - to provide directory listing
A.9 MACHINE (Application) - to specify machine constants

A.lO OUI'PUf (Application)- to write neutral file with partition numbers

A.ll PARTITION (Application) - to partition the data
A.l2 PLIST (Application) - to list element numbers in a partition

A.13 QUIT (Application)- to quit program
A.14 READ (Internal)- to redirect the input stream to read from a file
A.lS RENAME (Internal)- to rename a file
A.16 SYNTAX (Internal) - to provide the syntax of a command
A.17 TABLE (Application) - to setup cost table
A.18 WEIGHT (Application) - to define element weights
A.19 WRITE (Internal) - to provide monitoring of a session

17

A.l CHANGE (Internal) - to change working directory

Syntax

CHAnge [DIRectory=<string>]

Description

The CHANGE command allows the user to change the current working directory without
leaving the program.

Note that the CHANGE command is an INTERNAL command and is system dependent.

Parameters

DIRECfORY reset string : initial= '.'

DIRECfORY specifies the directory name to which the context should be

changed. This must be a valid name for the host system.

Examples

Some examples on UNIX systems are:

Ralpar: change /u/cg/ralpar/tests

Ralpar: CHA .. /tests

18

A.2 COPY (Internal)- to copy a file

Syntax

COPy [FILel=<string>] [,FILe2=<string>]

Description

The COPY command allows the user to copy one file to another without leaving the

program.

Note that the COPY command is an INTERNAL command and is system dependent.

Parameters

FILE! required string

The FILE! parameter specifies the source file. FILEl must be a valid file name
or expression on the host system.

FILE2 required string

Examples

The FILE2 parameter specifies the target file or directory. FILE2 must be a
valid file name or expression on the host system.

Some examples on UNIX systems are:

Ralpar: COPY /u/cg/ralpar/tests/testl data
Ralpar: cop .. /tests/example .

19

A.3 DELETE (Internal) - to delete (remove) a file

Syntax

DELete [FILe=<string>]

Description

The DELETE command allows the user to delete files from the file system without leaving

the program.

Note that the DELETE command is an INTERNAL command and is system dependent.

Parameters

FILE required string

FILE specifies the file(s) to be deleted. FILE must be a valid file name or
expression on the host system.

Examples

Some examples on UNIX systems are:

Ralpar: DELETE data
Ralpar: del .. /tests/example

20

A.4 DISPLAY (Application)- to display partition results

Syntax

Display [Boundary=<choice>] [,Mesh=<choice>] [,Label=<choice>]

Description

The DISPLAY command display the current mesh and partition on the selected output

device. The finite elements in the mesh a shrunk to help see the partition boundaries. The

partition boundaries are shown in dark lines and the elements are displayed with broken

lines. (This output is only currently available for two-dimensional meshes.)

Parameters

BOUNDARY retained choice : initial= YES

The BOUNDARY parameter controls the display of the partition boundaries.

Its values are: NO (no boundaries) and YES (partition boundaries are dis­

played).

MESH retained choice : initial= YES

The MESH parameter controls the display of the mesh. Its values are: NO (no
mesh) and YES (mesh displayed).

LABEL retained choice : initial= NO

The LABEL parameter controls the display of the node and element numbers .Its

values are: NO (no labels) and YES (node and element numbers displayed).

Examples

Ralpar: DISPLAY
Ralpar: dis yes yes yes

21

A.S HELP (Internal) - to access HELP system

Syntax

Help [KEY=<string>] [,OPTion=<choice>]

Description

Accesses to the inbuilt HELP system within the command decoder. HELP is one of the
internal commands of the command processor and has a companion command SYNTAX.

HELP has two parameters allowing the selection of help on a specific command and
the level of help required (SUMMARY, BRIEF and SYNTAX). If no command name is
given summary help is given on all the commands currently defined.

If an ambiguous or invalid command name is given a warning or error message is
given.

BRIEF help gives information on the purpose, syntax and the current state of the

selected command. A table of command keywords, their type, status and current value (if
applicable) is printed.

Parameters

KEY reset string : initial=

Either the global command name SUMMARY, or the specific command name
on which help is sought.

OPTION reset choice : initial= BRIEF

The level of help required. This can be SUMMARY, BRIEF or SYNTAX.

Examples

Ralpar: help plist

Name

Purpose

Syntax

Keyword

PARTITION

LIMIT

PLIST

to list element numbers in a partition
PList [Partition=<integer>] [,Limit=<integer>]

Type

integer
integer

Status

retained

retained

22

Current Value

0

50

A.6 INFORMATION (Application)· control message output

Syntax

INFormation [LEvel=<choice>]

Description

The INFORMATION command allows the user to control the amount of information

provided by the program during its execution.

Parameters

LEVEL retained choice : initial= QUIET

The LEVEL parameter controls the level of information output. Its values are: QUIET,
MEDIUM, HIGH and VERBOSE.

Examples

Ralpar: INFORMATION VERBOSE

Ralpar: info q

23

A.7 INPUT (Application)- to read in mesh file

Syntax

Input [File=<string>] [,Type=<choice>] [,Access=<choice>]

Description

The INPUT commands reads a complete mesh from the specified file. The description
contains the nodal positions and the element topologies. The command allows for the
three input formats currently being used: FELIB, BERTIN and RALBIC.
Provision has been made for both formatted and binary data files.

Parameters

FILE required string

The FILE parameter specifies the file name in which the data is held.

TYPE retained choice : initial= RALBIC

The TYPE parameter specifies the type of format in which the data is stored.
It has values: FELIB, BERTIN and RALBIC.

ACCESS retained choice : initial= FORMATIED

The ACCESS parameter specifies whether the data is stored in a formatted or
binary format. It has values: FORMATIED and BINARY.

Examples

Ralpar: INPUT FILE=DATA, TYPE=FELIB, ACCESS=FORMATTED

Ralpar: i data

24

A.8 LIST (Internal) - to provide directory listing

Syntax

LISt [FILe==<string>]

Description

The LIST allows the user to list files available to him on the systems file store.

Note that the UST command is an INTERNAL command and is system dependent.

Parameters

FILE reset string : initial=

The FILE parameter specifies a file name or file mask over which the listing is
to search. (The file mask will be system dependent).

Examples

Some examples on UNIX systems are:

Ralpar: LIST FILE=data
Ralpar: lis "*.£*"

25

A.9 MACHINE (Application) - to specify machine constants

Syntax

MAChine [ACtion=<choice>] [.Type=<choice>] [.TSTART=<real>]

[,TSEND=<real>] [.NAme=<string>] [.F1Lename=<string>]

Description

The MACHINE command allows the user control and modify the machine constant table.
The command allows the use to read his own set of machine constants into the table

and to save any modification made to these values.

Modification can include the addition of new news and changing the parameter values

associated with a particular machine. Once modified the new constants table can be
written to disc.

Parameters ACTION retained choice : initial= SELECT

The ACTION parameter control the process of the command. The current actions are:

SELECT - To select a particular set of machine values
READ- To read a table of values from F1LENAME
WRITE- To write the machine constant table to F1LENAME
DISPLAY- To display the current table values
ADD- To add a new machine to the table

TYPE retained choice: initial= 1860

The TYPE parameter specifies which set of machine parameters are to be used.
The current default systems are i860, iPSC/2, SUPERNODE and TRANS­
PUIER.

TSTART retained real : initial= 175.0

The TSTART parameter specifies the communication start-up time in seconds.

TSEND retained real: initial= 0.36

The TSEND parameter specifies the communication rate in bytes per second.

NAME reset string : initial=

The NAME parameter specifies the name of the new machine to be added to
the machine constants table.

F1LENAME retained string : initial= machine.cst

The F1LENAME parameter specifies the filename where the machine constants

table is stored.

26

Examples

Ralpar: MACHINE TYER=SUPERNODE ACTION=SELECT
Ralpar: roach add new 1500 1.5 pvm
Ralpar: machine action=dis

Machine Tstart Tsend n-half R-inf

i860 175.000 0.360 486.000 2.800
ipsc/2 612.000 0.360 1750.000 2.800
SuperNode 1200.000 1.340 895.000 0.710
Transputer 8.730 1.130 7.844 0.898
paragon 175.000 0.360 486.000 2.800

27

A.lO OUTPUT (Application)- to write neutral file with partition numbers

Syntax

Output [Flle=<string>] [.Type=<choice>] [.Access=<choice>]

Description

The OUfPliT command writes a complete mesh from the specified file. The description

contains the nodal positions, element topologies and domain identification. The command
allows for the three input formats currently being used: FELIB, BERTIN and RALBIC.
Provision has been made for both formatted and binary data files.

Parameters

FILE retained string : initial= IDENTIFY

The FILE parameter specifies the file name in which the data is held.

TYPE retained choice : initial= RALBIC

The TYPE parameter specifies the type of format in which the data is stored.

It has values: FELIB, BERTIN and RALBIC.

ACCESS retained choice : initial= FORMATfED

Examples

The ACCESS parameter specifies whether the data is stored in a formatted or

binary format. It has values: FORMATI'ED and BINARY.

Ralpar: OUTPUT FILE=IDENTIFY TYPE=RALBIC ACCESS=FORMATTED

Ralpar: out data900 bertin binary

28

A.ll PARTITION (Application) - to partition the data

Syntax

Partition [Processors=<integer>] [,Method=<choice>]

[.LEvel=<integer>] [.CGraph=<choice>]
[.KLBISC=<choice>] [,PWeight=<reaUist>]

[,Filepw=<string>]

Description

The PARITI10N command controls the partitioning of the meshes read into the program.
The command specifies the number of partitions, the method to be used and the values of
some control parameters.

Parameters

PROCESSORS retained integer : initial= 4

The PROCESSORS parameter specifies the number of partitions into which
the mesh is to be partitioned. The number of partitions must be compatible
with the method being used.

METIIOD retained choice : initial= GEO-BIS

The METHOD parameter specifies the partitioning method to be used. The
current methods are:

GEO-BIS- geometric bisection
COSTGEO -geometric bisection using lowest cost directions
GREEDY -greedy algorithm due to Farhat

GLUTTON - greedy algorithm with multiple seed point searching
for minimum cost
BANDWTH - nodal re-ordering for minimum bandwidth (Malone)
PROFILE- nodal re-ordering for minimum profile width
INERTIA - bisection based on axes of inertia
R-INER- recursive inertial bisection
KL-GREEDY - Kemighan & Lin with GREEDY starting point
KL-RAND - Kemighan & Lin with random starting point
SPEC - recursive spectral bisection
GRAPH- recursive graph bisection
KL-RGB - Kemighan & Lin with RGB starting point

LEVEL retained integer : initial= 5

The LEVEL parameter specifies the number of levels to be searched in the
GLUITON algorithm.

CGRAPH retained choice : initial= EDGE

29

The CGRAPH parameter specifies the type of communication to be used in

generating the communication graph. Possible values are EDGE or TRUE.

KLBISC retained choice : initial= TRUE

The KLBISC parameter specifies whether the Kernighan & Lin methods are to

be recursive bisection methods. Possible values are TRUE or FALSE.

PWEIGHT reset reaUist : initial= 0

The weights of each partition may be set by the PWEIGHT parameter. All
weights must be positive. If neither PWEIGHT or PF1LE are specified, all
partitions will have the same weight.

F1LEPW reset string : initial=

Examples

Partition weights will be read from the file named F1LEPW if this parameter

is set. The file is read in free format and should contain one number per line

giving the weight of each partition in sequence. All values must be greater

than 0.

Ralpar: PARTITION PROC=l6 METHOD=KL-RAND CGRAPH=TRUE

Ralpar: par 32 geo

Ralpar: part 6 prof pweight=(4,2,2,1,1,1)

30

A.l2 PLIST (Application) - to list element numbers in a partition

Syntax

PList [Partition=<integer>] [.Limit=<integer>]

Description

The PLIST command allows the user to display the elements allocated to a particular

partition. The command allows the user to control which partition results are display and

the number of elements displayed.

Parameters

PARITTION retained integer : initial= 0

The PAKTITION parameter specifies which partition is to be displayed. If this
is set to zero (0) all partition data will be displayed.

LIMIT retained imeger : initial= 50

Examples

The LIMIT parameter allows the user to limit the amount of data displayed by

the PLIST command.

Ralpar: PLIST PARTITION=2 LIMIT=lO
Ralpar: pl 0 50

31

A.13 QUIT (Application)- to quit program

Syntax

Quit

Description

The QUIT command terminates the program and closes all external files.

Parameters

This command has no parameters.

Examples

Ralpar: quit

32

A.14 READ (Internal) - to redirect the input stream to read from a file

Syntax

REad [Flle=<string>] [,ECHO=<choice>]

Description

The READ allows the user to process a stream of program commands stored in a file on
the system. The commands is the file are process as standard commands and requests for
information and error reports are directed to the terminal.

Note that the READ command is an INTERNAL command and is system dependent.

Parameters

FlLE required string

Input file name containing program commands.

ECHO reset choice : initial= OFF

Echo control option. Values can be ON or OFF.

Examples

Ralpar: READ FILE=script, ECHO=ON

Ralpar: read long-run off

33

A.lS RENAME (Internal)· to rename a file

Syntax

REName [ALel=<string>] [,F1Le2=<string>]

Description

The RENAME command allows the user to rename files from the file system without
leaving the program.

Note that the RENAME command is an INTERNAL command and is system dependent.

Parameters

ALEl required string

The F1LE1 parameter specifies the file to be renamed. ALEl must be a valid

file name or expression on the host system.

FILE2 required string

Examples

The F1LE parameter specifies the target file. FILE2 must be a valid file name
or expression on the host system.

Ralpar: rename xyz.msh XYZ.MSH

34

A.16 SYNTAX (Internal)- to provide the syntax of a command

Syntax

SYNtax [COMmand=<string>]

Description

Displays the formal syntax of all the currently defined commands. If the syntax of a specific
command name is required then that name is given as a parameter to the command.

Parameters

COMMAND retained string : initial= ALL

Examples

Specifies the commands name for which the syntax is required. If the syntax
of all the currently defined commands is required, then the special command
name ALL should be used.

Ralpar: syntax machine

MAChine [ACtion=<choice>] [,Type=<choice>] [,TSTART=<real>]

[, TSEND=<real> J [, FILenarne=<string>] [, NArne=<string>]

35

A.17 TABLE (Application) - to evaluate or display table of costs

Syntax

TABle [ACtion=<choice>] [,MEthods=<string>]

[,PARtitions=<stringJist >] [,FILename=<integer _fist>]

[,DAta=<clwice>]

Description

The TABLE command allows the user to compare a range of methods over a number of
partitions. The user has to define the methods to be used, and the number of partitions
which are used in the COMPUTE action. Results can then be viewed with the DISPLAY

action or written to file with WRITE.

Parameters

ACTION retained choice : initial= COMPUTE

The ACTION parameter specifies the action to be taken by the TABLE com­
mand. Currently values are:

COMPUTE - to perform the cost table calculations

DISPLAY -to display the calculated cost table

WRITE -to write a calculated cost table to file

FILE retained string: initial= TABLE.CNST

The FILE parameter specifies the file name of the cost table.

METIIODS retained string Jist : initial= (GEO-BIS,INERTIA)

The METIIODS parameter specifies the methods to be used in the table cal­
culations. Available methods are: GEO-BIS, COSTGEO, GREEDY, GLUT­
TON, BANDWDT, PROFILE, INERTIA, R-INER, KL-GREEDY, KL-RAND,

SPEC, GRAPH and KL-RGB.

PARTITIONS retained integer Jist : initial= (2,4)

The PARTITIONS parameter specifies the partitions that are to be used in
calculating the cost table.

DATA retained choice : initial= SEQCOMM

Examples

The DATA parameter specifies which results are to be shown when AC­
TION=DISPLAY is used. Options available are: ALL, SEQCOMM, PARA­
COMM, INTERFACE, NEIGHBOURS. Note that all the data is calculated
when ACTION=COMPUTE, irrespective of the setting of this option.

36

Ralpar: TABLE ACTION=READ FILE=COST-TABLE

Ralpar: table methods=(geo-bis,costgeo,greedy) part=(2,4,8,16)

37

A.18 WEIGHT (Application)- to define element weights

Syntax

WEight [MEthod=<choice>] [,File=<string>]

Description

The WEIGHT command allows the user to give weighting to the elements of a mesh being
partitioned. The weight of elements can be used to achieve load balance in applications
where mixed element types are being used.

The WEIGHT command will also allow the use to read weighting information from a
file.

Parameters

METHOD retained choice : initial= UNIFORM

The METHOD parameter specifies the weighting method to be used. Possible

values are:

UNIFORM -all elements have the same weight

NODAL - elements are weighted according to the number of nodes they
contain

FILE - the weighting information is to be input from a file

FILE retained string : initial=

Examples

The FILE parameter specifies the file from which weighting information is to
be taken.

Ralpar: WEIGHT METHOD=UNIFORM

Ralpar: we file weighting-in fa

38

A.19 WRITE (Internal) - to provide monitoring of a session

Syntax

WRite [STAte=<choice>] [,File=<string>] [,PROmpt=<choice>]

Description

Redirects the command decoder echo output to the file specified by the FILE parameter.
The information flow is controlled by the STATE parameter. This command can enable

the constructions of command files to drive the program in a background mode.
The echoing of the command prompt can be controlled using the PROMPT parameter.

Parameters

STATE required choice

Controls the flow of information to the monitoring file It has values ON, OFF
or CLOSE. ON switches on monitoring. OFF suspends it but does not close
the file and CLOSE ends monitoring and closes the file.

FILE retained string : initial= MONITOR

Output file name to receive the monitoring stream.

PROMPT reset choice : initial= OFF

Examples

Allows you to select whether the command prompt is echoed in the monitoring
file. It has values ON or OFF.

In this example commands are written to the file MONITOR without the prompt:

Ralpar: WRITE STATE=ON FILE=MONITOR PROMPT=OFF

39

B The avsralpar interface

This Appendix gives a brief overview of the AVS version of the partitioner, avsralpar. It assumes that
the user has at least a basic knowledge of AVS and how to run it on their system.

Avsralpar allows graphical display of the effects of partitioning. It does not at present allow you
to write out the results of the partitioning- for this you have to run the command line version of
ralpar. Though the AVS version does allow the maximum mesh size to be altered in the same way as
the command line version, avsralpar may not be able to deal with very large meshes due to the extra
memory needs of AVS.

B.l Starting up avsralpar

You can start the AVS version by reading the network file <avsralpar>/Networks/ralpar

into the AVS networks editor, where <avsralpar> is the directory containing avsralpar on your
system. Alternatively this network can be run directly using:

avs -network <avsralpar>/Networks/ralpar

For convenience this command is often aliased to avsralpar.

Similar information to that provided by the command line version is written on the standard output.
This includes interface node cost, neighbour information and cut edge counts.

When run without the Network editor, avsralpar will create two windows. The one on the right
is the geometry viewer which displays the mesh. The control panel appears on the left hand side. By
default the tool is set up to read the mesh file T. MSH on start up.

The partitioned mesh can be examined in the geometry viewer using the standard AVS control
techniques.

8.2 The control panel commands

There are five options available on the "Top level stack" in the control panel. These are as follows:

• ucd to geom. This gives two dials to input the element shrink factor (0-H>O) and the explode
factor (0-1 00). The first controls the reduction in size of element faces, to enable the mesh detail
to be seen. The second controls the separation of materials, as different domains are displayed
as different materials.

By default only the external element faces of each domain are shown. External edges

causes only the external edges to be shown. All faces requests AVS to show all the mesh.
This is not recommended for large meshes.

• ucd cell color. This option has no controls at present.

• generate colormap. This can control the colouring of the different domains. Domains are
coloured according to their domain number. The default is a linear colour map with red
corresponding to domain 1 and blue to the last domain. Normally there is no need to alter this.

• animated integer. This module can be used to step through a range of numbers of domains using
a given method. This is mainly for display purposes and works best with small meshes using
one of the non-bisection methods. For example, ifmin value is set to 1, max value to 64,

40

and steps to 64, then clicking on sleep to turn it off will cause the network to step through

all the results from 1 to 64 domains.

• partitioner. This selects the partitioner module. The Identify Browser selects the mesh
file to read. These must be in RALBIC format and have names of the form FILE. MSH. Click

on the file you wish to read. On the bottom left is the list of methods. Clicking on one of these

causes the method to be used on the current mesh. The number of partitions to be generated
is given by the partitions dial. The EGraph and KLBisc buttons can be toggled on and

off. They do not cause a new partition to be generated, but only effect the result of subsequent
calculations. EGraph on implies that the methods that use the connection graph will assume
that only elements with a common face are connected, otherwise any elements with one or more
common nodes are connected. KLBisc on implies that the KL methods work as bisection

methods, otherwise they work on one domain at a time.

Other useful options are available under the Geometry Viewer menu of the Data viewers

button. On machines with limited graphics hardware it may be useful to enable the bounding box, so

that AVS does not attempt continuous image updates during rotation.
Within the Geometry viewer, all the subdomains are separate objects so that they can be selected

and examined individually if required.

41

C Interfacing to the RALBIC neutral file format

The RALBIC neutral file format [1 0] is a simple ASCII file format for storing details of finite element

meshes and results. This file format permits many different data fields to be stored in a single file, but
for ralpar only the element topology and nodal coordinates of the mesh are required.

By convention all RALBIC file names are in upper case and the extension . MSH is used. A simple
example of the RALBIC neutral file for a two dimensional mesh with just two elements is shown
below:

$HEAD
VER 03 87

$CASE
Partitio

$NODE
6 2
1 O.OOOOOOOD+OO
2 O.OOOOOOOD+OO
3 0.1000000D+01
4 0.1000000D+01
5 O.OOOOOOOD+OO
6 0.1000000D+OO

$END-NODE
$ELEM

2 8
1 QU04

2 QU04

$END-ELEM
$END-CASE
$END-HEAD

O.OOOOOOOD+OO
0.1000000D+01
O.OOOOOOOD+OO
0.1000000D+01
0.2000000D+01
0.2000000D+01

AIR 4 1 2 4 3
AIR 4 3 4 6 5

The node section of the file is quite simple and just contains x and y coordinates for each node.
The element topology section ($ELEM) contains one record for each element. This gives the element
number, the element type, the material type. number of nodes in the element and then the node number.
The material type field is ignored on input into ralpar. On output, an integer is written into this field

indica~ng the subdomain to which this element has been assigned.
To actually create such files from another format, two example programs are provided with the

standard release of ralpar. The first is loc2ral. f which reads a mesh file in a simple format and

writes out a corresponding RALBIC neutral file. The source code for this program is provided along

with the RALBIC library so that it may be easily modified to read the data according to the preferred
format of the user. This will then provide a tool to convert from any desired format to RALBIC format.

A similar program to convert the output RALBIC file from ralpar into a local format is also
supplied as ral2loc. f. This can be modified to write the specific information that will be required
for the separate subdomains. The element types that are supported by the RALBIC interface include
those listed in Table 1.

For ra/par the ordering of nodes within an element is not important, even though the RALBIC

format does specify the required order. For the AVS version, avsralpar, the display of elements may

be incorrect if strange nodal orderings within elements are used, though the results should still be

correct. The assumed scheme is to number the nodes anticlockwise. For 3D elements, the lower plane

is numbered first, then the upper plane, starting at the same point as the first plane.

42

Element No. ofnodes Name Type No.

Hexahedra 8 BR08 1

Prism 6 WG06 2

Tetrahedra 4 TE04 3
Triangle 3 TR03 7
Quadrilateral 4 QU04 9
Line 2 LI02 11

Pyramid 5 PY05 5

Table 1: Some RALBIC element types.

D Control of memory allocation

Ralpar is written in standard Fortran 77 as far as possible. As the standard does not allow dynamic

memory allocation, most arrays are treated as having fixed size. To allow you to ad just the memory use
according to that available on your machine (and size of mesh). dynamic allocation of work arrays is

made at the top level. By default, space is allocated for about 30000 nodes/elements. To partition larger
meshes you need to set the environment variables RALPAR_NODES and/or RALPAR_ELEMENTS. For

example, if you have 100000 nodes and 120000 elements you could issue the command (csh):

setenv RALPAR ELEMENTS 130000

before running ralpar. In the Boume shell the command would be:

RALPAR ELEMENTS=l30000

export RALPAR_ELEMENTS

Note that if you only set one of nodes or elements. the other defaults to the same value.

Of course. some methods require much more memory than other methods and the partitioner
allocates enough for all methods by default (assuming "reasonable" limits on connectivity). You can
change the amount of workspace allocated by setting the environment variable RALP AR_MEMORY _SF

if your machine cannot allocate sufficient memory for a given number of nodes/elements. The default
value of this is 100, so to half the workspace. you could issue the command (in csh):

setenv RALPAR MEMORY SF 50

Note that some methods may not run with this reduced workspace. and you should only try this if

the partitioner will not run because it failed to allocate enough memory for the requested mesh size.
To find out how much of the available workspace is actually being used by each method, you can

use the command information high. Any subsequent partition commands will then also
print out some details of how much space was actually used.

43

