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Abstract 

We discuss the cosmology of string models with perturbative supersymmetry break­
ing at a scale of O(TeV). Such models exhibit Kaluza-Klein like spectra and contain 
unstable massive gravitinos/gravitons. We find that considerations of primordial 
nucleosynthesis constrain the maximum temperature following inflation to be not 
much larger than the supersymmetry breaking scale. This imposes conflicting re­
quirements on the scalar field driving inflation, making it rather difficult to construct 
a consistent cosmological history for such models. 



There has recently been much interest in the possibility of realistic string theories 
with spontaneous perturbative supersymmetry breaking [1, 2]. These theories are very 
predictive in that they yield, in addition to the supersymmetric standard model, an en­
tirely new phenomenon with a striking experimental signature [1]- [5]. Specifically they 
contain a repeating spectrum of Kaluza-Klein (KK) modes all the way up to the Planck 
scale, whose spacing ( E ~ 1/2R, where R is the radius of compactification) is comparable 
to the supersymmetry breaking scale which is of O(TeV). These modes can be excited 
at forthcoming accelerators such as the LHC [3), hence such models should be of im­
mediate interest to experimentalists. However there are open questions concerning the 
cosmological viability of these models which need to be addressed first. In this paper we 
will investigate whether the Kaluza-Klein spectrum is consistent with cosmological con­
straints on massive unstable relic particles [6]. (Note that the more commonly discussed 
models with dynamical supersymmetry breaking in a 'hidden' sector are also constrained 
by similar cosmological considerations [7, 8].) 

The only previous relevant discussion on the cosmology of Kaluza-Klein theories con­
centrated on the prospect that they may include absolutely stable massive particles re­
ferred to as 'pyrgons' [9]. Such particles reside on the first rung of the ladder of Kaluza­
Klein states, and are unable to decay becau~e they carry a charge which is not exhibited 
by any of the massless particles. We shall not consider such models since, as we shall see, 
'pyrgons' do not exist in string theories with spontaneously broken supersymmetry. Al­
though motivated primarily by string theory, our discussion will apply to all Kaluza-Klein 
theories in which the couplings are approximately independent of winding number. 

For such a theory, the thermal history of the universe is radically altered in the follow­
ing way. We assume, as is usual, that there was an inflationary DeSitter phase, followed 
by reheating to a temperature TR [10]. In conventional supergravity, reheating results 
in the production of gravitinos with number density proportional to TR; the subsequent 
decays of the gravitinos can adversely affect primordial nucleosynthesis and requiring that 
they not do so results in an upper bound on the reheat temperature of rv 105 TeV [11]­
[13]. After reheating, the entropy, which we shall assume is subsequently conserved, is 
evenly spread out amongst. the strongly (as opposed to gravitationally) interacting KK 
modes and the massless matter multiplets. At a temperature much higher than the KK 
level-spacing (T ~ t), nearly all the entropy is in the KK modes and almost none in the 
matter multiplets. Until the temperature drops below the first KK level, the evolution of 
the universe is therefore governed by the KK modes, whose contribution to the entropy is 
continually decreasing as the temperature drops. During this period there is production 
of massive gravitons and gravitinos which can only decay to the massless (twisted) parti­
cles since their decays to untwisted KK modes is kinematically suppressed. Under these 
circumstances one might suspect that there is very severe bound on TR and this indeed 
turns out to be the case. 

Let us first present the 'conventional' picture. Gravitinos are generated at high tem­
peratures by two-body scatterings and the equation governing their number density is 

. ( ) 2 n3/2 
n3/2 + 3 H n3/2 = av nrad- -- , (1) 

T3/2 

where His the Rubble expansion rate and (av) is the thermally averaged cross-section for 
gravitino production in the radiation bath of number density nrad· The gravitino lifetime 
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T3f2 is given at rest by [14] 

2 I 3 s (m3/2)-
3 

T3f2 "' MPl m3/2 "' 10 sec Te V ' (2) 

where Mp1 = G"t.//2 ~ 1.22 x 1016 TeV. Given the effective N = 1 supergravity couplings, 

8L = V21f T p J.L!I./, pa h --Aa/ 0' 'f/p J.L!I + .C. 
2Mpl 

V2i ·'· J.La i P.!. h +--'f/p/ J.Lz I 'f/i + .c. , 
Mp1 

(3) 

it can be shown that ( O'V) "' ( 81r I Mt1) at temperatures T ~ MPl [12]. The radiation 
density is given by 

((3)T3 

nrad = g(T) --2-, (4) 
7r 

where g(T) counts the relativistic degrees of freedom contributing to the total number 
density and is constant above temperatures of O(Te V) for the minimal supersymmetric 
standard model (MSSM), with 

g(TR) = g = 42712 . (5) 

Assuming the canonical radiation-dominated evolution at this time, we can solve eq.(1) 
to obtain 

y:: _ n3/2 9s(T) nrad(TR)(O'v) 
3f 2(T) =- = -- exp( -tlr3f2), 

nrad 9s(TR) H(TR) 
(6) 

where time is related to temperature as 

( 
T )-2 

t = 2.42 X 10-12 
[gs(T)t

112 sec TeV ' (7) 

and the factor 9s(T)I 9s(TR) takes into account the decrease in the number of relativistic 
degrees of freedom, given constant total entropy 

1r2T3 
sR3 = 9s(T)3Q R3 = constant . (8) 

Note that we have taken 9s(T) to also be the number of degrees of freedom determining 
the total energy density, as is appropriate at temperatures above a few Me V (when the 
neutrinos decouple). For the MSSM, one has 

9s(TR) = !Js = 91514 , (9) 

at high temperatures when all particles are relativistic. 

Now let us consider the cosmological evolution when KK modes are present. Above 
the supersymmetry breaking scale the number of relativistic degrees of freedom is now 
no longer constant. The KK modes are labelled by quantum numbers of internal mo­
menta/ charges which are of the form 

n mR 
PL =-±-

R R 2 

3 

(10) 



where R represents some internal radius of compactification. The winding modes (m =J. 0) 
have masses of O(MPI) and need not be considered further, while the particles in the nth 
KK mode have masses mn "' nE. Roughly speaking, whenever the temperature is raised 
by E, two new levels of (gauge interacting) KK excitations becomes relativistic, so that 
the number of degrees of freedom increases linearly with temperature. We can allow for 
this by writing 

(11) 

The constants 9K, 9sK are determined by evaluating the number density and entropy 
density, respectively, of the plasma. For example consider the number density of KK 
modes in equilibrium: 

L 9i J 3 1 ne (T) = -- d p , 
q n (211' )3 exp( y'p2 + n2 E2 jT) ± 1 

(12) 

where 9i is the total number of interacting degrees of freedom in any KK level. Using 
various redefinitions, this becomes 

9iT4laoo 1oo x2 neq(T) "' -- dx . dy 
7l'

2
E o €/T exp y'x2 + y2 ± 1 

(13) 

where we have approximated the sum at small c/T by an integral, and included a factor 
of two for positive and negative values of internal momentum (defined above as n). The 
integral becomes temperature independent for T ~ E, and we find that it deviates by less 
than 5% from the T 4 behaviour for high values of T/E (~ 2). The limiting values (when 
c/T ---t 0) may be determined analytically to be 

9K = 9i(XF + XB) , (14) 

where 
XF = 771' 5 /480 ((3) = 3.71 , XB = 71' 5 /60 ((3) = 4.24 . (15) 

In a similar fashion, the contribution of the KK modes to the total entropy may be used 
to determine 9sK· Using s _ (p + p)jT, we find that 

9iT
4 100 1= x

2 
( 4x

2 
/3 + 3y

2
) 

Seq(T) ~ -- dx dy --r==;;;::::=::::::::;;:--;--:-
7l'2E o €/T exp y'x2 + y2 ± 1 ..jx2 + y2 

(16) 

which gives limiting values of 

9sK = 9i(XsF + XsB) ' (17) 

where 
XF = 10125 ((5)/6471'3 = 5.29 , XB = 675 ((5)/471'3 = 5.64 . (18) 

In the spontaneously broken string theories , each KK level comes in N = 4 multiplets, 
so that KK gauge bosons contribute 8 bosonic and 8 fermionic degrees of freedom in the 
vector and fermionic representations of S0(8) respectively. In the minimal case in which 
the KK excitations are in SU(3) ® SU(3)c multiplets [4], this gives 

9K = 128(XF + XB) = 1018, 9sK = 128(XsF + XsB) = 1400 . (19) 
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Of course there are additional contributions from higgs multiplets which are also expected 
to have KK excitations, so we shall consider these values to be a lower limit. To find the 
time-temperature relation, we assume that after inflation the metric is of the usual FRW 
form, with all the relativistic degrees of freedom in chemical equilibrium and therefore at 
the same temperature. Entropy conservation then gives 

and in particular 

9sK (T) 1r
2T 4 

sR3 = ----R3 =constant, 
f 30 

4T 
H=---3T. 

Thus the Hubble parameter is 

· rs/2 
H(T) = 1.66 - . 

MPI 

Differentiating with respect to time and substituting eq.(21 ), we find 

8 
t(T)- ---

15H(T) 

For the minimal value of 9sK above, this becomes 

(-
c ) 112 (-T ) -s;2 

t = 6.9 x 10-
14 

sec TeV TeV , 

at temperatures T ~ t. 

(20) 

(21) 

(22) 

(23) 

(24) 

In order to ascertain the abundance of massive gravitons/gravitinos, we need to iden­
tify the processes which can contribute to their manufacture and decay. Vertices between 
KK modes (which come from untwisted sectors of the string theory) must satisfy the con­
dition that their internal momenta/charges are conserved, and are simply proportional 
to the string coupling constant. In addition vertices can exist between untwisted modes 
and twisted (massless) matter multiplets, with couplings 9n <X g8-m~/M~1 ~ g, where 8 
is some constant depending on the type of compactification [15]. For masses much less 
than Mp1 these are clearly unsuppressed, so that we can write down effective terms for 
the coupling of the KK modes to each other, and to the massless multiplets. The creation 
of KK gravitons and gravitinos goes via effective four particle interactions. For example 
the cross section for 

(25) 

goes as 

(26) 

where the integers k, l, m, n label KK modes, and we have omitted numerical factors of 
0(1) coming from the trace over solutions to the Rarita-Schwinger equation and phase­
space integrations. We therefore write the total cross section for n-gravitino production 
from k plus l interactions as 

aklmn = & 8 ( n + m - k - l) . (27) 
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where a- is a factor of 0(81r / M~1 ), which is dependent on the details of the model, but in­
dependent of the KK-modes. In addition there is a contribution coming from the massless 
sector which we shall neglect since there is only one such sector. 

The massive n-gravitinos/gravitons may decay into either two massless twisted states, 
or to untwisted l plus n - !-states. In the first case the decay rate is found to be, 

r twisted ~ ( ;}J · (28) 

The decay to untwisted states is kinematically suppressed however. Consider a positive-n 
state decaying to an l-state plus an n - l-state. If l is negative then the masses of the 
products is lnlc + 2lllc which is larger than the mass, lniE, of the decaying particle. If l 
is also positive, then sum of the product masses is equal to that of the decaying particle. 
The decay rate is proportional to the momentum of the decay products in the centre of 
mass frame: 

r untwisted <X lP I = 
[[2- (n- l) 2]2 [[2 + (n -l)2] Elnl 

1+ 4 -2 2 -2 =0. 
n n 

(29) 

As discussed in ref. [5], there may be a mass splitting of 0( E) in any KK level, so that the 
decay rate to untwisted modes will generally be suppressed by a factor 1/lnl. When the 
sum over l is taken this decay mode may be of the same order as the decay to twisted 
states. We shall therefore take the lifetime of n-gravitons/gravitinos to be 

4 E -3 
( )

-3 

Tn "'9.8 X 10 sec TeV 1nl , (30) 

corresponding to the lifetime for decay of standard gravitinos into photons and photinos 
[14]. Inclusion of all the strongly interacting, twisted, final states would speed up the 
decays by a small factor. For example, if the twisted products consisted of all the matter 
and Higgs particles in the MSSM, then the above would be reduced by a factor 12/49. 

With these estimates we are ready to tackle the evolution of the n-graviton/ gravitino 
number density nn. This is governed by the equation [16] 

where the fi are the occupation numbers and we have assumed that the massive particles 
are non-relativistic when they decay. This equation describes the creation of a gravita­
tionally interacting n-state plus a gauge interacting m-state, from gauge interacting k 
plus !-states. We have taken the occupation number of then-state to be negligible (since 
it is never in equilibrium), so that the reverse process does not occur. We may reasonably 
adopt equilibrium distributions for the three remaining (k, l, m) states, omit the Pauli 
blocking factor for the m-state, and rewrite eq.(31) as 

nn + 3Hnn + nn = L aklmn neq(k,T) neq(l,T), 
Tn mkl 

(32) 
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where, since we are concerned with the longest lived states, we have taken v i=:j c. Although 
approximate, this expression has the correct temperature dependence and we shall bury 
our approximations in the parameter & which is still of 0(81r I M~1 ). Defining 

nn = nn exp( -tiTn), (33) 

and using eq.(21), we find 

4 d (nn) ~ T dt T 4 = ~ O"klmn neq(k,T) neq(I.T) exp( -tiTn) . (34) 

The number density of the individual k and l states follow some equilibrium curve which 
obeys, e.g. 

+oo 
nrad :::::::: neq(T) = L neq(k,T) . 

k=-oo 

(35) 

Since the epoch of nucleosynthesis is much later than the time at which these particles 
are created, we take the exponential factor to be unity for the purposes of calculating 
the initial abundance. Performing the summations in eq.(34) and integrating from TR to 
T = E gives 

Y. _ ~ 9s(T) 9K & nrad(TR) (- I ) 
n(T) -

9 
A A H exp t Tn , 
9s 9 (TR) 

(36) 

where, again, there is a factor to account for the change in photon number density between 
E and the final temperature T < E. Note that the final density of n-gravitonsl gravitinos is 

proportional to T~12 . For typical parameter values (& = 81riM~1 , 9K = 1018, 9sK = 1400), 
this is 

( 
E )1/2(T )3/2 

Yn(T) rv 3 X 10-
16 

TeV Te~ exp( -tiTn) (37) 

at T :S t; the relic abundance during nucleosynthesis would be smaller by a factor 9s(T)I 9s(To) 
where 9s(To) = 43111 is the effective number of entropic degrees of freedom at T ~ me 
(taking into account the three decoupled relativistic neutrino species). This is close to 
the value of 3.36 for the effective number of degrees of freedom contributing to the total 
energy density, so for convenience we have ignored the small difference. 

The energy density in the relic KK modes decreases as T 1713 forT> t, i.e. faster than 
the energy density in 'radiation' (including KK excitations) which goes as T 5

• (At T < E 

the former decreases as T 1613
, while the latter does so as T 4

.) Therefore the universe will 
become 'radiation' dominated when 

1r2T4 L 1nl E Yn(T) nrad(T) < 9s(T) -- . (38) 
n 30 

where 9s(T) is taken from eq.(ll). Anticipating the bounds which we will find on TR, the 
temperature at equality will be higher than E, therefore the appropriate time-temperature 
relationship is eq.(24). Since at late times, the number density of KK modes is dominated 
by the lighter (slowly decaying) particles which have a small exponential suppression factor 
in Yn, we may approximate the sum on the left above by an integral, 

n~oo In I exp( -tn3 ITt) :=::::: fooo d2x x exp( -x3
) ( :J -Z/

3 

~ r (~) (:J -2/3 (39) 
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This expression is valid for t ,.S T1 ; at later times, the KK modes have all decayed, i.e. 
their number is exponentially suppressed. Therefore 'radiation' domination will occur at 

( 
E ) 5/2 ( TR ) -

1 

T ~ 1.1 x 10
6 

TeV TeV TeV ( 40) 

corresponding to a time 

S (-
E )1/2 (-TR )5/2 . t ~. 5.3 X 10-29 

·- ec TeV TeV (41) 

It may appear surprising that the higher the reheat temperature, the less likely the grav­
itinos are to matter dominate at a late time. This can be explained as follows; there is 
only a limited amount of entropy, and when TR is high, more of it is initially distributed 
in heavier modes with higher KK number. Since these modes decay more rapidly, they 
are able to matter dominate only at very early times. 

Y../e can now examine the effect of the decaying particles on the abundances of the light 
elements. The effect of hadronic decays occuring at the beginning of the nucleosynthesis 
era on neutron-proton interconversions has been studied in detail in ref. [17]. In the time­
interval! ,.S t; ,.S 102 sec, the requirement that the 4 He mass fraction not be increased above 
25% translates into the requirement (see figure 3 in re£.[6]): 

~ jnj ( T;V) Yn(T) nrad(T) ,.S 2 X 10-
11

, ( 42) 

which corresponds to the bound 

( 43) 

Fort~ 104 sec, the photodissociation of 2H due to the radiation cascades triggered by the 
decaying particles impose the constraint [6] 

(44) 

or 

(45) 

One should however bear in mind that the approximation we used to calculate the KK 
number density breaks down when TR becomes comparable to E since the number density 
is then suppressed by a Boltzmann factor. We can however justifiably assert that the 
maximum temperature which the universe reached cannot have significantly exceeded the 
supersymmetry breaking scale. 

A precise formulation of the early history of the universe is lacking for these models, 
however it is clearly essential that there be an inflationary phase [10], followed, as we 
have shown, by reheating to a temperature no greater than the supersymmetry breaking 
scale. We now argue that this imposes a conflicting set of requirements on the scalar 
field <I> which is presumed to drive inflation. In order to account for the amplitude of 
the scale-invariant density fluctuations probed by COBE [18], mq, is required to be of 
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0(108) TeV [19]. For the reheat temperature to be low, the inflaton must then be very 
weakly coupled to matter fields. However even assuming only gravitational couplings, i.e. 
a decay rate f<t> "'m~/M~1 , the reheat temperature cannot be reduced below 

[
9sK(T)] -1/4 1/2 3 ( E )1/4 ( ffi<I> )3/2 

TR rv -f_- (r<I>MPI) r'V 10 TeV TeV 108TeV ' ( 46) 

where TR has been obtained by equating r<l> to the Rubble rate H. In fact, the only 
mass scale in these models, apart from the Planck scale, is the supersymmetry breaking 
scale. One could then envisage a scenario with two epochs of inflation [8]; the first stage to 
create the correct level of density fluctuations, and the second, with m<I> "' E, to remove the 
KK states. However assuming gravitational couplings as above, the reheat temperature 
is then of O(keV), i.e. too low for even primordial nucleosynthesis to occur. On the 
other hand if the inflaton is coupled directly, the reheat temperature would be too high, 
unless the gauge coupling is unnaturally small, of 0(10-4

) [8]. A way out may be to 
introduce an intermediate scale of unification, with a low-mass 'flaton' singlet remaining 
after symmetry breaking [20]. However the reheat temperature is then of O(MeV), i.e. 
barely high enough for nucleosynthesis, and further, the Affieck-Dine mechanism must be 
invoked in order for the baryons to be synthesized just beforehand. 

In conclusion, it appears difficult to construct a consistent cosmological history for 
models with spontaneous supersymmetry breaking. In view of their many other advanta­
geous features [2] , possible resolutions to this problem should be pursued. 
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