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Abstract 

Dynamical Properties of Critical and 

Paramagnetic Spin Fluctuations in Anisotropic 

Heisenberg Magnets 

S. W. Lovesey, DRAL, Rutherford Appleton Laboratory 
Oxfordshire OXll OQX, England, U.K 

E. Balcar, Atorninstitut der. 6sterr. UniversiHiten, 
A-1020 Wien, Austria 

Decay rates for long wavelength spin fluctuations in the standard x-y model, and a second model 

described by the sum of the full Heisenberg exchange interaction and a single-site anisotropy are 

calculated on the basis of a coupled-mode theory in which the isothermal susceptibilities are 

consistent with corresponding spherical models (in consequence, quantum fluctuations are 

absent). Results for the decay rates are provided for two and three dimensional lattices, and 

ferromagnetic and antiferromagnetic exchange interactions. Their dependence on the wave 

vector, q, and the inverse correlation lengths are derived from integral equations that admit 

homogeneous functions as solutions. The decay rates may thus be expressed as l 12R 1(q/K.,) and 

q<d+2
)1
2R2(q/K, q/K.,) where R 1 and R2 are, respectively, scaling functions for the x - y and 

ferromagnetic single-site anisotropy models, d is the spatial dimension, and K(K.,) is the out-of

plane (in-plane) inverse correlation length. Analytical and numerical values of the scaling 

functions are presented for the limits of main physical interest. 





1. Introduction 

We report findings from calculations of the time dependence of spin fluctuations in two 

magnetic models that have in common lattice isotropy and spin space anisotropy: (I) the x-y 

model, in which the usual Heisenberg exchange interaction between neighbouring spin variables, 

{Sa}, is truncated to two of the three Cartesian components of the spins, usually labelled the x 

and y components, and (11) the full Heisenberg exchange interaction plus a single-site anisotropy 

of the form,- B(S;) 2
• The latter model is believed to furnish an appropriate description of a 

number of magnetic materials, e.g. the rutile antiferromagnets MnF2 and FeF2 (Collins 1989, 

Cowley 1987). Early studies of critical spin fluctuations in model-11 are reviewed by Kawasaki 

(1976), and a variant of it is included in the range of models studied by Bagnuls and Joukoff

Piette (1975). The x- y model dates back to 1956 and it is now a standard model in statistical 

mechanics; its static properties calculated for quantum spins (mainly spin-lh) are reviewed by 

Betts (1974), Hohenberg and Halperin (1977), and Mattis (1985). The x- y model is relevant 

to the interpretation of properties of liquid helium and displacive transitions exhibited by 

ferroelectric materials, in addition to some anisotropic magnets. In this model, the order 

parameter, the total x-component of the spin, say, does not commute with the Hamiltonian. In 

fact, both models have this feature which has a profound effect on their dynamical properties, as 

we will see. The total z-component of the spin in the x-y model and the model with a single-site 

anisotropy, on the other hand, is a constant of the motion. If the anisotropy parameter, B, is 

negative the anisotropy suppresses fluctuations in the z-components of the spins, and with an 

increasing magnitude of the anisotropy parameter the model approaches a planar system. While 

similar to the x-y model, of course, the planar limit of model-11 is a fundamentally different 

system since it has almost two spin degrees of freedom, whereas in model-1 all three spin 

degrees of freedom fully participate in its static and dynamical properties. By way of an 

illustration of the differences in the properties of the two models, we anticipate the results for 

the dynamic critical exponent, z. For model-1 (ferromagnetic 11) we find z = d/2 (lh(d+2)) 

where d is the spatial dimension of the lattice. The different values of z for the two models is 

due in the x-y model to the absence of out-of-plane exchange interactions, so this component of 

the spin density mimics a perfect paramagnet with a Pauli susceptibility. 



Both spin models taken on a three dimensional lattice (3D) are believed to display long

range magnetic order below a critical temperature, Tc. Previous work on their dynamical 

properties has largely focused on the nature of the critical fluctuations at, and in the immediate 

vicinity of, the continuous phase transition at Tc. By contrast, for two dimensional lattices (2D) 

the models do not appear to support long-range magnetic order at a finite temperature; for a 

review of the static properties, see Landau (1993). This observation for the x-y model is 

supported by the Mermin-Wagner (1966) theorem for models with a continuous spin symmetry. 

There is a subtlety with the quantum x-y model on a 2D lattice, for there is some evidence that 

the static susceptibility, specific heat, etc., diverge at a finite temperature. An implication is that 

below the transition the spin autocorrelation function does not decay exponentially but rather as 

some power law. The nature of the phase transition is possibly akin to the one believed to occur 

in the pure planar model, where it is ascribed to a spontaneous generation of vertex 

(topological) excitations (Berezisnkii 1971, Kosterlitz and Thouless 1973). In conclusion, for 

the 2D, quantum versions of the models under investigation our knowledge about the static 

correlations is by no means complete, to the extent that the ground state of the x-y model is not 

known (for any spatial dimension). 

Our models are defined to possess the static correlation functions of the appropriate 

spherical models. In consequence, our models do not contain quantum mechanical fluctuations. 

The spherical models in 3D support long-range correlations at a finite temperature, and in 2D at 

a finite temperature there is no long-range order and no discontinuities in macroscopic response 

functions. It is found that in 2D the spin space anisotropy increases in correlation length 

compared to its value in the isotropic Heisenberg model, i.e. as a result of the spin anisotropy 

the 2D models are that much closer to long-range magnetic order. 

Our investigations of model-1, 11 have been conducted for 2D and 3D lattices with 

ferromagnetic (F) and antiferromagnetic (AF) exchange couplings (NB, for the x-y model, and 

model-11 with planar anisotropy the critical fluctuations do not depend on the nature of the 

exchange coupling). Calculations are based on the coupled-mode approximation for spin 

fluctuations. For a ferromagnetic coupling there are two coupled equations of motion, for the 

interacting in-plane (x,y) and out-of-plane spin fluctuations, and for an antiferromagnetic 

coupling the number of equations is doubled because important fluctuations occur at the 



Brillouin zone centre and the wave vector that defines the incipient antiferromagnetic ordering. 

In the coupled-mode approximation, each equation of motion is an integral-differential equation 

that relates the spin response function to its memory function, which is a spatial convolution of 

products of spin response functions, see e.g. Lovesey (1986). To ascertain the nature of the 

dynamic spin fluctuations it is sufficient to study the decay rates for the relevant, long 

wavelength fluctuations (this is sometimes referred to as the use of a Markovian 

approximation). While this level of treatment of the equations of motion does not provide 

insight to possible deviations of power spectra from a Lorentzian shape, decay rates can be 

extracted from appropriate experimental data (Collins 1989, Cowley 1987). Hence, by 

calculating decay rates, which are functions of the wave vector and temperature, we 

characterize the nature of the relevant fluctuations and provide quantities which can be 

compared to experimental findings in the appropriate cases. The decay rates for both models are 

homogeneous functions. We provide analytical and numerical values for the scaling functions in 

the limit that are of main physical interest. 

With regard to 2D-systems, there is a dearth of magnetic materials which are really well 

described by either of our two models, in the manner of the very strong evidence that the AF 

isotropic Heisenberg model describes RbMnF3• However, appropriate materials might be 

discovered. For the moment, our findings for the two models on 2D-lattices are a contribution 

to the zeitgeist in the statistical mechanics of magnetic models. To the best of our knowledge, 

there is no prior work on the application of the coupled-mode theory to the models we have 

completely specified in terms of spherical models and the coupled-mode theory. 

The model Hamiltonians are given in the next section, and the corresponding coupled

mode equations, on which our calculations of the decay rates are based, are set out in §3. 

Section 4 is given over to a detailed discussion of static spin correlation functions which 

complete the specification of the models. The static susceptibilities are derived from the 

coupled-mode equations via the f-sum rule, and they are consistent with the standard spherical 

model. Decay rates for our two models, on 2D and 3D lattices with both ferromagnetic and 

antiferromagnetic exchange couplings, are the subjects of §§5,6. Our findings are gathered and 

discussed in § 7. 



2. Hamiltonians 

Classical spins, {Sa}, are placed at sites, labelled by the index a, on a lattice with spatial 

dimension, d. An exchange interaction, of strength I, operates between nearest-neighbour 

spins. The x-y model is defined by the Hamiltonian, 

(I) Je =- 1 L (s;s;+li + s:s:+s), (2.1) 
a,li 

where x and y denote Cartesian components of the three dimensional spins, and the site labelled 

(a + 8) is one of r bearest-neighbours to the site labelled a. Much the same notation is required 

for the fully isotropic Heisenberg model with the addition of a single-site magnetic anisotropy. 

We sometimes, for brevity, refer to this model as model-11, and it is defined by, 

(11) (2.2) 
a,li a 

In (2.1) and (2.2), J > 0 ( <0) is referred to as a ferromagnetic ( antiferromagnetic) exchange 

coupling. The anisotropy parameter in (2.2) takes all values; B > 0 yields a uniaxial anisotropy, 

and B<O yields a planar an isotropy that curbs out-of-plane (the x-y plane) spin fluctuations. 

3. Coupled-Mode Equations 

The time-dependent spin relaxation function is denoted by F( q, t); it is formed from the 

autocorrelation of spatial Fourier components with wave vector q of the spin density. For 

quantities belonging to the in-plane correlations (defined to be the x and y Cartesian components 

of the spins) we attach a subscript zero, e.g. Fo( q, t) is the spin relaxation function formed with 

the x-component of the spin density, which is identical with the relaxation function formed with 

they-component of the spin density. Out-of-plane spin fluctuations (z-z spin autocorrelations) 

are described by F( q, t). 



The relaxation functions are calculated in terms of a memory function. For the out-of

plane fluctuations the memory function is denoted by K( q, t), and, 

I 

F(q,t)=- J dt'F(q,t')K(q,t-t'). (3.1) 
0 

Here, the dot on F( q, t) denotes a time derivative. A similar equation holds for Fo( q, t) in which 

the memory function is Ko( q, t). 

The coupled-mode approximations for K( q, t) and Ko( q, t) are derived in the standard 

manner. In essence, K( q, t) is the relaxation function formed with the first time derivative of 

S~, which is derived by evaluating the commutator of S~ with the appropriate Hamiltonian. 

The relaxation function thereby obtained involves four spin operators. The final step, in 

deriving the coupled-mode approximation to K( q, t), is a particular closure of the equations of 

motion, achieved by a factorization of this relaxation function in the memory function in to 

products of two-spin relaxation functions, namely F( q, t) and Fa( q, t). So, in the end, Fa( q, t), 

for example, is expressed in terms of Ko( q, t) which in the coupled-mode approximation is a 

spatial convolution of Fo(q, t) and F(q, t); the memory function for F(q, t) contains Fo(q, t) and 

not F( q, t). Thus, the equations for the spin relaxation function of immediate interest have the 

form of integral-differential equations, and F( q, t) and Fo( q, t) are self-consistent solutions. 

Following through the approximation scheme for the memory functions described in the 

foregoing paragraph we find the following key results. 

3.1 Model-1 

The memory functions for the x-y model are, 

X(q)K(q, t) = T(2rJ / N) 2 L (y q-p -y P) 2 Xo(P)Xo(q- p) F
0
(p,t)F

0
(q- p,t), (3.2) 

p 

and, 



Xo(q)K 0 (q, t) = T(2r1 I N) 2 L y~ Xo(P)X(q -p) Fo(p,t)F(q -p,t). (3.3) 
p 

In these expressions, yq is a geometric factor that depends on the lattice dimensionality and its 

point group symmetry, 

ry q = I, exp(iq · 0). 
0 

(3.4) 

The other new quantities appearing in (3.2) and (3.3) are the wave vector-dependent isothermal 

susceptibilities for out-of-plane, X( q), and in-plane, Xo( q), spin fluctuations. These quantities are 

the subject of the following section. 

3.2 Model-H. 

The memory function for the out-of-plane fluctuations satisfies an equation that has 

exactly the same structure as (3.2), and the value for Xo( q) appropriate for the Hamiltonian 

(2.2). Note that the memory function K( q, t) vanishes in the limit of long wavelengths. This 

property is a consequence of the fact that for both models the z-component of the spin density is 

a constant of motion. 

The in-plane memory function for model-11 is, 

Xo(q)K
0
(q, t) = (T I N 2

) L {2rl(y q-p- y p) + 2B}2 Xo(P) X(q- p) Fo(p,t)F(q- p,t). (3.5) 
p 

In all these expressions, T is the temperature measured in units of Boltzmann 's constant, and N 

is the number of spins on the lattice (equal to the number of lattice points). 



4. Static Spin correlations 

The coupled-mode theory of spin fluctuations requires the isothermal susceptibilities as in

puts. We have decided to use values obtained from the appropriate spherical models (Mattis 

1985). Since the pairs of susceptibilities for our two anisotropic models, to the best of our 

knowledge, have not appeared in the literature it is prudent to discuss some of their features. 

We first outline our method for calculating the spin correlation functions and the susceptibilities, 

which follows an approach by Hubbard (1971) to the isotropic Heisenberg magnet. 

In this approach, the defining equations are obtained from the f-sum rule. This means that 

one uses short-time properties of the memory function, and the ensuing spin correlation 

functions are obtained by solving the defining equations for arbitrary wave vectors. In the 

context of the early development of the coupled-mode theory, such an approach might not seem 

entirely consistent. For, the coupled-mode theory of critical spin fluctuations was developed 

with the aim of describing the long-time behaviour of long wavelength fluctuations, i.e. the 

modes that witness the critical fluctuations. From this stance there is no good reason to be 

confident about the value of the theory at short times and short wavelengths, both of which 

enter the approach to calculating the static correlations from the f-sum rule. However, it has 

been shown that coupled-mode theory, of the variety used here, is very reliable at all wave 

vectors and temperatures, including an infinite temperature (Cuccoli et al. 1989, Lovesey et al. 

1994). In our opinion this positive experience negates reservations about the use of the f-sum 

rule to obtain the static correlations. In the present case, where we need the in-plane and out

of-plane susceptibilities the approach has the real advantage of providing mutually consistent 

expressions. Our view is that the models under discussion are defined to possess the static 

correlations of the appropriate spherical models. 

Returning to the approach to static correlation functions based on the f-sum rule, the 

defining equations are derived from the identity, 

F( q,O) = - K( q,O), (4.1) 



which follows from (3.1) and the normalization F( q,O) = 1, and the f-sum rule, 

(4.2) 

where the angular brackets denote a thermal average. A similar set of relations exist for the in

plane fluctuations, with the spatial Fourier component of the spin density SZ( q) replaced by 

S\ q). The nested commutators in ( 4.2) are evaluated with the appropriate spin Hamiltonian 

([S"( q), Jl] is required to get an expression for S" ( q) which is the building block of the 

coupled-mode approximation to the memory function). 

4.1 Model-1 

On following through the programme outlined in the foregoing paragraphs, we find for the 

x-y model, 

X(q) =NI Jl, (4.3) 

and 

(4.4) 

The parameter J.L is related to the temperature. To this end, we demand, 

(S .. ·S .. )=S(S+1), (4.5) 

where S is the magnitude of the spin variable. The spin correlations are provided by, 

(s; s;) = (T I N 2
) L X(q) exp {iq ·(R .. - Rb)}, (4.6) 

q 



and a corresponding expression for (s; s:) = (s: St). On introducing the molecular field 

approximation to the critical temperature of the isotropic Heisenberg magnet, T,. = 2rJS(S+ 1)13, 

one finds, 

T{(1 I~)+ 21(~ I 2rl)} = 3T'". (4.7) 

In this expression, J(x) is the standard extended Watson integral, 

I(x) = (1 1 N) I (x- y qf1
• (4.8) 

q 

For a square lattice, 

I(x) = (2 I nx) K(1 I x), (4.9) 

where K(y) is the complete elliptic integral of the first kind. It is not possible with 3D lattices to 

express I(x) in terms of standard, tabulated functions; useful analytic results are given by Joyce 

(1972), and Mannari and Kawabata (1964) have prepared tables of numerical results for the 

three cubic lattices. 

The result ( 4.3) might easily have been anticipated; it is the susceptibility for a perfect 

paramagnet and this is appropriate for the out-of-plane fluctuations since no exchange force 

exists between z-components of the spin in the x-y model. The result (4.4) for the in-plane 

susceptibility, taken with (4.7) for the temperature scale, is the standard spherical model. 

In the limit of high temperatures, T >> J, I(~) - (11~) and the temperature scale is no 

different from that for the isotropic Heisenberg model; ~ - T for high temperatures. The 

smallest physically sensible value of the temperature parameter, ~. is 2rl. 

The integral /(1) is finite for 3D lattice, and not finite for a 20 lattice. In the former case, 

the temperature scale ( 4.7) evaluated for ~ = 2rl defines the critical temperature, Tc. Table 1 



contains values of Tc for the three cubic lattices for S = Y2, together with corresponding values 

obtained from extensive series expansions. The level of agreement between the two sets of 

results is tolerable; one might reasonably expect the spherical model to be least reliable in the 

extreme quantum limit, S = Y2, and progressively more reliable with increasing values of S. 

Because /(1)> 1, for the cubic lattices, we conclude that Tc(x-y) > Tc (isotropic). ForS= Y2 the 

same result is obtained from series expansions, cf. Table 1. 

In the immediate vicinity of the critical temperature, the in-plane susceptibility takes on 

the form proposed by Ornstein and Zernike, namely, 

(4.10) 

Here, the inverse correlation length, Ko, satisfies (11 is measured in units of 2rJ), 

(4.11) 

and the length p is defined by the small -q expansion of the geometric factor, 

1 2 2 yq= -pq +···. (4.12) 

From ( 4.7) and the properties of the extended Watson integral in the limit 11 ~ 1 +, 

(4.13) 

and only the coefficient of proportionality differs for the x-y and isotropic Heisenberg models. 

The coefficient is reduced in the x-y model by a factor (21(1 )+ 1 )/3/(1 ). 

Turning to the equivalent analysis for a 2D lattice, the key relation is, 



(4.14) 

We conclude that, there is no phase transition at a finite temperature, a finding that is in accord 

with the Mermin-Wagner (1966) theorem. If the inverse correlation length for the 

corresponding isotropic Heisenberg model is denoted by Ki. we find for T -t 0, 

(4.15) 

Thus, just as we found for 3D, in 20 the reduction in spin isotropy increases the correlation 

length. The effect is still pronounced at moderate temperatures, e.g. with {T/3Tm} = 0.259, one 

finds PKo = 0.33 and pK; = 0.42. 

4.2 Model- 11 

The two susceptibilities are, 

(4.16) 

and, 

X(q) =NI(~- 2rly q), (4.17) 

with 

~=~0 -2B. (4.18) 

For the particular example of classical spins with one degree of freedom (classical Ising 

variables, or sticks, capable of assuming two discrete orientations) we have demonstrated that 

the conventional derivation of the spherical model, through use of the saddle point method to 

calculate the partition function, leads to (4.17) and the appropriate limit of the temperature scale 



(4.21). Looking at (4.16 - 4.18), for B > 0 (axial anisotropy) the out-of-plane fluctuations 

become critical at Jl = 2rl, and at this temperature Ko is finite, namely, 

(4.19) 

In the opposite case, B < 0 (planar anisotropy) the properties of the in-plane and out-of-plane 

fluctuations are reversed. 

The temperature scale is set by the relation (Jl and J.4 in units of 2rl), 

T{2f(Jl
0

) + /(Jl)} = 3Tm . (4.20) 

For B>O, the critical temperature is, 

Tc {2/(1 + 2b) + /(1)} = 3Tm , (4.21) 

where b = B/2rl. Since I(x) is a monotonically decreasing function of its argument, we 

conclude that a finite uniaxial anisotropy increases the critical temperature above the value for 

the isotropic Heisenberg model. This is in line with physical intuition, since a uniaxial 

anisotropy effectively enhances the exchange interaction. For a given value of IBI, the critical 

temperature of the model with a planar anisotropy is intermediate between the values for the 

isotropic and uniaxial anisotropy models. This finding differs from that obtained in the 

molecular field approximation, where planar (B<O) anisotropy reduces the critical temperature 

below Tm. In the extreme limit IBI --7 oo our spherical model calculations give, 

Tc (isotropic) <Tc(x-y) <Tc (planar) < Tc (axial) <Tm. Of course, in the molecular field 

approximation this particular limit has no real physical meaning since in this approximation 

Tc (planar) and Tc (axial) are unbounded, e.g. Lovesey (1987). 

The in-plane and out-of-plane inverse correlation lengths are denoted by Ko and x:, 

respectively. The relation, 



(4.22) 

follows from (4.18). 

For the 2D model, the ratio of the correlation lengths at low temperatures takes on 

extreme values. By low temperatures we mean T ~ (T ,/5). In this region, the "critical" mode 

has a very long correlation length whereas the "non-critical" correlation length saturates to a 

value determined by the anisotropy parameter, B. As an example, consider a uniaxial 

anisotropy, and take b = (B/2rl) = 0.09 and (T!Tm) = 0.19. We find, for this case 

(K'/Ko) = 5.4. w-9
• 



5. Decay Rates: Model-I 

We will analyse the dynamical correlations in our models in terms of decay rates derived 

for the coupled-mode equations provided in §3. The decay rates for the in-plane and out-of-

plane fluctuations are denoted by ro(q) and r(q), respectively. 

From (3.2) and (3.3) we obtain, 

x(q)r(q)=T(2rJ IN) 2 L (Yq-p -yp)2 Xo(P)Xo(q-p)I{To(p)+ro(q-p)}, (5.1) 
p 

and, 

Xo(q)ro(q) = T(2rJ I N) 2 L Y! Xo(P)X(q- p) I {To(P) + r(q- p)}. (5.2) 
p 

We are interested in long wavelength fluctuations, and therefore consider the limit q ~ 0 in 

(5.1) and (5.2). Furthermore, we focus on the temperature interval immediately above and at 

the critical temperature (for 2D models the appropriate temperature range is T << J). The 

necessary condition is that the susceptibility for the critical mode is extremely large at the 

ordering wave vector. 

Consider, for the moment, a 2D lattice and a ferromagnetic exchange coupling (F); one 

finds from (5.1) and (5.2), 

(5.3) 

and 

(5.4) 

where for a spatial dimension d, 



A 2 = T(rJv
0

) / 7td-t (5.5) 

and V0 is the area (volume) of a primitive unit cell, e.g. square lattice V
0 
=a~, and body-

centred-cubic (b.c.c) lattice v o = a~ I 2 where a0 is the cell dimension. The functions /o( q) and 

f(q) satisfy the integral equations, 

(5.6) 

and 

(5.7) 

In arriving at (5.6) and (5.7) the upper limit of integration over the Brillouin has been extended 

to infinity. An inspection of the integral equations reveals that, in the limit q --+0 fo(q) andf(q) 

are both benign functions. Hence, a tolerable approximation is obtained by replacing the 

functions by their values at q = 0. Our estimate for the decay rates of the 2D, F x-y model are, 

(5.8) 

and, 

Recall that, for d = 2 the quantity A oc T112
• Even so, r(q) increases with decreasing 

temperature since, in the limit of low temperatures, 

p1eo = (~ -1) 112 ""2{2 exp {- 31tTm I 4T}. 



The corresponding value of ro(O) is very small. 

The relations (5.3) and (5.4) are convenient also for the 3D lattice, where now one can 

reasonably setT= Tc in the quantity A, defined in (5.5). At the critical temperature, Ko = 0, the 

integral equations for fo(q) and f(q), which correspond to (5.6) and (5.7) for 2D, admit non-

trivial solutions; 3D, F Ko = 0, 

and, (5.10) 

On the other hand, for Ko -:F. 0 we obtain the estimate, 

and (5.11) 

It is interesting to observe that, the critical properties of the 3D, F x-y model are the same as 

those of the AF isotropic Heisenberg model. 

For the x-y model, the decay rates r(q) and ro(q) are homogeneous functions of the form, 



where R 1(x) is usually referred to as a scaling function. In this context, the foregoing results are 

the explicit forms of the scaling functions for in-plane and out-of-plane fluctuations in the 

extreme limits x ~ 0 and x ~ oo. Applied to the 3D, x-y model we conclude that the dynamic 

critical exponent z = (d/2) = 3/2. As we have remarked, this value for the exponent is the same 

as for the isotropic AF model (Hohenberg and Halperin 1977). The value z = (d/2) for the x-y 

model is consistent with calculations based on the renormalization group method. 

As the final topic in this section we consider the behaviour of the antiferromagnetically 

exchange coupled (AF) x-y model. We remarked in the introduction that, the critical properties 

of the x-y model are independent of the sign of the exchange coupling (Betts 1974). So, the 

following working, to some extent, is to confirm that our analysis is sound with respect to this 

aspect of the model. 

Turning back to the in-plane susceptibility, equ. ( 4.4), we observe that after replacing J by 

-J, the ordering wave vector is w, which satisfies Yq+w =- Yq. Thus, in equs. (5.1) and (5.2) for 

the decay rates it is convenient to expose the influence of the incipient AF ordering by shifting 

the summation variable p ~ p+w. Evidently, there is a coupling between fluctuations that take 

place near the Brillouin zone centre and at the ordering vector, w. In consequence, we must 

construct a second pair of equations for the in-plane and out-of-plane fluctuations that occur in 

the vicinity of w; we denote the corresponding decay rates by r; and rw. 

For a 2D lattice, we find, 

(5.12) 

where ~ is a function of Ko, and determined by the equation, 

~ 2 = ln(1 + ~ / 0.6211C
0
p ). 

In the limit T ~ 0, 



The value of r( q) is identical to the same function in the ferromagnetic model, and 

r;(q) = ro(q). These are the results we anticipated. 

Finally, we mention our results for the decay rates of the 3D, AF x-y model at T = Tc. 

These are, 

ro = rw = 3.610A I p312
, 

together with r(q) = 2r;(q) and r;(q) is identical to ro(q) for the 3D, F x-y model given in 

(5.10). 

6. Decay Rates: Model-11 

The method of analysis we use for the Heisenberg model supplemented by a single-site 

anisotropy, denoted by model-11, is the same as that applied in the previous section to the x-y 

model. In view of this, in this part of our report we do not give details of our working, and 

focus on the results. It is convenient to employ the non-universal, material constant A defined in 

equ (5.5). 

A way of expressing the basic differences between two models is to contrast the 

homogeneous functions for the decay rates. For model-I, we established that the decay rates 

can be expressed in the form ql/2 R 1(q!Ko), where R 1(x) is a so-called scaling function. 

Extending this concept to the decay rates for a ferromagnetically coupled model-11, as proposed 

by Riedel and Wegner (1970), we have established that the in-plane and out-of-plane decay 

rates are of the form, 



For a 3D lattice, the dynamic critical exponent z = (d + 2)/2 = 5/2 is the same as for the 

isotropic F model. We turn now to the task of obtaining the interesting limiting values of the 

scaling function for 2D and 3D lattices. 

For a 2D lattice and a ferromagnetic exchange coupling, the in-plane and out-of-plane 

decay rates are, 

(6.1) 

and 

where 1C and 1Co are the out-of-plane and in-plane inverse correlation lengths, respectively, and 

we define 8 = lC/K:o. The function~ in (6.1) satisfies, 

~ =- (1 + ~) ln 82 + (~ -1) ln(82 I~)+ [(1 + ~)(82 -1) + (1- ~)2 ]Q(S, ~), (6.2) 

where for a={(~+ 82
)

2
- 4~}>0 the function Q(8, ~)is, 

and for b = {4~- (~ + 82
)

2 }> O, 

For the planar anisotropy, ra(O) is very small and {r(q)/q2
} very large in the limit of low 

temperatures, 8 = (1C/1Co) ~ oo. In this limit, ~112 ~ 1.2418, and, 



and, (6.3) 

where pK = --./(2b). 

Looking next at the case of axial anisotropy, the low temperature limit corresponds to 

e ~ 0, and here ~ satisfies, 

(6.4) 

ro(O) decreases and {r(q)/l} increases with increasing temperature. Representative examples 

of the temperature dependence of the decay rates are illustrated in fig. (1 ). In viewing the 

results bear in mind that the calculations do not involve explicitly the temperature scale set by 

the spherical model; the latter enters only in so far as we use the susceptibilities (4.16) and 

(4.17) in the construction of the integral equations for ro(q) and r(q). 

Next on the agenda is the 3D, F version of model-11. For the planar model at 

Tc, pK = --./(2b) and, 

(6.5) 

It is interesting to observe that these decay rates depend explicitly on the anisotropy parameter. 

For K"o>O, the decay rates are, 

(6.6) 



where the dimensionless function ~ satisfies, 

(6.7) 

In the limit e = (K/Ko) --7 oo, ~112 
--7 1.1348 and, 

(6.8) 

These results and the results (6.5) are two limiting cases of the scaling behaviour contained in 

the general (Ko > 0) relation (6.6). 

The corresponding results for axial anisotropy follow from ( 6.6) by noting that for e = 0 

the solution of (6.7) is ~ = 1.770. Hence, we conclude that for axial anisotropy the critical 

dynamics is conventional. 

To illustrate the temperature dependence of ro(O), and {r(q)/q2
} evaluated for q --7 0, it is 

useful to write the results in the form, 

(6.9) 

where, as before, b = IB/2rJI, and the length p is defined through (4.12). So, the temperature 

dependence ofro(O) and {r(q)/q2
} is given by, 



and, (6.10) 

These functions are plotted in figs. (2) and (3). The non-universal material constant, A, is 

assumed to be a constant, and its value is given by (5.5) evaluated at T = Tc. For axial 

anisotropy the in-plane decay rate ro(O) increases and the out-of-plane {r(q)/l} decreases as 

8 = (K/Ko) decreases, i.e. as the temperature approaches Tc. For planar anisotropy, the 

temperature dependence is slightly more complicated, but the limiting behaviour, s-1 ---7 0, is the 

reverse of that found for axial anisotropy, with {r(q)/q2
} increasing and ro(O) decreasing as 

T ---7 Tc for B < 0. 

Finally, we turn to the behaviour of the decay rates for an antiferromagnetic exchange 

coupling. As in the case of the x-y model, the number of decay rates is doubled on changing 

from F to AF, since it is necessary to consider modes around the centre of the Brillouin zone, as 

with F, and the wave vector, w, that defines the incipient AF order. The main interest is the 

case of AF axial anisotropy, for the critical dynamics with planar anisotropy is the same for F 

andAF. 

For a 2D lattice and an antiferromagrietic exchange coupling the decay rates are 

conveniently expressed as, 

(6.11) 

and, 



Here, as in §5, rw (r;) is the decay rate for the out-of-plane (in-plane) fluctuations for a wave 

vector q measured relative to the incipient antiferromagnetic ordering wave vector, w. The 

dimensionless amplitudes in (6.11) satisfy, 

gg; = (1 + Jl) I 16, 

and, 

g g w=l.(1+Jl) -ln8 2 +(1+gw I g"')ln go g . { (e
2 

+ "' 1 "'J} 
o o s o o 1 + g; 1 g'" (6.12) 

The sign of b = Bl2r.J in these equations corresponds to a uniaxial anisotropy. Amplitudes for 

the planar anisotropy follow by changing the sign o(b in (6.12) and in the relation between Jl 

and Jlo, (4.18). 

For the latter case it can be shown that, in the limit Ko --t 0, 

(6.13) 

and 

r; (0) --t 0.878A(l+ b) 112
K 0 • 



The full temperature dependence of these decay rates, and ro and rw(q) are illustrated in fig. 4. 

Corresponding results for a uniaxial anisotropy are given in fig. 5. 

Turning to the 3D, AF model - 11 we find at the critical temperature, 

r(q) = 2r;(q), 

with, (6.14) 

These results are for a planar anisotropy, and b is the magnitude of (B/2rJ). With a uniaxial 

anisotropy the critical dynamics is conventional and the next set of equations apply. 

Following the presentation of the 2D decay rates we choose to write, 

(6.15) 

and, 

in which the dimensionless amplitudes are derived from, 

gg; = 1t(1 +~)I 32, 



and 

w w [<1- 8)2 (1 + 8)] 
go(go +g ) ={1t(1+J.1J/S} (1+a)(8+a) ' (6.16) 

where 8 = (K/Ko) and, 

In these equations the sign of b corresponds to a uniaxial anisotropy. 

Figs 6 and 7 contain representative values of the decay rates (6.15) plotted against the 

appropriate critical inverse correlation length. The trends displayed in these two figures are 

readily understood from the defining equations and (6.16). For the uniaxial anisotropy the 

amplitudes are benign functions of K, as anticipated. In the case of a planar anisotropy all 

amplitudes bar go are benign; for lCo ~ 0 the amplitude go grows strongly so that ro increases. 



7. Conclusions and Discussion 

By way of orientation to the special features of the two anisotropic models we have 

discussed in the text we record the decay rates for the isotropic Heisenberg magnet. The decay 

rate for this model is denoted by l;(q). For a ferromagnetically (F) coupled 3D magnet at Tc, 

(7.1) 

For q << K, 

(7.2) 

and the corresponding result for the 2D lattice is, 

(7.3) 

Turning to the isotropic antiferromagnetically (AF) coupled isotropic Heisenberg magnet one 

finds for a three dimensional lattice and a temperature= Tc, 

r;(q) = 2.309 Aq 312
, 

and (7.4) 

where riw(q) is the decay rate for fluctuations near the antiferromagnetic ordering wave vector, 

w. The corresponding results forT >Tc and q << K are, 

ri ( q) = 0. 782 Aq 2 I K 112
, 



and, (7.5) 

Lastly, for a two dimensional AF, in the limit of very low temperatures, 

ri(q) = 0.570 Aq2 I K, 

and, (7.6) 

Here, and in all other results in this and the preceding sections, the material constant, A, is 

defined in (5.5). 

The main outcome of the reported work on anisotropic models are explicit results for the 

decay rates. In the case of 3D models we have, in the general case, examined separately the 

critical domain (T = Tc) and the non-critical domain. On the other hand, for 2D systems no such 

distinction arises because there is no long-range order at a finite temperature. 

In all, there is quite a large number of speci~l cases of interest. Those not explicitly 

covered in our discussions can be deduced from the provided formulae. In a good few cases, 

simple algebraic results are not obtainable and the formulae must be solved numerically. This is 

particularly the case for model-11 with an antiferromagnetic exchange coupling. We have just 

reported a few representative examples. To facilitate finding results, and making comparisons 

between properties of the various models, we have gathered some results in Tables 2 - 4. Here, 

and in most other places, we have expressed results in terms of the inverse correlation lengths. 

Thus, the results do not depend explicitly on spherical model temperature scales. 

Use of decay rates, or the so-called Markovian approximation, is something of a coarse 

measure of the properties of long wavelength spin fluctuations. It tells us nothing which is 

reliable about the shape of the power spectrum. So, while they are valuable guides to the basic 

statistical mechanics of a model, a confrontation between experimental data and theoretical 



findings will most likely require more accurate information on the spectrum if it is to be really 

meaningful. In the context of the present study this means finding full solutions of the coupled

mode equations provided in §3 by numerical analysis. 
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Table 1 

s.c. b.c.c f.c.c 

Spherical } x-y model 2.232 3.169 4.879 

model isotropic 1.978 2.871 4.462 

Series } x-y model 2.020 2.908 4.523 

expansion isotropic 1.68 2.53 4.02 

Values of the critical temperature of the 3D x-y spherical model for S = lh, calculated from 

(4.7). The corresponding results obtained using high temperature series expansions are taken 

from the review article by Betts (1974). Results are given for the three cubic lattices. Results 

for the isotropic Heisenberg magnet (S = lh) are included for comparison. NB, the critical 

exponent v, for the inverse correlation length, has the value 1(2/3) for the spherical model 

(S = 1h x-y model), and 11 = 0. 



Table 2 

Isotropic Model 

2D, q << 1C 

(F) (AF) 

r; .... pcf C .... cj/K 

r.w -lC 
' 

3D, T= Tc 

r; .... pcf'2 r; -l/2 
rw- 1 r . -2 . 

' ' 

Decay rates for two (2D) and three (3D) dimensional lattices, and ferro (F) and 

antiferromagnetic coupling. The Hamiltonian for the spin system is given by (2.2) with B = 0. 



Table3 

x • y, Model - I 

2D, q << K'o 

(F) (AF) 

r- c/IK'o r= r(F) 

ro- K'o r; = ro(F) 

3D, T= Tc 

r=2ro r =2r; =r(F) 

ro- q312 r; = ro(F) 

Decay rates for the x - y model. The notation in the right-hand column for decay rates for 

ferromagnetic coupling is r(F) or ro(F), e.g. the out-of-plane (AF) and (F) decay rates are the 

same, in the appropriate limits. 



Table 4 

planar, Model - 11 

2D, q << Ko 

(F) (AF) 

{r(q)lt/}- pK/Ko {r(q)!t/}- 1/Ko 

ro(O)- PlCKo r;(o) -1(
0 

3D, T= Tc 

r=2ro r=2rw 
0 

ro- pq3/21( r: = q3'\1 + b)l/2 

Decay rates for the planar version of model-II with ferro-, and antiferromagnetic exchange 

coupling. Additional results are provided in §6. 



Figure Captions 

1. The temperature dependence of ro(O) and {r(q)/q2
} for 2D, F uniaxial model-11 with B > 0. 

The quantities plotted as a function of the inverse correlation length, K, are ro oc(pKo)2~112 and 

{r(q)/q2
} oc (82/~112) where 8 = (K/7\o) and~ is determined by (6.2). 

2. The variation of ro(O) and {r(q)/i} for the 3D, F model-11 with K, and two values of 

B > 0. The displayed quantities are ro(O) oc(pK o)512 ~112 and {r(q)/q2
} oc{ (pK)2 I ~112 (pKo)312

} 

and~ is determined by (6.7). 

3. A comparative study of the temperature dependences of the decay rates for planar and 

uniaxial anisotropy in the 3D, F model-11. The functions displayed are 

ro(O) oc ~112/182 -11514 and {r(q)/i} oc 82
/ (~112182 -11114

), plotted as functions of 8-1 (planar) 

and 8 (axial, c. f. fig. 2). 

4. Illustrated is the temperature dependence of the decay rates for the 2D, AF planar model-11 

with lbl = 0.10. The quantities plotted against pKo are: (a) {r(q)/q2
} - (g/pKo), 

(b) rw(O)- {(pK)2 gw/pKo}, (c) ro- (pKogo) and (d)row(O)- (PKog;). 

5. Results which correspond to fig. 4 but here for a uniaxial anisotropy b = 0.20, and functions 

plotted against pK. 

6. Illustrated is the temperature dependence of the decay rates for the 3D, AF planar model-11 

with lbl = 0.20. The quantities plotted against PKo are: (a) {r(q)/i} - g/(pKo) 112
, 

(b) rw(O)- {(pK)2 gw/(pKo)112
}, (c) ro- (pKo)312go, and (d)r;(O)- (pK

0
)

312 g;. 

7. Results which correspond to fig. 6 but here for a uniaxial anisotropy b = 0.20, and functions 

plotted against the critical inverse correlation length, K. 
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