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Abstract 

We present results from analytical and numerical studies of a flux tube 

model of hybrid mesons. Our numerical results use a Hamiltonian Monte 

Carlo algorithm and so improve on previous analytical treatments, which 

assumed small flux tube oscillations and an adiabatic separation of quark 

and flux tube motion. We find that the small oscillation approximation is 

inappropriate for typical hadrons and that the hybrid mass is underestimated 

by the adiabatic approximation. For physical parameters in the "one-bead" 

flux tube model we estimate the lightest hybrid masses (AL = 1P states) to 

be 1.8-1.9 GeV for uil hybrids, 2.1-2.2 GeV for ss and 4.1-4.2 GeV for cc. We 

also determine masses of conventional qij mesons with L = 0 to L = 3 in this 



model, and confirm good agreement with experimental J-averaged multiplet 

masses. Mass estimates are also given for hybrids with higher orbital and 

flux-tube excitations. The gap from the lightest hybrid level (1P) to the first 

hybrid orbital excitation (1D) is predicted to be ~ 0.4 GeV for light quarks 

(q = u, d) and~ 0.3 GeV for q =c. Both 1P and 1D hybrid multiplets contain 

the exotics 1-+ and 2+-; in addition the 1P has a o+- and the 1 D contains 

a 3-+. Hybrid mesons with doubly-excited flux tubes are also considered. 

The implications of our results for spectroscopy are discussed, with emphasis 

on charmonium hybrids, which may be accessible at facilities such as BEPC, 

KEK, a Tau-Charm Factory, and in 7/J production at hadron colliders. 
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I. INTRODUCTION 

The QCD Lagrangian contains quarks and gluons and the successes of perturbative 

QCD confirm their existence as dynamical degrees of freedom. The behavior of QCD in the 

strongly interacting low-energy regime, "nonperturbative QCD", is less well understood. 

Studies using lattice gauge theory have confirmed the presence of confinement and give 

spectra for conventional mesons and baryons that are in reasonable agreement with experi­

ment [1], but the status of gluonic hadrons in the spectrum has remained obscure. 

It is possible that this is now about to change. Candidates for gluonic hadrons have 

recently been reported which have much in common with theoretical expectations. There 

are various lattice predictions for the masses of glueballs; the most reliable is presumably for 

the glueball ground state, which is expected to be a scalar with a mass near 1.5-1.7 GeV [1]. 

A candidate for the scalar glue ball has been reported at 1520 Me V by the Crystal Barrel 

collaboration at LEAR [2] and may also be evident in central production by NA12/2 [3] 

at CERN. Possible evidence for a 1-+ light exotic hybrid candidate has been reported in 

p1r and h1r at about 1775 MeV [4] in T/'Tr and especially rt'7r at "' 1.6 GeV by VES [5], 

and in j 11r [6] with a resonant phase in the region 1.6-2.2 GeV, with production and decay 

characteristic similar to theoretical expectations for "hybrid" states. A light 1-+ signal in 

T/'Tr reported by GAMS near 1.4 GeV [7] has been withdrawn, although KEK [8] reports a 

resonant 1-+ amplitude with a mass and width similar to the a2(1320). Another possibility 

is that the surprisingly large 'lj;' production at the Tevatron [9] may be due to the formation 

and decay of metastable hybrid charmonium [10]. 

In view of the discovery of these candidates for gluonic hadrons it is appropriate to 

investigate the theoretical models for these states more carefully, to see if the predictions are 

relatively stable and what level of theoretical uncertainty is present. This paper concentrates 

on hybrid states, which are formed by combining a gluonic excitation with quarks. 

Hybrids have been studied in the literature using the flux tube model [11- 17], the MIT 

bag model [19], an adiabatic heavy-quark bag model [20], constituent gluon models [21,22], 
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and heavy-quark lattice gauge theory [23]. In all these approaches the lightest glueball and 

hybrids (Hq, involving u, d, s fiavors) are predicted to have masses in the~ q-2 GeV region. 

Hybrids are very attractive experimentally since they span complete fiavor nonets and are 

expected to include the lightest ]PC -exotics (which are forbidden to qq). For recent reviews 

of hybrids see [24]. 

Detailed predictions for hybrid spectroscopy were first carried out using the MIT bag 

model and QCD sum rules. The bag model predictions [19] suffer from parameter uncer­

tainties and possibly additional effects such as gluon self-energies, so the absolute mass scale 

and the scale of multiplet splittings are somewhat problematical. Conclusions of the bag 

model studies include the existence of a lightest hybrid meson multiplet at "' 1.5 GeV and 

the presence of a 1-+ ]PC -exotic state in this multiplet. In the bag model the lowest qijg 

hybrids have negative parity due to the bag boundary conditions, which give the first TE 

gluon mode (JP= 1+) lower energy than TM (JP= 1-). For heavy quarks it is unrealistic 

to assume a spherical bag, so Hasenfratz, Horgan, Kuti and Richard [20] introduced an 

adiabatic bag model in which the bag was allowed to deform in the presence of fixed QQ 

sources. The resulting E(R) was used in the two-body Schrodinger equation to give mass 

estimates for hybrids. Masses found for the lightest hybrids were ~ 3.9 GeV for cc (taken 

from their Fig.2) and 10.49 Ge V for bb. The estimated systematic uncertainty for bb hybrids 

was ±0.2 GeV. 

QCD sum rules have been applied to the study of hybrids, notably the 1-+ and o-­

exotics, by several collaborations [25- 29]. Early results by these collaborations suggested 

a light 1-+ exotic hybrid with a mass between~ 1 GeV and~ 1.7 GeV. The o-- exotics 

were predicted to lie much higher, at 3.1-3.65 GeV. Unfortunately, much of the more recent 

work is not consistent with these results, although Balitsky, Dyakonov and Yung (1986) 

continue to support a mass of M(l-+) "' 1.5 GeV. Latorre, Pascual and Narison [26] cite 

higher masses of ~ 2.1 GeV for the u, d 1-+ and ~ 3.8 GeV for the o--. Govaerts et al. 

[27] estimate~ 2.5 GeV for the 1-+ qijg (q = u,d,s), and their other exotic hybrid mass 

estimates are rather higher than previous references. They conclude however that the sum 
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rules for exotic hybrids are unstable, so all these results are suspect. For heavy 1-+ hybrids 

Narison [26) estimates 4.1 GeV for cc and 10.6 GeV for bb. In contrast, Govaerts et al. find 

~ 4.4-5.3 GeV for cc and ~ 10.6-11.2 GeV for bb, albeit with reservations regarding the 

stability of these results. Thus, sum rules have reached no clear consensus regarding the 

masses of hybrids, and recent results suggest rather higher masses than previously thought. 

Some technical errors in the earlier sum rule calculations have been reported by Govaerts 

et al. [28). Sum rule calculations of decay couplings have also been reported; de V iron and 

Govaerts [29) anticipate a strong p1r decay mode for the I= 1, 1-+ exotic. 

Constituent gluon models for hybrids were introduced by Horn and Mandula [21) and 

were subsequently developed by Tanimoto, lddir et al. and Ishida et al. [22]. Since these 

models assume a diagonal gluon angular momentum £9 their predictions for quantum num­

bers differ somewhat from the other models. For the lightest hybrid states (with £9 = 0) 

Horn and Mandula predict nonexotic quantum numbers equivalent to P-wave qij_ states, 

since the gluon has JP = 1-. Exotic quantum numbers including 1-+ are predicted in the 

higher-lying (fqq, £9 ) = (1, 0) and (0, 1) multiplets. Detailed spectroscopic predictions for 

hybrids have not been published using constituent gluon models, and the estimated masses 

are assigned large uncertainties. A typical result, due to lshida, Sawazaki, Oda and Yamada, 

is 1.3-1.8 GeV for light nonexotic hybrids and 1.8-2.2 GeV for light exotics. This type of 

model predicts that the dominant two-body decay modes of light exotic hybrids such as 1 -+ 

are the S + P combinations [22) such as b11r and a11r. This conclusion was subsequently 

supported by studies of the flux tube model. 

Lattice QCD will presumably give the most reliable predictions for absolute hybrid 

masses, although at present this approach has little to say about multiplet splittings. In 

heavy quark lattice QCD, in which the QQ pair is fixed spatially and the gluonic degrees 

of freedom are allowed to be excited, the lightest charmonium hybrid was predicted by 

Michael et al. [23] to have a mass of m(Hc)quenched = 4.04(3) GeV. This reference adds 

an estimated shift of 0.15 GeV to compensate for the quenched approximation, which 

leads to a final lattice estimate of m(Hc) = 4.19 GeV. Note that a wide range of charm 
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quark masses has been assumed in hybrid spectrum calculations; in this HQLGT result a 

value of me = 1.32 GeV was used, whereas the flux tube calculations of Isgur, Merlin and 

Paton [12-14] used me = 1.77 GeV. The sensitivity of the hybrid mass spectrum to me 

will be addressed subsequently. The corresponding HQLGT estimates for bb hybrids were 

m(Hb)quenched = 10.56(3) GeV and m(Hb) = 10.81 GeV. 

In the flux tube model the more recent calculations [12-14] cite masses of about 1.9 GeV 

for the lightest (q = u, d) hybrid multiplet, about 4.3 GeV for cc hybrids and about 10.8 

GeV for bb hybrids. There is an overall variation of about 0.2-0.3 GeV in these predictions, 

as indicated in Table I. Although multiplet splittings are usually neglected in the flux tube 

model, a rather large inverted spin-orbit Thomas term was found by Merlin and Paton [14]. 

The flux tube model also predicts very characteristic two-body decay modes for hybrids 

[16,17] which have motivated experimental studies of the channels j 1 1r and b11r, and suggest 

h11r and p1r [17] as interesting future possibilities. 

The mass predictions for the lowest-lying (1-+) exotic hybrid (which is essentially the 

mass of the lightest hybrid multiplet) are summarized in Table 1. 
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TABLE I. Predicted 1-+ Hybrid Masses. 

state mass (GeV) model Ref. 

Hu,d 1.3-1.8 bag model [19) 

1.8-2.0 flux tube model [11-14] 

2.1-2.5 QCD sum rules (most after 1984) [26-28] 

He ~ 3.9 adiabatic bag model [20] 

4.2-4.5 flux tube model [12-14] 

4.1-5.3 QCD sum rules (most after 1984) [26-28] 

4.19(3) ± sys. HQLGT [23) 

Hb 10.49(20) adiabatic bag model [20) 

10.8-11.1 flux tube model [12- 14] 

10.6-11.2 QCD sum rules (most after 1984) [26- 28] 

10.81(3) ± sys. HQLGT [23) 
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In this paper we carry out improved numerical studies of the flux tube model, which 

1s the most widely cited model for hybrids. Previous flux tube estimates of the hybrid 

spectrum made several simplifying assumptions, including a small oscillation approximation 

and an adiabatic separation of quark and flux tube motion [11- 15]. In principal these 

could introduce important systematic biases in the spectrum. We will present numerical 

results which are free of these approximations, using a Hamiltonian Monte Carlo technique. 

Since our results for the lightest hybrid masses are quite similar to previous analytical 

results, we conclude that the approximations made were reasonable, or when they did lead 

to important numerical inaccuracies (such as in the adiabatic approximation and in the small 

oscillation approximation at small R) the estimates of corrections to the approximations were 

sufficiently accurate. Thus, we substantiate previous estimates of hybrid masses in the flux 

tube model, and we also give masses for higher hybrid excitations using our techniques. 

11. THE FLUX TUBE MODEL 

A. Definitions 

In lattice QCD widely separated static color sources are confined by approximately cylin­

drical regions of chaotic color fields [31]. The flux tube model is an attempt to describe this 

phenomenon with a simple dynamical model, and was motivated by the strong coupling 

expansion of lattice QCD [11] and by early descriptions of flux tubes as cylindrical bags 

of colored fields [32]. In this model one approximates the confining region between quarks 

by a string of mass points, "beads", with a confining potential between the beads. Since 

a line of flux in strong-coupling LGT can be extended only in transverse directions (by 

the application of plaquette operators), by analogy in the flux tube model one allows only 

locally transverse spatial fluctuations of the bead positions. For a string of N mass points 

which connects a quark at site 0 to an antiquark at site N + 1 we write the flux tube model 

Hamiltonian as 
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H = Hquarks + Hflux tube ' (1) 

(2) 

(3) 

Here mq and m if are the quark and anti quark masses, mb is the bead mass, and the { iJT} 

are two orthogonal unit vectors associated with bead i that are transverse to the local string 

tangent (r'i+l- G-I)/If'i+l- G-II· In this study we use a standard linear form for the string 

potential, 

(4) 

and we usually set the string tension a equal to 1.0 Ge V /fm. For our estimates of physical 

hybrid masses we will augment this with a calor Coulomb interaction for Vgif in (2). 

B. Adiabatic Potentials and Flux Tube Parameters 

In the flux tube studies of lsgur, Kokoski, Merlin, and Paton [11- 15] the combined quark 

and flux tube system is treated using an adiabatic approach as a zeroth order approximation. 

In the adiabatic analysis one exploits the anticipated fast dynamical response of the flux tube 

relative to heavy-quark time scales, and separates the flux tube and quark degrees of freedom. 

This is accomplished by fixing the qij separation at Rand determining an eigenenergy EA(R) 

of the flux tube. Solution of the Schrodinger equation for the qij wavefunction in the flux 

tube ground state potential E0 (R) then gives the conventional qij meson spectrum in the 

adiabatic approximation. Hybrids are excited states of the string in this approach, and are 

found using an excited string potential EA (R). The lightest hybrid follows from an E1 (R) 

in which the lowest string mode has a single orbital excitation about the qij axis. 

In previous studies the adiabatic potentials {EA(R)} were determined assuming small 

string fluctuations relative to the qij axis. We shall find that this is an inaccurate approxi-

mation for typical hadrons, assuming R ~ 1 fm. 

9 



One motivation for the small oscillation approximation is that it leads to relatively 

simple analytical results; when applied to (3) it gives a quadratic Hamiltonian, which can 

be diagonalized using Fourier modes. To illustrate this, consider a string with fixed ends 

at Xo = (0, 0, 0) and XN+l = (0, 0, R) and N dynamical beads, with motion allowed only 

in the transverse {Xi, yi} directions. In the small oscillation approximation, assuming that 

the beads are equally spaced in z by a0 , so Zn = na0 and a0 = RI ( N + 1), the flux tube 

Hamiltonian becomes 

(5) 

This is equivalent to a system of N coupled masses { mb} with an effective spring constant 

of k = a I a0 = ( N + 1 )aIR. We can diagonalize this using sine variables 

f2 N 
Sn,A=(l,2) = V JV+1 ~ sin(knzi) (x, Y)i (6) 

and 

( x, y ); = {l;; t. sin( kn z;) sn,>=( 1,2) (7) 

where kn = 1rnl R. This gives 

(8) 

where the effective spring constant of the nth Fourier mode is 

_ 4(N + 1)a . 2 ( 1rn ) 
Kn - R sm 2 ( N + 1) . (9) 

The ground state energy of the string, which is used as the adiabatic potential for con­

ventional ( qij) mesons, is aR plus the sum of w 12 for each mode in the small oscillation 

approximation. The individual eigenfrequencies are 

(N + 1)a . ( 1rn ) sm 
mbR 2(N + 1) 

(10) 

and the mode sum runs over n = 1 toN and ).. = 1, 2. The resulting ground state energy is 
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2(N + 1)a {sin (#hJ)} 
mR · ( 1r ) ' b Sin 4(N+l) 

(11) 

which agrees with the result of Isgur and Paton [11]. The most general adiabatic potential 

in the small oscillation approximation is 

E(R) = Eo(R) + L: nm wm(R) , (12) 
modes 

m 

where nm is the number of excitations of the mth flux tube mode. 

The ground state wavefunction of the string in the small oscillation approximation is a 

Gaussian in the Fourier mode amplitudes, 

Wo( {Xi, yi}) = IT 17n e-s~>./2a~ , (13) 
n,A 

where the Gaussian width of mode n, A is given by 

1 [ (N+Dam0] 

114 

(J n = JmbWn = -[ ---"-----=----] -1/-,-2 

2 sin Cu~~1 )) 
(14) 

This suggests an estimate of the range of validity of the small oscillation approximation; it 

should fail when these fluctuations become comparable to R. 

Excitations can be created from the ground state wavefunction (13) through the appli-

cation of "phonon" creation operators 

(15) 

with an increase in energy of Wn. States with definite angular momentum component A 

along the qij-axis, which are useful in constructing hybrid states, are created by the linear 

combinations 

t _1( t ·t) An,A=±1 - J2 =F An,1 - zAn,2 · (16) 

The flux tube parameters a, mb and N can be constrained by the plausible requirement 

that the maximum propagation velocity on the flux tube be c. In the large-N limit this 

implies (from (10)) 
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. aw ft;ao 
Vmax/c- hm Bk = - = 1. 

k->0 ffib 
(17) 

The length a0 might reasonably be identified with the transverse flux tube extent of~ 0.2-

0.3 fm found in a lattice Hamiltonian string theory [30] or the ~ 0.2-0.4 fm estimated in 

lattice Monte Carlo QCD [31]. For a typical string tension of a= 1.0 GeV /fm the constraint 

(17) implies mb ~ 0.2-0.4 GeV. We take mb = 0.2 GeV as our standard value, since the 

larger transverse extent of 0.4 fm may represent fluctuations of an intrinsically smaller flux 

tube. 

Isgur, Merlin and Paton [11-14] also treat a0 as a fundamental length but allow N to 

vary continuously with R, so that a0 = R/(N + 1) is constant. The large-R hybrid potential 

gap of 

lim w1(R) = ~ 7r 

R->oo V ffib .j(N + 1)R 
(18) 

then becomes 

hm w1 (R) = -. ft;ao 
R-+oo ffib R R 

(19) 

The final result follows from the constraint (17). An excitation energy of 1r / R was found 

earlier by Gnadig et al. [32] in their cylindrical bag model of a flux tube. 

Of course we cannot vary N continuously in a numerical simulation. In this first numer-

ical study we shall mainly consider the simplest fixed-N case, N = 1. As we shall see, this 

allows a detailed study of the various approximations used previously in estimating hybrid 

masses, and leads to very plausible results for conventional and hybrid spectroscopy. 

Ill. NUMERICAL RESULTS FOR ADIABATIC POTENTIALS 

We will now generate adiabatic potentials numerically, for comparison with the small 

oscillation potentials derived in the previous section. 

The adiabatic N = 1 (single bead) problem can be integrated numerically, since there is 

only motion in a single plane, and the bead wavefunction can be separated as W A(P, 0) 

1/J A (p) exp( iAO). The ordinary differential equation satisfied by 1/;A (p) is 
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(20) 

and the exact qij meson adiabatic potential E0 ( R) and first hybrid adiabatic potential E1 ( R) 

follow from solving this equation for its lowest eigenvalue with A = 0 and A = 1 respectively. 

The potentials E0 (R) and E1 (R) and the potential gap E1(R)- E0 (R) are shown in Figs.1 

and 2 for mb = 0.2 GeV and a = 1.0 GeV /fm. In the limit of infinitely massive quarks 

the adiabatic approximation is exact, the QQ separation approaches zero, and the hybrid 

mass gap is therefore E1(0)- E0 (0) (= 0.829 GeV with these parameters). As R increases 

the potential gap falls, but asymptotically as 2/a/mbR ((10) with n = 1 and N = 1) 

rather than as the 1r / R of Isgur and Paton, due to our assumption of a fixed-N flux tube. 

The small oscillation adiabatic potentials and gap from (10-12) are shown as dashed lines in 

Figs.1 and 2; they are evidently useful only beyond R ~ 1 fm. Since R ~ 1 fm is a typical 

light ( u, d, s) hadron length scale, the small oscillation approximation is inappropriate for 

light hadrons. For smaller R the approximate small oscillation adiabatic potentials depart 

considerably from the true {EA(R)} (solid lines), and actually diverge as R-+ 0. 

In the previous section we suggested a condition for applicability of the small oscillation 

approximation, which is that R should be much larger than the zero-point fluctuations O'n 

in the string ground state. The largest fluctuations are in the n = 1 mode; taking this case, 

the mode width for N = 1 is 

(21) 

Note the weak parameter dependence of the scale of fluctuations implied by the 1/4 power. 

The characteristic length Re at which the scale of fluctuations 0'1 equals R is given by 

Rc(N = 1) = (4mba)- 113 = 0.37 fm. (22) 

R should be significantly larger than this for the small oscillation approximation to be useful, 

which is supported by our Figs.1 and 2. 

Although this paper is primarily concerned with numerical results for the N = 1 one-

bead flux tube model, we can carry out simulations for larger N using a Hamiltonian Monte 
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Carlo technique [33]. This method will be discussed in the next section1 in which it is 

applied to the combined dynamical quark and flux-tube system. As a test of the Monte 

Carlo method we confirmed that the adiabatic potentials E0 (R) and E 1 (R) with N = 1 are 

accurately reproduced (Fig.2), and we also show results for the N = 2 case. The hybrid 

mass gap apparently falls rapidly with increasing N, so it may be difficult to find a realistic 

description of the spectrum with a fixed-N flux tube model for larger N; the excitation 

energy of a many-bead string is presumably quite low relative to theN= 1 case, assuming 

similar mb and a. There are also rather subtle complications in the dynamics of theN > 1 

flux tube with fixed ends [37]; the constraint of transverse bead motion implies dependence 

of energies on the initial conditions, which must then be varied to find the lowest-lying state. 

IV. HYBRIDS WITH DYNAMICAL QUARKS 

A. Adiabatic Results 

Thus far we have only considered the adiabatic potentials. Now we shall solve the 

two-body qq Schrodinger equation in the exact adiabatic potentials {EA(R)}, which are 

determined by numerically integrating (20) for a flux tube with static sources separated by 

R. The flux tube ground state and first excited state potentials E0 (R) and E1 (R) lead to 

conventional and the lightest hybrid mesons respectively. 

For hybrids there is a centrifugal barrier for the qq pair that arises from the matrix 

element of _l~ in the full quark-and-flux-tube angular momentum eigenstate. The angular 

wavefunction of the combined gluon or flux tube and quark system was discussed by Horn 

and Mandula [21] and subsequently by Hasenfratz et al. [20] and Isgur and Paton [11]. There 

are discrepancies between these references in the C and P hybrid quantum numbers; this 

does not affect our conclusions regarding hybrid energies because of degeneracies between 

the levels concerned. The latter two references give essentially the same rigid body angular 

wavefunction for the full system, which is 
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(L) (L) ) '1/JH ex VMA ( </J, (}, -<P · (23) 

(The Hasenfratz et al. wavefunction does not have the final -</J argument because it uses 

body-fixed rather than space-fixed coordinates.) This is the amplitude to find the qij axis 

pointing along ( (}, <P) in a hybrid state with total orbital angular momentum L and z-

projection M, and A is the projection of the flux tube orbital angular momentum along 

the qij axis. A= nm+- nm_, where nm± is the number of excitations of the mth flux tube 

mode, ( +) for right-handed and (-) for left-handed, as in (16). Thus for a single flux tube 

excitation A = ±1, for doubly-excited flux tubes A = 0, ±2, and so forth. Parity implies a 

degeneracy between A= ±IAilevels, so without loss of generality we assume nonnegative A 

in our simulations. The total orbital angular momentum Lis constrained to beL 2: IAI. 

The wavefunction (23) is not fully diagonal in configuration space; it assumes that the 

flux tube is in a coherent superposition of orientations about the qij-axis such that the 

angular momentum projection A along the qij axis is diagonal. This requires a wavefunction 

(24) 

where </Jb gives the rotation of the flux tube about the qij-axis relative to a reference con­

figuration. In our Monte Carlo we used basis states which are fully diagonal in coordinate 

space, so a configuration is defined (for N = 1) by the coordinates xq, xq, Xb, which implicitly 

determine its orientation relative to a reference configuration and space fixed axes, specified 

by the qij-axis angles 0, <P and the rigid body rotation angle cPb· This relation is defined by 

the effect of the rotation operator, 

(25) 

The angles (} and if; are specified trivially by the qij axis. The rigid body rotation angle cPb 

is rather more complicated, and satisfies 

. (A-)_ sin(if;)(xb- Xqq cog)+ cos(if;)(Yb- Yqii cog) 
Sill '!'b - I__, __, I ' 

rb- rqq cog 
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as may be confirmed from Fig.3, which shows the operations required to reach a general 

configuration from an unrotated "reference" configuration. 

Given the cPb dependence implicit in the A states, our cPb-diagonal angular wavefunctions 

must be of the form 

(27) 

which we shall use as the guiding wavefunction for hybrid states in the Monte Carlo simu-

lation. 

In their equation (28) Isgur and Paton [11] (see also equation (6) of Merlin and Paton 

[12]) introduce a simple approximation for the matrix element of£;, which neglects a mixing 

operator that raises and lowers A. This approximation gives (£~) ~ L(L + 1)- A2
, which 

transforms the Schrodinger equation into an ordinary differential equation for the adiabatic 

qij radial wavefunction 'lj;iL)(r), 

(28) 

(29) 

Isgur and Paton determined the hybrid spectrum by solving this eigenvalue problem, with an 

additional approximation; they replaced the singular small oscillation adiabatic potentials 

EA(R) (12) with approximate forms that were nonsingular at R = 0. We shall instead 

use the exact (numerical) adiabatic potentials {EA(R)} (from (20)) in (28,29) above, which 

gives the true adiabatic result for the spectrum. This will be compared to our Monte Carlo 

results. 

B. Monte Carlo Simulation 

We improve on previous studies of the flux tube model by using the Guided Random 

Walk (GRW) Hamiltonian Monte Carlo algorithm [33] to solve the full N = 1 model without 

adiabatic or small oscillation approximations. The GRW algorithm maps the imaginary 

16 



time Schrodinger equation onto a diffusion problem, which is then solved numerically using 

weighted random walks in the configuration space of the system. The statistical error is 

reduced through the use of a guiding wavefunction for importance sampling, which is used 

to determine stepping probabilities between configurations during the walk. This importance 

sampling does not bias the energies and matrix elements. 

In this algorithm a random walk is generated by stepping in the coordinates which define 

configuration space. For a q, ij_ and N-bead system there are Nx = 2N +6 possible coordinates 

to increment. Starting from a specified initial configuration of quark, antiquark and bead 

locations at T = 0, one of the coordinates is chosen at random, and an increment x -+ x + hq 

(or hb) is made in that coordinate with probability 

(30) 

If the move is not accepted, a move in the opposite direction is made, x -+ x - hq (or hb). 

The step sizes in hb (for bead moves) and hq (for quark or antiquark moves, with mg and 

mif assumed equal) are given by 

(31) 

and 

(32) 

where hT is a small step size in Euclidean time (relative to inverse energy scales). After each 

move the Euclidean time is incremented by hT. Excited states with nodes in the guiding 

wavefunction 'l/J9 require special consideration; for these cases we test that moves do not 

cross the nodal surface, and if they do they are rejected and another move is generated. 

This introduces a bias which vanishes as hT -+ 0. There is also a bias in excited states if a 

guiding wavefunction is used which has incorrect nodes. 

For the static quark simulations in Sec.III we used a guiding wavefunction which is a 

Gaussian in the total string length Rstr, 
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V;9 = exp { - (Rstr/0 2
} (33) 

and allowed only bead moves. The optimum guidance parameter e was estimated numerically 

by minimization of the statistical error, specifically by minimizing the variance of the weight 

factor w(T) in (35). For N = 1 and all the R values considered here the optimum value was 

found to be e ~ 1.5 fm. 

For the dynamical quark ground state we use as our guiding wavefunction 

(34) 

This simple generalization of the static quark Gaussian (33) includes a suppression of the 

wavefunction with increasing interquark separation R for fixed string length Rstr, as is 

intuitively expected for heavy quarks. For excited-L qq and hybrid states the wavefunction 

is more complicated, and must incorporate nodes to ensure orthogonality to the ground state 

(see below). 

In the course of a random walk from Euclidean time 0 toT we generate a path-dependent 

weight factor, given by 

(35) 

where the Laplacians are in the 6 quark and antiquark and 2N (transverse) bead coor­

dinates respectively. The form (35) and the step sizes hb and hq above are chosen so 

that a histogram of these weights in configuration space { x} is proportional to a solu-

tion V; ( { x}, T) of the Euclidean time Schrodinger equation. Actually w( T) gives the related 

function V;9 ({x})V;({x},T)) [34]; this V;9 V; can also be used to determine the ground state 

energy, and is generated with a smaller statistical error than V; itself. The energy is deter­

mined from the large-T behavior of the weight w(T): At large T the walk-averaged weight 

< w( T) > approaches an exponential in T, 

(36) 

so we may determine Eo from measurements of < w > at two successive Euclidean times, 
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(37) 

In practice we leave T2 - T1 fixed and increase T1 until the E0 estimate has converged to the 

required accuracy. 

If a guiding wavefunction 'lj;9 with nodes is used, we recover the lowest energy eigenvalue 

for which 'lj; = 0 on those nodes. If the nodes are identical to those of an excited state 'lj;n of 

the system, we recover the correct En from (37). 

This algorithm gives the true eigenenergy for any guiding wavefunction 'lj;9 with correct 

nodes, provided that the initial configuration has nonzero amplitude in the ground state. 

The results become statistically more accurate as the guiding wavefunction is made closer 

to the true eigenfunction ,Pn, and one may confirm that the best possible choice is an energy 

eigenfunction, 'lj;9 = ,Pn [34). In this case the weight factor (35) becomes w = exp( -EnT) 

exactly for each walk, so the energy can be determined from a single walk at arbitrary T. 

Of course we do not know ,Pn in general, so we use a parametrized Ansatz for 'lj;n as our 

'lj;9 , and determine the optimum parameters numerically by minimizing the variance of the 

weight factors { w} in a sample of random walks. Given the optimized guiding wavefunction 

'lj;9 , we then determine En using (37). 

C. Monte Carlo Results 

For as = 0 we generated Monte Carlo energies for quark masses of mq = 0.33, 0.5, 1.0, 

1.5, 2.5, 5.0 and 10.0 GeV, with a string tension of a = 1.0 GeV /fm. The optimized guiding 

wavefunction parameters in (34) were e = 1.5 fm and eqq = 1.4, 1.0, 0.7, 0.6, 0.5, 0.4 and 

0.3 fm for the quark masses given above. The Euclidean times used, which were chosen to 

insure convergence to ground state results to within our statistical errors, were T1 = 10.0 

GeV-1 and T2 = T 1 + 1.0 Gev-I, and the step size was hr = 0.005 GeV-1
. For energy 

differences of excited and ground state levels, En - E0 , we found adequate convergence with 

a smaller time of T1 = 5.0 GeV-1 . We also generated energies for various other guidance 
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and time parameters to confirm the accuracy of these results. The sample size was usually 

Nrw = 8 X 1024 walks (8 separate runs to generate errors), and we used bootstrap on each of 

the 8 runs to suppress dependence on the initial configuration. (In a bootstrapped run the 

final configuration of a walk at T = r 2 is used as the initial configuration of the next walk 

at T = 0.) For hybrids with mq = 0.33 and 0.5 GeV we used longer runs of Nrw = 8 x 4096 

walks to compensate for the larger statistical errors. 

The adiabatic ground state energies (from (28,29) with the potential Eo( R) of (20)) and 

Monte Carlo results for N = 1 are summarized in Table 2 for as = 0, mb = 0.2 GeV and 

a= 1.0 GeV /fm. 

TABLE II. Adiabatic and Exact (Monte Carlo) Ground State Energies for N = 1. 

mq (GeV) 

0.33 

0.50 

1.00 

1.50 

2.50 

5.00 

10.0 

E 0diabatic ( Ge V) 

1.985 

1.868 

1.711 

1.638 

1.563 

1.484 

1.425 

E[)ionteCarlo _ Ec)diabatic ( Ge V) 

0.274( 4) 

0.231(5) 

0.187(3) 

0.164(3) 

0.148(3) 

0.124(2) 

0.114(3) 
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Evidently the adiabatic approximation considerably underestimates the ground state 

energy, by up to 0.3 GeV for light ( u, d) quark systems. The discrepancy falls rather slowly 

with increasing quark mass, approximately as m;114
. 

For excited-L quarkonia we generalize the ground state guiding wavefunction to 

(38) 

where the angular function depends on the direction of the qij axis, and was taken to be 

the real part of YLM(O, <fy). (The algorithm requires a real wavefunction for importance 

sampling.) The radial factor R L is not essential but is expected to be closer to the true 

'1/J~L), and its inclusion reduces our statistical errors somewhat. 

For hybrid states the amplitude to find the system at (0, </Y, </Jb) is given by (27) 

(39) 

For our full hybrid guiding wavefunction we multiply the real part of this angular function 

by a radial wavefunction similar to our ground state 'I/J9 , 

(40) 

(41) 

The product of Pb (the bead-axis distance) and R was introduced as a simple centrifugal 

suppression factor. 

There is a systematic bias in our results for excited states due to the nodal surfaces 

specified by the angular wavefunctions f; these surfaces are exact only in the limit mq ---+ oo. 

For our high statistics quarkonium simulations we used M = 0 states for simplicity, since 

they are </J-independent. We checked for evidence of node bias by comparing the energies 

found using guiding wavefunctions with different magnetic quantum number M, which have 

different nodal surfaces. The bias in qij states was at most about 10 MeV, comparable 

to our statistical errors. For the 1 P hybrid however we found a significant M-dependent 
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bias; in Fig.4 we show hybrid energies determined using both M= 0 and M = 1 in (41). 

The largest bias was at the smallest quark mass of mq = 0.33 GeV, for which we found 

E(1 P, M= 1)- E(tP, M= 0) = 52(18) Me V. This bias will be discussed in more detail in 

our treatment of hybrids with physical parameters. 

Fig.4 shows the P-wave and D-wave qij levels and the first hybrid level (AL = 1P) relative 

to the ground state energy E0 , using both the adiabatic approximation (lines) and Monte 

Carlo (points). Our results show that the adiabatic approximation is more accurate for the 

energy differences {En- Eo}, which are the experimentally observable quantities, than for E0 

itself. The largest discrepancies between adiabatic and Monte Carlo results are~ 100 MeV, 

for the D-wave and hybrid states at the lightest quark mass of 0.33 GeV. Note that the 

adiabatic approximation overestimates the excited-L energies but underestimates the hybrid 

energy. Thus, if we use the adiabatic approximation and fit the experimental D-wave levels, 

we underestimate the light hybrid mass by~ 200 Me V. 

In their analytical study of the flux tube model, Merlin and Paton [12] also found that 

postadiabatic corrections reduce the excited-L energies and increase the hybrid energy. They 

find (q = u,d) P,D and 1P hybrid energy shifts which are quite similar in relative strength 

to our Monte Carlo results; this led Isgur and Paton to revise their adiabatic hybrid mass 

estimate upwards from 1.67 GeV to "'1.9 GeV [13]. The overall scale of adiabatic corrections 

quoted by Merlin and Paton [12] (see especially their Table 6) is about twice as large as we 

find numerically, but this may be due to their use of the large-N limit, whereas we have 

specialized to N = 1. 

D. Physical Hybrid Masses 

The flux tube results discussed in the previous section are not applicable to real hadrons 

because they do not include the attractive calor Coulomb interaction. Without the Coulomb 

interaction the flux tube at small R gives an SHO-like adiabatic potential (see E0 (R) in 

Fig.1), which leads to nearly equal S-P-D splittings in the spectrum of conventional qij 
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mesons (as in Fig.4). A realistic description of the S-P-D splittings requires the familiar 

"funnel shaped" potential, in which linear confinement is augmented by a short ranged 

attraction. 

In conventional potential models the Coulomb plus linear form 

( 
4 as 

Vqq- R) = -3 R + aR + Vo ( 42) 

is most often used, with a string tension of a P:::: 0.9-1.0 GeV /fm giving the best fit. Per-

turbative QCD predicts that the effective Coulomb interaction strength as should run with 

the scale of momentum of the scattered constituents, provided that we are well above any 

intrinsic mass scales. For resonance physics this requirement is obviously not satisfied, but 

there is nonetheless clear evidence for a rapid decrease of as with increasing quark mass; 

fits to spectroscopy typically require as P:::: 0.6-0. 7 for q = u, d, s, as P:::: 0.3-0.4 for q = c and 

as P:::: 0.2 for q = b. 

For our realistic parameter set we assume constituent quark masses of mq = 0.33, 0.55 

and 1.5 GeV for q = u(d), sand c, and again set the string tension equal to a= 1.0 GeV /fm. 

In addition we include a color Coulomb and constant potential, 

4 aft 
V -= ___ s_ + Vo 

qq 3 R (43) 

in the flux tube quark Hamiltonian (2). The additive constant Vo is found to be large and 

negative in potential models, and in the flux tube model is required in part to cancel the 

zero-point energies of the beads. The coefficient -4/3 multiplying a5 jr in the color Coulomb 

interaction merits additional comment. In constituent gluon models of hybrids the qq pair 

would be in a color octet, so the -4/3 would be replaced by 1/6. In the flux tube model, in 

which gluonic excitations are presumed nonperturbative in a 8 , it may be more realistic to 

use -4/3. This can be motivated by noting that at small R the lowest gluonic excitation is 

a color singlet qq pair (hence -4/3) plus a scalar glueball, rather than a qq color octet pair 

with a diverging + 1 j 6 col or Coulomb interaction (36]. 

The a{t in the N = 1 flux tube Vqq- cannot be compared directly to the Coulomb plus 

linear a 5 , because the fixed-N flux tube gives an SHO-like confining potential at short 
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distances (see E0 (R) in Fig.1) in addition to the linear term which dominates at largeR. 

Since a{t in the fixed-N flux tube model must cancel this additional contribution to produce 

a funnel shaped potential comparable to the standard Coulomb plus linear form, it is larger 

than the potential model as. 

We used multiplet-averaged Es and Ep energies as input to fix a{t and V0 in each flavor 

sector. The numbers used were Ep- Es = 0.62 GeV for q = u, d (from I= 1) and 0.45 GeV 

for c. The fitted values of a{t are 1.3 and 0. 72 respectively, each determined to a few per 

cent accuracy. The Ep - Es separation proved to be quite sensitive to the strength of 

the Coulomb potential. The constant Vo was fixed separately for each flavor by using the 

spin-averaged masses Ef=l) = 0.63 GeV and E~cc) = 3.07 GeV as input. This required 

V0(I=l) = -1.71 GeV and V0(cc) = -1.17 GeV. Since these constant contributions cancel 

zero-point energies, they are not physically relevant. One might expect them to be roughly 

flavor independent, however, which can be achieved by increasing me to 1.8 GeV; the effect 

on the hybrid spectrum will be discussed subsequently. For ss we used the u, d parameters 

and simply increased the quark mass toms = 0.55 GeV. 

The Monte Carlo technique was used to determine masses of qij and hybrid states up to 

L = 3. For L > 0 qij states we used 

f(L,M) ( (), </>) = Pf (cos( B)) cos( M</>) (44) 

1n the guiding wavefunction (38) and the high statistics runs used M = 0. For the hybrids 

we again used the rigid-body angular wavefunction (41). Tests of node dependence were 

carried out by varying M. The simulations used the same statistics as the as = 0 studies of 

the previous section, although we found that T1 = 5.0 GeV-1 sufficed for convergence of level 

separations to within the statistical errors. These errors were typically about ±5 MeV for 

quarkonium states and ±10 MeV for hybrids. The guiding wavefunction parameters used 

in (34) were eqii = 3/(2mqa{t) (to give an accurate Coulomb wavefunction for S-waves at 

short distance), and the flux tube length scale e was optimized numerically for each state. 

For all qij and cc states we found that e = 1.5 fm was nearly optimum. For qij hybrids we 
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found e = 1.8 fm for A= 1 and 2.4 fm for A = 2. (Note that the higher flux tube excitation 

requires a larger length scale, as expected.) For cc hybrids we found slightly smaller flux tube 

length scales, e = 1.6 fm for A= 1 and 2.1 fm for A= 2. The quarkonium levels were again 

independent of M to within our statistical erors, but some bias was evident in the hybrids. 

This bias decreased with increasing mq and mb, as expected. The largest bias was found in 

the light 1P hybrid, for which E(M = 1)-E(M = 0) = 57(9) Me V, similar to our findings for 

as= 0. This fell to 36(7) Me V for charmonium. The corresponding E(M = 2)- E(M = 0) 

bias for 1D was 24(13) Me V for uu and 18(9) Me V for cc. Measurements with ±IMI appear 

to give equivalent results. For this work we average over measurements with all values of 

IMI = 0 to L; the discrepancies given above imply a systematic uncertainty of about ±30 

Me V for the u, d 1P hybrid, ±20 Me V for the 1P cc hybrid, and rather less for the other 

states. This error could be reduced in future work through incorporation of improved nodal 

surfaces. 

Our numerical results with the standard parameter set (mq,mb,a{t,a) = (0.33 GeV, 

0.2 GeV, 1.3, 1.0 GeV /fm) are shown in Fig.5. The predicted D-wave qij mass of 1.66(1) GeV 

is quite reasonable, given the well-established D-wave candidates p3 (1690), w3 (1670) and 

11"2 (1670). The F-wave qq multiplet is predicted to lie at 2.03(2) GeV, in good agreement 

with the a4 (2040), a3 (2050) and ] 4 (2050). The lightest hybrid multiplet, which has A = 1 

and L = 1 (AL = 1P in our notation), is at 1.90 GeV with these parameters. This is identical 

to the Isgur-Merlin-Paton prediction of 1.9 GeV [12,13]. Since we are using different versions 

of the flux tube model this agreement is somewhat fortuitous, although we will show that 

our result is rather insensitive to parameter variations. 

In view of the interest in the experimental hybrid candidate at 1775 Me V [4], which may 

have exotic JPC = 1-+ but 2-+ and 3++ are also possible, we also determined the mass of 

the radially-excited L = 2 qij multiplet, which contains the first I = 1 2-+ qij level expected 

above the 11"2 (1670). (A 3++ qij state would require L = 3, and since this multiplet has well 

established members near 2.05 Ge V we do not consider this a plausible qij assignment.) For 
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the radial simulation we multiplied the qij guiding wavefunction '1/J~L) in (38) by IR-Rol, and 

varied the node radius R0 until the energies determined by Monte Carlo in the R > R0 and 

R < R0 regions were equal. This required R0 = 1.5 fm and gave an energy of E'n ~ 2.3 GeV, 

similar to potential model expectations [38) and far above the 1775 Me V state. This state 

is thus very unlikely to be a radially-excited D-wave qij. 

We find that the first orbitally excited hybrid multiplet (1D) is at 2.30 GeV, 400 MeV 

above the lightest (1P) hybrids. The same numerical result was found earlier by Merlin [15) 

using the adiabatic approximation. This 1D multiplet contains the JPC states (1, 2, 3)±=t= and 

2±±, which includes the exotics 1-+, 2+- and 3-+. This level is surprisingly high in mass, 

since a small orbital excitation gap has been anticipated for hybrids, due to the relatively 

fiat hybrid adiabatic potential found by Michael et al. [23) in heavy-quark lattice gauge 

theory. We shall see that the orbital excitation gap is somewhat smaller for cc hybrids in 

our model, so there is no serious inconsistency with HQLGT results. If the experimental 

hybrid candidates near 1.8 GeV [4) and 1.6-2.2 GeV [6] are confirmed, it may be useful to 

search for members of this 1D hybrid multiplet near 2.2 GeV (about 0.4 GeV above 1P). 

A sequence of hybrids with higher orbital excitation is expected in the flux tube model, 

although these may be increasingly difficult to observe due to small matrix elements with 

light qij states. 

We also determined the mass of the lightest A = 2 hybrid multiplet, 2D. These states 

are found to be quite high in mass, ~ 2.75 GeV, so they should be irrelevant for light 

quark spectroscopy in the 2 Ge V mass region. Merlin and Paton anticipate a lighter two­

phonon hybrid multiplet, near 2.2 GeV in the adiabatic approximation. In their level the 

phonon angular moment a cancel (A = 0 "paraphononium"), whereas we have considered 

A = 2 "orthophononium". These A = 0 two-phonon states have conventional qij quantum 

numbers, which could complicate their identification. 

The sensitivity of hybrid mass predictions to parameter variations is an important issue 

which has received little attention in previous flux tube studies. To investigate this we 
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sequentially increased one parameter of the set ( mq, mb, a{t, a) by 20%; recall that our 

standard parameter set (0.33 GeV, 0.2 GeV, 1.3, 1.0 GeV /fm) gave (P, D, 1 P, 1 D) masses 

of ([1.25](input),1.66,1.90,2.30) GeV. (Vo is always chosen to give Ms = (3Mp + M'Tr )/4 = 

0.63 GeV.) The variations of these masses with parameters (with errors of typically ±0.01 

GeV) were 

( -0.01, -0.02, -0.01, -0.02) (!:lmq/mq = 0.2), 

( -0.01, +0.01, -0.05, -0.03) (!:lmb/mb = 0.2), 

( +0.07, +0.08, +0.06, +0.09) (!:la{t/ a{t = 0.2), 

( +0.05, +0.11, +0.13, +0.16) (!:la/a= 0.2). 

(45) 

This leads to several conclusions about the importance of parameter uncertainties in our flux 

tube spectrum. First, the level separations are evidently quite insensitive to variations in 

quark mass. Second, they are sensitive to changes in a{t and a, but the known P-S and D-S 

qq separations preclude any large changes in these parameters. In any case the hybrid and 

D-wave levels behave similarly under changes in a{t and a, so the predicted hybrid to D-wave 

separation is quite stable. Finally, it is the bead mass that leads to the largest uncertainty. 

The energies do not depend especially strongly on this parameter, but the hybrid and qq 

energy shifts have opposite signs. (This is more evident in (46) below.). Unfortunately the 

qq masses are quite insensitive to mb, so ideally we would use a hybrid mass to determine 

mb. To estimate the range of plausible hybrid masses as we vary mb we consider the range 

mb = 0.2-0.4 GeV; 0.2 GeV is our standard value and 0.4 GeV corresponds to a large flux 

tube length scale (see discussion in Sec.II.B). Over this range of mb we find the masses (with 

square brackets as input data) 

{ 

([0.63], [1.25], 1.66, 1.90, 2.30) 
(S, P, D,1P,1D) (GeV) = 

([0.63], 1.27, 1.70, 1.78, 2.22) 

(mb = 0.2 GeV), 

(mb = 0.4 GeV). 
( 46) 

With rounding to 0.1 GeV accuracy this leads to our final estimate of the lightest hybrid 

mass, 

M(1P) = 1.8-1.9 GeV . ( 47) 
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The first orbitally excited hybrid ID and the first A = 2 hybrid 2D are expected at about 

0.4 GeV and 0.8 GeV above the Ip hybrid level respectively. 

For ss quarkonia and hybrids we simply increased ms to 0.55 Ge V. The resulting level 

splittings were very similar to the results for u, d states. Using a P-wave ss mass of 1.50 GeV 

as input to fix Vo, our ss results are 

(S, P, D,1P,1D) (GeV) = (0.87, [1.50], 1.88, 2.17, 2.54) (mb = 0.2 GeV). ( 48) 

The only significant changes noted were a decrease in the D-wave level (relative to Es) of 

tl(ED- Es) = -0.02 GeV and an increase in the 1P level by 0.03 GeV. Thus we expect 

the first ss hybrid near MD(ss) + 0.29 GeV, about 50 MeV higher above the D-wave level 

than we found for the corresponding u, d states. The dependence on mb was very similar to 

that found for u, d, so our final result for the first ss hybrid level 1P was 2.1-2.2 GeV. 

For charmonium and cc hybrids with our standard parameters me= 1.5 GeV, mb = 0.2 

Ge V, o:{t = 0. 72 and a = 1.0 Ge V /fm we predict the following levels: 

(S, P, D, IP, ID) (GeV) = ([3.07], [3.52), 3. 77, 4.21, 4.48) (mb = 0.2 GeV). ( 49) 

These are displayed in Fig.6. Note that the predicted D-wave cc mass of 3.77 GeV is in good 

agreement with the experimental 'l/;(3770). With these parameters we expect the lightest 

charmonium hybrid at 4.2 GeV. The first orbital excitation gap of cc hybrids in HQLGT 

was found to be 0.22 GeV by Michael et al. [23] whereas we estimate 0.27 GeV; given the 

approximations this does not represent a serious discrepancy, although we shall see below 

that it is a rather stable prediction of this version of the flux tube model. 

To test the sensitivity of these results to parameters we again increased each parameter 

in turn by +20%, which gives the mass shifts 

( +0.02, +0.03, +0.04, +0.04) (!::l.mc/mc = 0.2), 

( +0.01, +0.02, -0.05, -0.02) (tlmb/mb = 0.2), 

( +0.10, +0.13, +0.07, +0.011) (tlo:{t ja{t = 0.2), 

( +0.04, +0.06, +0.14, +0.14) (!:la/a= 0.2). 

(50) 
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Thus for hybrid charinonium we reach similar conclusions regarding parameter uncertainties. 

The results are quite insensitive to me; increasing me from 1.5 GeV to 1.8 GeV only increases 

the first hybrid mass by 40 MeV. Since charm quark masses from 1.25 GeV (HQLGT, [23]) 

to 1.77 GeV (flux tube, [12-14]) have been used in the hybrid literature, it is reassuring to 

find that the lightest hybrid mass changes by only about 0.1 GeV over this wide range. As 

with light quarks we find that a and a{t strongly affect the hybrid mass spectrum, however 

these parameters are tightly constrained by the known quarkonium spectrum. The largest 

uncertainty again comes from mb, which is not very well determined by the cc spectrum nor 

by more general theoretical considerations. To test a wide range of possible values we again 

vary mb over the range mb = 0.2-0.4 GeV; with mb = 0.4 GeV we find 

(S,P,DllPllD) (GeV) = ([3.07),3.54,3.82,4.08,4.37) (mb = 0.4 GeV). (51) 

Our final result for the lightest hybrid charmonium mass is thus 

M(1P) = 4.1-4.2 GeV , (52) 

and for charmonium we expect the orbital (1D) and doubly-excited (2D) hybrids about 

0.3 GeV and 0. 7-0.8 GeV above the 1P level respectively. 

V. PHENOMENOLOGICAL IMPLICATIONS 

We have studied the fixed-N version of the flux tube model, principally theN= 1 case, 

as a numerically tractable version of this type of hadron model. 

The ability to reproduce the spectrum of conventional quarkonia with N = 1 is of 

interest in its own right. It suggests that we have a unified picture of both quark and flux­

tube excitation spectra, thereby generating some confidence in the predicted hybrid masses. 

In this final section we summarize implications of these results. 

Our studies suggest that the adiabatic approximation, used in previous analyses of hybrid 

meson masses in the flux tube model, underestimates the hybrid mass scale. Our conclusions 
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substantiate previous analytical estimates of corrections to the adiabatic approximation 

[12,14], and lead to hybrid masses that are ~ 0.1 GeV above the predictions of quenched 

heavy-quark lattice QCD, but are consistent with these lattice results given their estimated 

corrections to the quenched approximation. 

In contrast to the light quark sector, in which flavor mixing in non-exotics may be 

important and the qij spectrum itself is rather controversial, in heavy-quark systems the QQ 

spectroscopy is relatively straightforward and special opportunities ensue for the detection 

of hybrids. Our results support the expectation that heavy hybrids, HQ, appear at masses 

of 

M(HQ) ~ M0 (QQ) + 1 GeV. (53) 

An important feature in heavy QQ spectroscopy is the existence of narrow states spanning 

a mass range from~ M 0 (QQ) through ~ 1 GeV up to the two-body open-flavor threshold 

(i.e. 'ljJ to DD or T to BB). So for charmonium hybrids, for example, one anticipates He 

states in the resonance region not far above the open charm threshold of 3.73 GeV. In our 

simulations we actually find the first charmonium hybrids at M(Hc) =4.1-4.2 GeV. 

Such a prediction is particularly exciting. Charrnonium spectroscopy is rather well un­

derstood up to aBout 3.8 GeV, so searches for unusual states should be straightforward near 

this mass. Since only a few open charm channels occur below 4.3 GeV, for a considerable 

range of hybrid masses one might anticipate rather narrow hybrid resonances. This possi­

bility receives additional support from the flux tube model [16,17], which predicts that the 

dominant two body decay modes of the lowest lying hybrids are an L = 0 and L = 1 qij 

meson pair. These S + P thresholds are rather high in mass, about 4.3 GeV for cc hybrids 

and 11.0 GeV for bb hybrids. The possibility that relatively narrow hybrid charmonium 

states may exist within this 3.8-4.3 Ge V window provides an exciting opportunity for e+ e­

facilities such as BEPC, KEK and a Tau-Charm Factory. If there are indeed hybrids at 

these masses, one expects that they should be produced copiously by gluon fragmentation 

at large momentum transfers, for example at the Tevatron. Detection of the 'ljJ or '!jJ(3685) as 
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a signature of hadronic cascade decays of metastable hybrid charmonia has been discussed 

in ref [10]. (A double cascade from the cc continuum to a hybrid and thence to cc was 

proposed for a Tau-Charm Factory by D.V.Bugg, see ref [39].) In practice the usefulness of 

cascade decays in hybrid searches will depend on their branching fractions to conventional 

quarkonia. 

Determination of the production and decay characteristics of hybrid states is beyond 

the scope of this study, but we note in passing that progress in this area has been made 

recently by analytical modelling of flux tube excitations [17 ,18]. In these references the 

decay amplitudes of some recently discovered 1-+, o-+, 1-- and 2-+ u, d-flavored mesons 

were found to be in good agreement with the predicted properties of hybrid mesons, so the 

flux tube model may be a useful guide to strong decay modes as well as masses. Widths of 

the hybrid charmonia calculated in this model support the suggestion that some of these cc 

hybrids are likely to be narrow. 

The production of 1-- charmonium vector hybrids seems especially promising. As the 

flux tube has an orbital excitation about the qij axis, and the qij themselves have an effective 

centrifugal barrier due to the flux tube angular momentum, which suppresses the radial qij 

wavefunction at small r, we anticipate that the e+e- widths fee(Vc) should be significantly 

smaller than those of the conventional cc states '1/J and 'f(3686). 

In light quark systems this wavefunction suppression is not dramatic (see for example 

the Particle Data Group summary of V --+ e+ e- (40] for L = 0 and L = 2 qij states following 

the analyses of refs (41]), so we anticipate a significant light hybrid leptonic width fee(p9 ). 

The principal difficulty here may lie in distinguishing between light conventional and hybrid 

vector states unambiguously. The recent analyses of the light vector sector by Donnachie 

and Kalashnikova (42] actually do support the presence of additional vector states, some of 

which they suggest may be hybrids. 

The recent studies of hybrid decays in the flux tube model [17,18] may allow tests of these 

possible light vector hybrids. Since the qij pair in Vg has Sqif = 0, whereas conventional qij 

vector states (either 3 S1 or 3 D1 ) have Sqif = 1, there are characteristic selection rules for 
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decays that discriminate between these spin-singlet and triplet states. In particular, if the 

qij are in a spin singlet (as in the Vg vector hybrid case) then the flux tube decay model 

forbids decays into final states of two spin singlet mesons. 

For JPC = 1-- states this selection rule distinguishes rather clearly between conventional 

and hybrid vector mesons. It implies that in the decays of a light p9 hybrid p9 -f+ 1rh1, 

although p9 ---+ 1ra1 is allowed. Analogously, w9 -f+ 1rb1 for hybrid 1-- w9 decays; this is 

opposite to the case of conventional 3 L 1 qij mesons, for which the 1ra1 channel is suppressed 

relative to 1rh1 or 1rb1 [43,44). The extensive analysis of data in ref [41) revealed the clear 

presence of a p(1450) [40) with a strong 1ra1 mode but no evidence for 1fht, in accord with 

expectations for a hybrid. Furthermore, re£ [41) finds an w(1440) with no evidence for decays 

into 1rbb again in conflict with expectations for conventional qij e 51 or 3 D1 ) states but in 

accord with predictions for hybrid decays. 

The branching fractions reported for the p(1450) [41) (see also [18]) suggest that there 

may be mixing between p9 and radial p basis states in this region. If these hybrid states 

near 1.5 GeV are confirmed, this mixing may explain the low mass relative to the 1.8-2.0 

GeV typical of other hybrid candidates. There may also be significant spin-dependent mass 

shifts in hybrids that were not incorporated in the present study, which reduce spin-singlet 

masses (such as Vg) relative to the spin triplet states (o-+1-+, 1-+/+-, 2-+/+-). To test this 

possibility, analogous experimental investigations of 1-- hybrid charmonia in e+ e- would 

be very useful. In contrast, in bb systems the suppressed wavefunction at contact is expected 

to make Hb hybrids essentially absent in e+ e- annihilation. For this reason the charmonium 

system may be optimal for hybrid searches; conventional cc spectroscopy is reasonably well 

established, and since the D-wave coupling fee(1jJ(3770)) is not negligible, it may be possible 

to observe a moderately suppressed Vc vector hybrid signal in e+ e- annihilation at a Tau 

Charm Factory [39). Diffractive photoproduction of charmonium hybrids, 1* P ---+ X P, may 

also be possible, for example at HERA. 

If the mass of the Vc is indeed below or near 4.3 GeV (D** fJ threshold), then hadronic 

cascades to conventional charmonium states, in particular the 1jJ(3097) and 1jJ(3685), may 
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be important and could provide a good tag [10). The E835 experiment at Fermilab may be 

able to observe production of hybrid charmonium through hadronic cascade decays to 'lj;1r1r 

and 'l/;7]. 

For hybrids which lie above D** D threshold heavy quark symmetry or detailed decay 

models may be used to distinguish the spin singlet He from the spin triplet 'lj; states through 

their decay systematics. More detailed theoretical study on this and related questions is 

now warranted. 

To summarize, we find that heavy-quark hybrids in the flux tube model lie below S + P 

thresholds, and for hybrid charmonium this implies that the lightest states should have 

rather narrow widths. We anticipate that production by gluon jets may be particularly 

promising and for this case some quantitative estimates already exist [10) based on the 

masses found here. 

In conclusion, we find the lightest hybrid masses in the flux tube model to be M(Hu,d) = 

1.8-1.9 GeV and M(Hc) = 4.1-4.2 GeV. These results, combined with recent detailed studies 

of hybrid decay modes [17 ,18), provide a clear set of theoretical predictions for hybrids for 

comparison with experiment. 
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FIG. 1. Ground state and first hybrid adiabatic potentials and their difference, for N = 1. Solid 

lines are exact and dashed lines are the small oscillation approximation. String tension a=l.O 

GeV /fm, bead mass mb = 0.2 GeV. 

FIG. 2. Hybrid potential gap Et(R)- Eo(R) for N = 1 and N = 2. Plotting conventions and 

parameters as in Fig.1; points are Monte Carlo. 

FIG. 3. AnN = 1 quark, antiquark and flux-tube bead, showing the qij-axis angles ()and cp and 

the rigid-body rotation angle ifJb relative to the reference configuration. 

FIG. 4. Energies of the lightest L = 1, 2 qij and AL = 1P hybrid states relative to Eo = Es for 

N = 1. Lines show the adiabatic approximation and the points are Monte Carlo, M = 0 (open) 

and M= L (plus). Parameters mb = 0.2 GeV, a= 1.0 GeV /fm, a 8 = 0. 

FIG. 5. The lightest L = 0-3 qq (q = u,d) and AL = tP, 1D and 2D hybrid masses from Monte 

Carlo with physical parameters, mq = 0.33 GeV, mb = 0.2 GeV, a = 1.0 GeV /fm, a{t = 1.3. 

Square brackets denote masses used as input. 

FIG. 6. Charmonium cc and hybrid masses, legend as in Fig.5. Parameters modified for char­

monium are me= 1.5 GeV and a{t = 0.72. 
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