DL-TR-2006-001

éZCCLRc

=

An Implicit Algorithm for Capturing Sharp Fluid
Interfaces in the Volume of Fluid Advection Method

P.W.Hogg, X.J. Gu and D.R.Emerson

February 2006

Council for the Central Laboratory of the Research Councils



© 2006 Council for the Central Laboratory of the Research Councils

Enquiries about copyright, reproduction and requests for additional copies of this
report should be addressed to:

Library and Information Services
CCLRC Daresbury Laboratory
Daresbury Warrington
Cheshire  WA4 4AD

UK

Tel: +44 (0)1925 603397

Fax: +44 (0)1925 603779
Email: library@dl.ac.uk

ISSN 1362-0207

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports or in any communication about their tests or investigations.



AN IMPLICIT ALGORITHM FOR CAPTURING SHARP FLUID
INTERFACES IN THE VOLUME OF FLUID ADVECTION
METHOD

P. W. Hogg, X. J. Gu and D. R. Emerson

Department of Computational Science and Engineering
CCLRC Daresbury Laboratory, Warrington, WA4 4AD
United Kingdom
e-mails: p.w.hogg@dl.ac.uk; x.j.gu@dl.ac.uk; d.r.emerson@dl.ac.uk

ABSTRACT
The Volume of Fluid (VOF) method is one of the meffective methods in the simulation of two fluid
flows with interfaces where density and viscosiharge abruptly. These interfaces are represented
implicitly by the values of a colour function whide a volume fraction of one of the fluids. The
advantage of the method is its ability to deal veithitrarily shaped interfaces and to cope witlgdar
deformations as well as interface rupture and soalece in a natural way. In comparison to a Level
Set (LS) method, the mass is rigorously consermnedOF, provided the discretisation is conservative.
One of the main difficulties associated with VOF t& advect the interface without diffusing,
dispersing, or wrinkling it. This can either befoemed algebraically, in schemes such as CICSAM or
geometrically, in schemes such as PLIC.

In the present report, an algebraic advection sehfemthe interface is presented, which is designed
for the implicit time advancing algorithm. Analagoto CICSAM, the new scheme switches smoothly
between ULTIMATE-QUICK and the upper bound of theiversal limiter, depending on the angle
between the interface and the flow direction. Focases are tested with the present scheme: (9 soli
body rotation; (ii) circle in a shear flow; (iii)amn-break and (iv) Rayleigh-Taylor instability. tine
first two test cases, prescribed velocity fields ased, thereby allowing the effectiveness of theme

in advecting the colour function only to be asséss&he scheme is found to outperform six other
methods used for comparison in both studies. lid $@dy rotation simulations a fractional error of
0.19% is calculated in comparison to the next bestrded error of 1.1%. Similarly, in the longest
shear flow simulation, a fractional error of 1.286calculated in comparison to the next best recbrde
error of 3.9%. In the final two test cases theeation equation for the colour function is coupted
the Navier-Stokes equations. In dam-break sinaratit is found that the resulting solution effeety
captures the trends displayed in experimental fdatdne advancing water front and the residual tieig
of the liquid column against time. Qualitative uks obtained for the Rayleigh-Taylor instability
modelling in test case four are found to compavedaably to previous numerical simulations of the
same phenomenon.
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1 INTRODUCTION

The accurate numerical computation of multi-fluid flows, anddineulation of the
flow of two immiscible fluids separated by a well-defineceifdice, has many applications.
One area is that of environmental engineering where usésl to simulate dam and dyke-
breaks [1-3], volcanic flows and plumes [4] and the motion démia a marine environment
[5-7]. Another is that of biomedical sciences/engineering, whéadgical material and
fluids such as blood are transported through capillary tubing and channttle vascular
system [8-10] or in Micro Electro Mechanical Systems (MEMS) de\jt#&-13].

Current numerical methods for simulating such two-phase flakth discrete
interfaces can be generally classified as eitimerface-tracking (surface) methods or
interface-capturing (volume) methods [14]. In interface-tracking methods the free surface is
treated as a sharp interface whose motion is followed. Saowag grid techniques [15]
employ a boundary fitted grid, where the grid points are emioeiddde fluid and move with
it in a Lagrangian manner such that the fluid always coinacidisthe region to be analysed.
Others require the introduction ofnaight function [16], which is the free surface elevation
relative to its unperturbed state, whose local change isilbed¢hough a kinematic boundary
condition. The advantage of surface methods is that theytaimaia sharp interface for which
the exact position is known throughout the calculation. Howéwese methods require
special treatment when the interface is subject to largerrdafion or stretching [17]. In
interface-capturing methods, the different fluids are marked either by massless pestid8,
19] or by an indicator function, which in turn may be a volumetifsa [20, 21] or a level set
[22-24]. The advantage of volume methods are in their abiligope with large stretching
and deformation of the interface as well as rupture aneésoahce in a natural way. In the
massless particle method, individual particles are traakexdLliagrangian manner across an
Eulerian mesh; however such schemes are non-conservativenaragj Alternatively,
methods which employ an indicator function, solve a scalar transgoation in an Eulerian
manner, thereby enabling the enforcement of conservation. n@iteator function can either
take the form of a scalar step function (known as a coloutitumyaepresenting the volume
fraction of space occupied by one of the fluids (known as YOIFa smooth but arbitrary
function (level set) encompassing a predefined iso-surface which idetitdiagerface.

One of the main difficulties associated with VOF is atimgcthe step function
without diffusing, dispersing or wrinkling the interface. rias techniques have been
proposed for capturing a well-defined interface using voluraetibns. These are largely
based on either a geometric or algebraic approach. An exafnpte such method from the
first grouping is known as Piecewise Linear Interfacecdation (PLIC) [25, 26]. This relies
on an explicit advection of reconstructed line segmentsertiglly a predefined set of rules
based on the volume fractions of neighbouring cells is usededonstruct the fluid
distribution for a cell. The local velocities move thedldiistributions and the new volume
fraction values are updated accordingly. A major problerh siith methods is that the cell
shapes are implicitly used in the interface reconstructimhsa it is very difficult to extend
these techniques to arbitrary complex meshes and to three dimensions.

Alternatively an algebraic approach can be adopted in whiehconvective scalar
transport equation for the volume fraction is discretiseduich as way so as to guarantee
physical (bounded) volume fractions whilst preventing smeaof the interface over several
mesh cells. The original VOF scheme [21] was derived pg@ewise constant volume
tracking method, with the appealing feature that its volulze$ can be formulated



algebraically without reconstructing the interface. It taltee interface orientation into
account when calculating the amount of fluid fluxed over the fdca oontrol volume,
ensures physical volume fraction values (i.e. overall boundedisdg®en zero and unity)
and keeps the transitional area over one control volume. Howel@es not preserve local
boundedness i.e. a volume fraction value which initially liesvéenh the values of its
neighbours does not necessarily preserve this property wheaotad\in the absence of shear.
This numerically introduces new maxima and minima into the voluawtion field and leads
to non-physical deformation of the interface shape [27-30].

High resolution differencing schemes such as Total ManiaDiminishing (TVD)
methods, Flux Corrected Transport (FCT) schemes and techniqngdNasimalised Variable
Diagrams (NVD) [31] offer another approach, but attempipigly them show that they are
too diffusive [32, 33]. Although FCT schemes are non-difiadly nature they create areas
of unphysical flotsam (floating wreckage) or jetsamttioned goods) [28]. Furthermore
these schemes are based on one-dimensional derivations witha@aananulti-dimensional
flow by operator splitting [34]. This limits their implematibn to structured meshes where
control volume faces are aligned with the coordinate axes.

In the present report, an algebraic advection scheme fontidakce is presented,
designed for the implicit time advancing algorithm. The sehés based on the Compressive
Interface Capturing Scheme for Arbitrary Meshes (CICSAM)ettped by Ubbink & Issa
[35]. This makes use of the NVD concept and switches betwdtaredi differencing
schemes to yield a bounded scalar field, but one which presestrethb smoothness of the
interface and its sharp definition (over one or two computational cells).

2 GOVERNING HYDRODYNAMIC EQUATIONS

In the VOF method, one fluid formulation of two-fluid Nav&tokes equations is
employed as the interfacial boundary conditions are implicitiytained in the equation of
motion. Both fluids are described by the same set of equabahghe differences in material
properties, such as density and viscosity, are explicitly acabufue Consider two
incompressible fluids, 1 and 2, separated by an interface S. Thauignéquation is given
by

2 ®
X

where u; is the velocity and is the spatial direction. The flow is governedthg
incompressible Navier-Stokes equations:

oy Ouu __1op 101 F o )
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in whichp, g andF; are the pressure, gravity vector and the inteafaeirface tension force,
respectively and; is the viscous stress tensor given by

- du,
Tij :ﬂ(%+_]]_gﬂ%q (3)
ox; 0% ) 3 0%

where yis the coefficient of dynamic viscosity amjlis the Kronecker delta. The local
density,o, and viscosityy, are defined as

p=Cp +(1-C)p, and p=Cu+(=C)u, (4)



where the subscripts denote the different fluids,@is the volume fraction with a value of
unity in fluid 1 and zero in fluid 2. The volumefition is governed by

a_C+ui a_C:O (5)
ot 0X:

The Continuum Surface Force (CSF) model of Bratkbdl. [36] has been frequently
employed to calculate the surface tension force:

F = aKa—C (6)

0%

where g is the surface tension andis the curvature of the interface. The CSF method
converts the surface force into a volumetric candims force,F;, instead of a boundary
condition on the interface. Equations (1)-(5) aisektised using a finite-volume method and
an implicit second-order temporal scheme. The presand velocity fields are solved on a
collocated grid using the SIMPLE [37] algorithm ebted through Rhie and Chow
interpolation [38]. Equation (5) is essential fapturing the motion of the fluid interface but
accurate discretisation of its step-like behavisurot straightforward and is the focus for the
remainder of the report.

The method of solution operates in an iterativghiian, wherein the equation for the
colour function, Eq(5), is solved first (starting from an initial volurfield) and the resultant
volume fractions are used to compute the new degsind viscosities throughout the domain
according to Eg. (4). The momentum and continuifyagions are solved utilising these new
values and the process repeats through a numbesutelr iterations until a suitable
convergence criterion has been satisfied, for dawh step.

3 Description of the scheme

3.1 Discretisation of the equation
The finite-volume discretisation of thevadtion equation for the colour function is
based on the integral form of Eq. (5) over eachtrobwolume and time intervdlt. If P
denotes the centre of the control volume (with mwuVe) the first order implicit
discretisation gives
CHAI - Ct
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where f is the centroid of the cell face and the volunceftuix is given by the term
F,=A, O
summation in Eg. (7) is over all cell faces. Iistmethod, the resultant fluxes are expressed
in terms of the unknown colour function valueshat hew time.

For a cell-centred method, such as that whiclwillebe considering, the cell centre
values are used to interpolate the values of theucdunction on the face¥;, , in Eq. (7).

Such an interpolation scheme, which should guaeaateounded solution whilst maintaining
the sharpness of the interface, is the focus efghidy.

The interpolation of the face values is the sawmeall faces and it is therefore
sufficient to present the derivation for a singked only. Figure 1 contains a schematic
representation of a one-dimensional control volume.

.» where A is the outward-pointing face area vector normathe face. The

Flow Directior



Figure 1. One-dimensional control volume.

The centre cell (donor cell), referred to with stripg D, has two nearest neighbours, referred
to with a subscript A for the acceptor cell andibseript U for the upwind cell. Note that the
flow direction determines the location of the ndigbrs. The face between the donor and
acceptor cell, with subscrift, is the face under consideration.

It is reasonable to assume that the interpolated ¥alue will lie somewhere between
that of the donor and acceptor cell values. Liretarpolation of the face value, known as
central differencing, is second order accurate, fesults in an unbounded solution for
problems in which convection dominates. The usethef donor cell value (upwind
differencing) guarantees a bounded solution buiiffsisive and smears the transitional area
between the fluids over several cells. The usehef acceptor cell value (downwind
differencing) does not preserve boundedness buttaias resolution of the interface. Hence
the problem of interface tracking boils down to fledection of a combination of differencing
schemes which will preserve both the boundednetigofolume fraction distribution and the
sharpness of the interface.

The original VOF scheme, proposed by Hirt & Nichf21] is a compressive scheme
that was developed to capture well-defined intex$acThe amount of volume fraction fluxed
over the cell face is calculated by taking accafnthe volume fractions in both the donor
and acceptor cells.

The downwind (acceptor) cell's value is used tamaén (or steepen) the resolution
of the interface. Unfortunately, the downwind stieeviolates the boundedness criteria,
unless used under strictly specified conditions otder to maintain a bounded volume
fraction field, the scheme calculates a blendinthefdonor and acceptor cell values, and this
blended value depends on the availability of thiedint fluids in the donor cell.

An undesirable feature of the downwind schemetdstendency to wrinkle the
interface when the flow is almost tangential to thierface, for examples see the work of
Lafaurieet al [29] and Ubbink [30]. To overcome this, the onigli VOF scheme switched to
upwind (donor-cell) differencing when the interfamrgentation is more likely to be tangential
to the flow direction than normal. This switch wadivated abruptly as the angle between

the interface and the flow direction moved throdgh An extensive study on the conditions
for switching to upwind differencing was conduciadreference [29] and it was found that
the accuracy of this methodology is heavily depahdeon this angle. Additionally the work

of several authors [27-30] has shown that the maigVOF scheme deforms the interface
numerically.

An analysis of the formulation by Ubbink [30] hahown that non-physical
deformation of the interface originates when emplgythis methodology because it does not
comply with local boundedness criteria and becaofs¢he sudden switch between the
controlled downwind and upwind differencing schemes

To overcome this problem Ubbink & Issa [35] propeghat the switch should be
between two high-resolution schemes which complith wocal boundedness criteria. They
argued that a bounded compressive scheme shoulddaewhen the interface orientation is
more likely to be normal to the flow direction atiéit a more accurate interpolation scheme,
such as bounded central differencing or boundedirgia upwind interpolation, should be
used when the interface is more likely to be tatigerto the direction of motion.
Furthermore they have demonstrated that the swietween schemes should be more



gradual, rather than the sudden switch proposedhbyoriginal VOF scheme. Their
mechanism for switching and the high-resolutioresebs employed, are described next.

3.2 Normalised Variable Diagram (NVD)

The normalised variable, as proposed by Leonatll f8rms the basis on which the
high resolution schemes are constructed and inebfis

- (8)

. C -C . C,-cC
C,=—=—" andC, = )
C, -C C, -cC,

Gaskell & Lau [39] have presented a convection bedndss criterion (CBC) for one-
dimensional implicit flow calculations. The CBC sghe normalised variable and stipulates

bounds onf:f for which an implicit differencing scheme in 1D wéllways preserve the local
boundedness criteria:

(10)

(@]
IN

C, =C, for C, <0 or C, > 1
C, <1 for 0<C, <1

D

Figure 2 shows the NVD, which plots the normalisec faalue as a function of the
normalised donor-cell value; several common diffiereg schemes are also shown for
comparison. The CBC, as given in Eq. (10) defites drea above and including the line
representing upwind differencing in Figure 2 ilee tupper left triangular area of Figure 2,
above and including the diagonal marked UD.

Leonard [31] has shown that various differenceessds and the CBC can be
reconstructed for one-dimensional explicit flowazdations using a linear weighting based on
the Courant numbes , given as

C, =(@-a)C, +aC, (11)

whereC; is the normalised face value for the implicit implentation. With this linearisation
C, - C,if a~0andC, - C, if a - 1; thus a point to point transfer of the upwind rloda

value occurs ifa, =1. For explicit flow calculations, the CBC reductesthe universal
limiter [31] given by

for C,<0or C, >1

- _[.C, ~ (12)
<C, sminql—; for 0sC, <1

Figure 3 shows the NVD region for this explicit ilmmentation with an arbitrary Courant
numbera =0.2.
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Figure 2. Normalised Variable Diagram (NVD) with the convective boundedness criteria (CBC). UD,

Upwind Differencing; CD, Central Differencing; DD, Downwind Differencing; SOUD, Second Order
Upwind Differencing; QUICK, Quadratic Upwind Interpolation for Convective Kinematics.

In multi-dimensional flow the worst-case condisoare applied, by defining the
Courant number to be the Courant number of the donor cell, defiagd

a-¥

faces

out
a f

(13)

where a" is the Courant number for each outflow face ofdbeor cell [30].
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Figure 3. The universal limiter for explicit flow schemes, at an arbitrary Courant number value of 0.2.

A differencing scheme which follows the upper bdwf the universal limiter for
explicit flow calculations is shown to be very camgsive because it turns every finite



gradient in a scalar field into a step profile [3lyamed as HYPER-C by Leonard [31] it is
precisely the scheme required when the interfacmdee likely to be normal to the flow
direction.

Although the upper bound of universal limiter &dined in Eq. (12) was derived for
explicit schemes it can be seen that its boundgimas merely a subset of the full region
defined in Eqg. (10) for implicit schemes. The ewmtrimplicit scheme can therefore utilise
this more restrictive criterion, because it guagastboundedness and provides a compressive
scheme to use in appropriate situations wherentieeface is more normal to the direction of
motion.

The universal limiter defined above, together withowledge gained from the
original VOF [21] and reference [29] about takiragaunt of the interface orientation to the
direction of motion was applied by Ubbink & Issagenerate CICSAM [35], the basis of the
current scheme described in the next section.

3.3 Basis of CICSAM and the current implicit scheme

As has already been stated, the HYBER:heme is the most suitable for the
advection of a step profile when the interfaceasnmal to the flow direction. The original
VOF scheme [21] determines the slope of the interfand switches to upwind differencing if
the smallest angle between the interface and tte é¢& the control volume is greater than

45 . An extensive study conducted by Lafausieal [29], highlighted extensive problems
with such an abrupt switching. Ubbink & Issa [3Bbposed two main changes. Firstly the
scheme should concentrate on how to switch andvhen to switch and secondly that some
other higher order scheme, other than upwind diffeing should be used. Their CICSAM
scheme employed ULTIMATE-QUICKEST [31] in this roleut in the spirit of Leonard’s
ULTIMATE [31] strategy, the current scheme empldisTIMATE-QUICK, a combination

of the universal limiter and QUICK [40]. The mathatical formulation of ULTIMATE-
QUICK in the NVD is

_(6C,+3 .
- min g C, when 0sC, < 1
fuguick é Whel"éD < OCD >

(14)

D

Ubbink & Issa [35] defined a weighting factok y, <1 based on the angle between

the interface and the direction of motion to cadtell the normalised face value. This
weighting factor ensures a smooth transition betvibe upper bound of the universal limiter
given by Eq. (12) and the less compressive differgnscheme, represented by ULTIMATE-
QUICK, given by Eq(14). The face value is defined as

¢ =y,C, +(1-y,)C, (15)

UQUICK

wherey, =1 is used when the interface is normal to the divacof motion andy, =0 is

used when the interface is tangential to it. Ascdbed by Ubbink & Issa [35], this implies
that ULTIMTE-QUICK operates where the universalitin fails to preserve the gradient in
the interface and that the universal limiter opesawhere ULTIMATE-QUICK fails to
maintain the sharpness of the interface. The l#mivation of the scheme is complete by
stating Ubbink’s & Issa’s [35] definition of the wghting factory,. This is based on the

cosine of the angl®, between(CC),, the vector normal to the interface and the vector
d, which connects the centres of the donor and acceplis and is given by



_ ( cos(, )+ 1 ]
Y, = min ky#,l (16)

where
(0C),,

6 = cos'|—————
(0C), ||d, |

f

17)

and k,20 is a constant introduced to control the dominaontethe different schemes
(recommended value ¢f =1). The NVD for the scheme is shown in Figure 4.
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Figure 4. NVD for the Implicit differencing scheme as defined by the universal limiter and
ULTIMATE-QUICK.

Although the normalised face value, predicted wlith current differencing scheme for one-
dimensional uniform flow, in Eq(15) is important, the actual face value can be derlwed
algebraic manipulation of E(9) to give

C, :(1_:Bf )CD +:8ch (18)
where

B, =——— (19)

The weighting factorg, , which implicitly contains the upwind valug, (in the definition of

the normalised variables), carries all the infoioratregarding the fluid distribution in the
donor, acceptor and upwind cells as well as therfiate orientation relative to the direction
of motion.

In accordance with CICSAM [35], it can be seemfrihe NVD in Figure 4 that the
formal order of accuracy is not uniform. It varfiesm first order (upwind or downwind) to
second order (centred) to even third order (QUIG&)ending on the approximation used for
the surface integral over the face.



4 SIMPLE ADVECTION TESTS

Initial problems for the scheme were chosen s dest the advection of the colour
function alone. To this end, analytic velocityldie were used and no attempt was made to
couple the advection o€ to solutions of the Navier-Stokes equations.

4.1 Simulation of Zalesak’s rotating solid body problem

One such test, using a prescribed velocity fieddthe “solid body” problem as
described by Zalesak [41]. This problem specilicaésts the ability of the scheme to
translate and rotate a fixed volume, as the fliedian should not deform during the
advection.

In this simulation, the motion of a slotted cirelith finite boundary was studied in
the presence of a unidirectional velocity fieldaamaximum Courant number of 0.25. The
fractional error as a result of the advection ef fitaction of fluid was calculated after one full
rotation and comparisons were made to the methopemented in references [28, 35]. The
fractional error as a result of the new scheme feaad to be approximately an order of
magnitude better than those previously obtainectudly of the change in the fractional error
against increasing number of rotations was alsoenzadl it was found that even after four
full rotations the accumulated error was still ldssn those obtained using the methods tested
previously.

4.1.1 Implementation of the rotating solid body simulation
A uniform 2-D square mesh of grid si2®0x 20Ccells was employed to represent a
square domain of side 4.0 in length, providing id gpacing ofAx = Ay = 0.02. A slotted

circle was created by removing a slot of width 0.ft@m a circle of radius 0.5. This was
achieved by removing the section of the circle thgtwithin 0.06 either side of the vertical
downward radial and 0.1 above the circle centrefinke boundary of half the grid spacing

was placed around the entire structure. Initidttig fraction of fluid within a cellC  at

position (i, j) was set to zero inside the structure and unitgidet Values in the boundary

were given by linear interpolation, horizontallyr faertical boundaries, vertically for
horizontal boundaries and radially at the corneds@n the curved edge.

The structure was subject to a unidirectional eigycfield, whose components were
given by

u=-Q(y-v,), v=Q(xX-x,) (20)

where (x,,Y,) = (2.0, 2.0)is the centre of rotation and whefk is the angular velocity of 0.5

rads/s, giving a velocity magnitude of 1.0 at tlemtee of the domain edges. The circle’s
geometric centre was located at the p@imty) = (2.0,2.75. The simulation was integrated

forward in time for one full period of rotation, ing 2524 time steps each of size
At = 477/ 2524. The fractional errolE resulting from the simulation was calculated using

ey -cil
D
L]

E= (21)

whereC*™is the solution (for the fraction of fluid) at themd of the simulationC® is the
initial solution and the summation takes place @lecells at position(i, j). A study of the
variation in E against increasing rotation number (effectivelgr@asing time) was made by
continuing the simulation for 2, 3 and 4 full retews, using the parameters already described.
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4.1.2 Numerical results

Figures 5(a)-(b) show the shape ofdllotted circle at the beginning and end of the
simulation for one full rotation. Qualitatively, géhresults displayed in Figure 5 compare
favourably to those obtained by Rudman [28] and itlbl& Issa [35]. It is found that
advecting the discontinuities present at the carrmaoses the greatest difficulty for the
scheme.

The calculated fractional error, as defined in B1), is displayed in Figure 6(a),
together with those obtained for the six other méshdescribed in references [28, 35]. As can
be seen from Figure 6(a), the error associated thighpresent scheme is approximately an
order of magnitude less than those previously obthi This may be attributable to the
implicit nature of the present algorithm, which adees the interface with the same up-to-
date flow information in all coordinate directions.

The results obtained for the fractional error aghincreasing time of simulation are
displayed in Figure 6(b).

Figure 5. Results for solid body rotation, illustrating the fraction of fluid C through the domain as
denoted by the colour schemein each legend. a) The initial configuration; b) after one full revolution
at an angular velocity Q = 0.5rads/s.

0.10- 0.0962 0.007+

(@) (b)
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Fractional Errc
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0.001
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Figure 6. (a) Errors obtained after one full rotation of the dotted circle for the current scheme
(THOR) and the six other methods investigated in references [28, 35] and (b) the fractional error
measured against time (in units of full rotations).

It can be seen that even after four full rotatiothe fractional error accumulated by the
present scheme has reached a value of 0.006.isT$ti lower than the value of 0.0109 that
was calculated for the next best scheme (Youngs) ahly one rotation. Surface plots of the
fraction of fluid after 2, 3 and 4 full rotationgeaalso displayed in Figures 7(a)-(c) for
gualitative comparison.

10



Figure 7 illustrates the increasing deformity wgde@e by the slotted circle as the
rotation number is increased. Those sections efitkerface which are located in areas
around the corners of the slot have warped andeduyrpossibly to smooth out the
discontinuities that were present at these poimtss would also appear to have caused kinks
in the curved arc of the interface adjacent to @hpeints. It is not surprising that the
calculated fractional error continues to increag wme and Figure 6(b) would indicate that
this occurs in a linear fashion.

Figure 7. Results for the solid body rotation problem, illustrating the fraction of fluid through the
domain, as denoted by the colour scheme in each legend after a) two, b) three and c) four full
revolutions at an angular velocity Q = 0.5rads/s.

4.2 Simulation of the shearing flow problem in two dimasions

An additional and arguably more demanding problethé shearing flow simulation,
as described by Rudman [28] and Ubbink & Issa [3%he introduction of a shear in the
velocity field ensures that topological change os@s the fluid volume is deformed.

In the problem, the motion of a circle (with finimundary), in the presence of a
shearing velocity field, is studied. The simulativas integrated forward in time for a set
number of time stepdl , before reversing the sign of the velocity fieltlantegrating for a
further N steps in an attempt to return to the initial confagion. Values ofN in the range
250< N < 200( were tested, with grid spacing and time step &leatical to those used in
references [28, 35]. The fractional ererwas calculated at the end of the simulation and a
comparison to the six other numerical schemes estuidi references [28, 35] was made. The
errors calculated from the present scheme weradftmibe smaller than those of the six other
schemes described. A study of the variation infthetional error against Courant number
was also completed over a number of simulationsh edequal duration.

4.2.1 Experimental procedure for the shearing flow simulation

A square mesh, consisting d90x 10C uniform cells, was used to represent a square
domain of siderr in length, providing a grid spacing éix = Ay =A =0.0r. A circle of
radius0.277 with a finite boundary of width half the grid sjrg was centred at position
(0.57,0.2(% 77 ). Initially the fraction of fluid within each cellC, ; at position(i, j) was

set to zero inside the circle and unity outsidghwialues in the boundary given by linear

interpolation in the radial direction. The shegrielocity field was given by components
u(x, y) =cosk)sinf |, v(x,y)=-sin(x)cosf . (22)

where|V| _, the maximum magnitude of the velocity field or ttlomain, has the value of

\/E in the corners of the domain as both componemtauaity. Thus at the corners of the
domain the requirement is that

11



2 2
At<\/Ax +Ay" \/EA 23)

" M Vo

This was obtained by enforcing the condition that$peed of information propagation on the
domain should not exceed the fluid velocity. Sitlee maximum Courant number must be
less than unity, as would be the case for the explcthemes described in reference [28], it
follows from Eq. (23) that

~ V| At

c — Ll _max
‘max \/EA

From the descriptions in references [28, 35], dswelear that a maximum Courant
number of 0.25 was used throughout the simulatidssing Eq. (24), a value dft = 77/400

was calculated and used in order to fairly compgheeresults. Each simulation ran fiar
time steps, before reversing the sign of the veldiéld and integrating for anotheéd time
steps, in an attempt to recover the initial confegion. Values ofN in the range
250< N < 200( were tested.

A study of the effect of the Courant number on filaetional errorE , given by Eq.
(21), was also completed over simulations of eguahtion. In this case a mid-way time of
7.854s was chosen, prior to reversing the sigrhefvielocity field and integrating for the
same period again. The Courant number was vagiezhénging both the time step and grid

spacing and results were obtained in the rehgé<c < 1.2t

(24)

Figure 8. Surface plots of the value of the fraction of fluid for a) initial configuration prior to
integration b) after integrating forward 1000 steps c) after integrating back for another 1000 and d)
initial configuration prior to integration €) after integrating forward 2000 steps f) after integrating
back for another 2000.
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4.2.2 Numerical results

Results for the fraction of fluid at three stagesiry the simulations folN =1000
and N =2000 are shown in Figures 8(a)-(f). The illustrations Figure 8 compare
favourably to those presented in references [2B, B¥an be seen that as the shearing field
stretches the circle, the scheme struggles to m@apie tail which is perhaps only 1-2 grid
cells in size. The remnants of the tail are cleaisible in the bottom left of the circle in
Figures 8(c) & 8(f) and this has an increasinghgéa effect on the calculated fractional error
as the integration time increases.

Results for the erroE after N time steps (forward and back) are shown in Table |
for each of the methods described in referencesd2Band for the current scheme (marked
THOR). The same results are displayed graphidaliigure 9 for visual comparison. It can
be seen from the calculated errors in Table | agdrE 9 that the current scheme outperforms
the results for those given in references [28, 35].

Results for the value of the fractional eroy against maximum Courant number are

shown in Figure 10(a). These simulations wereqoeréd over a set time, in each case
7.854s. Initially the grid remained unchanged tHredtime step was systematically increased
in order to vary the Courant humber, providing thsults labelled “Time” in Figure 10(a).
After this, a fixed time step was employed and aniper of different grids of increasing
resolution were employed to vary the Courant numbHEne results of these simulations are
labelled “Space” in Figure 10(a). Note that theu@mt numbers quoted are the maximum
values found on the domain during that simulation.
Because the maximum Courant number was not felbbetorepresentative of the typical
Courant numbers encountered by the circle on theadg the average Courant number
encountered and the standard deviation were céclfar each simulation. The results are
shown in Figure 10(b), where a one-to-one corredpooe with the points in Figure 10(a)
exists.

Figure 10(b) shows that the perception gained bgyshg errors when considering
only maximum Courant numbers can be misleading tad typical Courant numbers
encountered by the circle are often much lower tigafirst thought. This is critically
important in the evaluation of the scheme when sxisg its likely effectiveness under
various conditions.

0.151
010-
0.05 /
3 %
£ . —x

0.00 T T T
250 500 750 1000 1250 1500 1750 2000

Number of Time Steps Forward

Fractional Errc

—e—SLIC —*— Hirt-Nichols ——FCT-VOF —&—Youngs
—4— CICSAM-S ——CICSAM-U —<—THOR

Figure9. Thefractional error E against N for each of the schemes asindicated in the legend.
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Figure 10. The fractional error against a) maximum Courant number and b) the average Courant
number with standard deviation by varying the time step and grid spacing used in the ssmulation.

5 SIMULATION OF THE COLLAPSE OF A LIQUID COLUMNINTW O
DIMENSIONS

5.1 Overview of the numerical simulation

A number of problems, incorporating coupling of Hubrection of the colour function
with solutions to the momentum equations were thelved. One such problem is the
collapse of a liquid column (e.g. a dam-break) idrich experimental data is available for
comparison. The principle source used in thisyswds the paper of Martin & Moyce [42],
which describes an experimental investigation @& troblem and contains experimental
measurements. The paper by Kim & Lee [15] alsatiless a numerical simulation of this
problem and was used as an initial starting pairgetup the problem and later as a useful
reference for comparison.

The separate collapses of two liquid columns in tiraensions were studied. The
first was that of a square column of side 0.057Hsm the second a rectangular column of
height 0.1143m, width 0.05715m. In the case of sheare column, the simulation was
performed on four separate grids of increasing weaity, using both a fixed time step and a
variable time step, but constant maximum Couramnber of 0.1. For the rectangular
column, the simulation was run on three separatks @f increasing granularity, using both a
fixed and variable time step as in the square colgase. The numerical integration was
carried out over a total simulation time of 0.13sl @.23s for the square and rectangular
columns respectively.

A post-processor was employed to locate the positfothe advancing water front
and the residual height of the column against time each case and the results were
compared (after rescaling to dimensionless unit#haose found by Martin & Moyce [42].

5.2  Experimental procedure

In the first test case, that of the square coluiour, separate grids were employed and
both a fixed and variable time step were used. [eTHshows the key spatial and temporal
parameters used in each simulation. An additismalilation was also run on each grid. This
used a variable time step whose value was recédclbes the simulation progressed in order
to maintain a constant maximum Courant number Df 0.

In the second test case, that of the rectangulaney three separate grids were used
and as described above, both a fixed and variah&estep were employed. Table Il lists the
grid and time step parameters used in each siraolati

In both test cases, the liquid column is initially hydrostatic equilibrium and is
“confined” between the left vertical wall of theidjiand a notional gate. The fraction of fluid

in a cell at positiofi, ), represented, | is initially set to unity inside the water columand
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zero outside, with a finite boundary of one gritl being used on the surface. Values for the
fraction of fluid inside the boundary are given byear interpolation in the direction

perpendicular to the boundary surface. The gasmdsienly removed at timte= 0" and the
water column starts to collapse under the influen€egravity. Frictionless boundary
conditions are specified on the bottom and vertiealls. The density and viscosity of water

are taken ag000 kg/ni and 1.0x10° kgni § respectively. The ambient fluid is air.
Density is taken a$.0 kg/ni and viscosityl.0x 10° kgnt § respectively. The gravitational
acceleration is taken ag=9.81 m/$.

5.3 Numerical results

Figure 11 illustrates a typical collapse in timethis case that of a square column on
the 160 x 48 grid using a fixed time step. Aniiagting feature of the simulation depicted in
Figure 11 is the presence of a horizontal jet ewthter front. Although these are not visible
in photographs of the collapse shown in referertd, [such jets are present in similar
experiments performed by Stansby, Chegini & Baiffi¢sising modern imaging technigues
and equipment. A close up of this feature forakample given in Figure 11 is shown at time
t =0.13 <in Figure 12.

Figure 12 illustrates the velocity field profile the vicinity of the jet. It can be seen
that the low volume fraction region on top of tle¢ gppears to be travelling more slowly, as
in encounters resistance from the air in the doméiris likely that this low volume fraction
region is a mixed water-droplet/air spray. Theefffcontinues just in front of and above this
region where there is a general upward turningpénvielocity field as the air is pushed up and
over the jet and turns backs.

The position of the water wave front and the hewithe residual water column are
plotted as functions of elapsed time and comparid experimental data from reference
[42]. Figures 13-16 show these plots for the sguweater column. It should be noted that

these simulations correspond to the 2.25 inch andn® =1 experiment of Martin & Moyce

[42], wherea s the width of the liquid column and is defined as a constant such théis
the height of the column. All values have beercaksl to the appropriate dimensionless
units described therein.

Horizontally, the distance travelled by the wdtent from its initial starting point is

defined asZ , wherez = x/a. Vertically the quantityH represents the residual height, i.e. in

comparison to the original starting state. Thideéined byH = y/ (n*a).
Time is defined in two separate units, dependponhuhe direction of motion under

consideration. Horizontally the unit i&, whereT =nt\/g/a and verticallyz , where

r=tyg/a.

Figures 13 & 14 show the position of the watemfrand residual column height
against time for the simulations performed usirixed time step for each of the four grids as
described in Table IlI, whilst Figures 15 & 16 shitwe position of the water front and residual
column height against time, for the simulations vsing a variable time step on each of the
four grids described in Table II.

It can be seen from Figures 13-16 that there t=lent agreement between the
results obtained from numerical simulation and éxperimental data. In particular, the
general trends followed by the experimental data eearly modelled in each of the
simulations. It can be seen that the results obthiom the two finest grids in each case are
very closely matched, indicating that the grid $spgds sufficiently small to have reached a
grid independent solution. Conversely it is alEacfrom the results for the residual column
height that the coarsest grid has failed to acelyrahap the experimental trend in this case.
The oscillatory nature of the graph (particulanydent for the 64 x 19 grid results in Figure
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14) is due to linear interpolation being used twate the boundary surface on a very coarse
grid.

Fluid Fraction
m1.00

0,50

.O.DD

Timet=0s

Timet=0.03s

Timet=0.09s

Timet=0.13s

Figure 11. The collapse of the square water column on the 160 x 48 grid using a fixed time step at
each of the times shown. Each plot shows the fraction of fluid in each cell throughout the domain as
given by the spectrumin the attached legend.
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Figure 12. An expanded view of the horizontal jet feature. Velocity vectors are plotted, with relative
lengths indicating the magnitude of the velocity at that point on the domain. Contours of 0.1, 0.5 and
0.9 are plotted in the volume fraction field.
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Figure 13. The position of the water front against time for the square column, using a fixed time step.
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Figure 14. The height of the residual water column against time for the square column using a fixed
time step.
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Figure 15. The position of the water front against time for the square column using a variable time
step with a fixed maximum Courant number of 0.1.
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Figure 16. The height of the residual water column against time for the square column using a
variable time step and a fixed maximum Courant number of 0.1.

A time lag between the numerical and experimergallts, particularly evident in
Figures 13 & 15, exists. This may be caused byabethat experimentally it is very difficult
to remove the gate instantaneously and thus teaadinite delay before the column begins to
fully collapse. An average value of this delay wakulated by comparing experimental data
points 3-8, where the solution is fully developedihose obtained using the finest grid. The
delay was found to b& =(0.16+ 0.01 dimensionless units, corresponding to a real tifne

(12+ )ms.
Figures 17-20 show the same results for the reatangvater column. It should be

noted that these correspond to tife= 2 anda = 2.25 inch experiment of Martin & Moyce
[42] with values rescaled to the appropriate dir@rsss units as already described.
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Figure 17. The position of the advancing water front against time for the rectangular column using a
fixed time step.

It should also be noted that the shortened graphthé finest grid in Figures 17-20 are
due to insufficient computing time being availatdecomplete the simulations.
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Figure 18. The residual height of the water column against time for the rectangular column using a
fixed time step.

Once again the trends displayed in the experimesmal numerical data show excellent
agreement. As described above, the finite delayd®n the numerical and experimental data
is also clearly visible in these results.

This time an average value for the delay was tatled by comparing experimental
data points 4-11 against the solution for the fingsd. The delay was found to be
approximately T = (0.22+ 0.02 dimensionless units, corresponding to a real tinfe o

(12+ 1)ms, which is identical to that calculated for th@are liquid column.
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Figure 19. The position of the advancing water front against time for the rectangular water column,
using a variable time step and a fixed maximum Courant number of 0.1.
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Figure 20. Theresidual height of the water column against time for the rectangular column, using a
variable time step and a fixed maximum Courant number of 0.1.

6 RAYLEIGH-TAYLOR INSTABILITY MODELLING
6.1 Overview of Rayleigh-Taylor instability simulation and experimental procedure

The second problem investigated, involving couplof the advection equation for
the colour function to the Navier-Stokes equatiom@s that of the Rayleigh-Taylor
instability, as presented by Lépezal. [43]. A heavy fluid of densityo, =1.225 kg/niis

placed above a lighter fluid of densigy =0.1694 kg/ni in a rectangular domain 1m wide

by 4m high. The viscosity of both fluids was takas3.13x 10° kgni 8. Due to the

symmetry of the problem, only half of the physidaimain was solved. This was represented
by a grid of 32 x 256 cells in the horizontal aredtical directions respectively, giving a grid
spacing of and\x = Ay =A =0.015625 n. The integration was performed using a variable
time step, but constant maximum Courant number.bfif® the domain, in order to reduce
computing time. Free slip boundary conditions wiemposed at both the upper and bottom
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boundaries, with both lateral boundaries having ragtny conditions imposed upon them.
The interface shape was initially given by the nedunctiony = -0.05cos(2rx .

6.2 Numerical resultsfor Rayleigh-Taylor instability modelling

Figure 21 shows the progression of the Rayleigherapstability simulation with
time. As can be seen in Figure 21, the results quaitatively comparable to those in
reference [43] and the general form of the nonlirgigpersion of the more dense material,
displays a similar pattern. Particular points iofilrity are the downward vertical plume at
the right edge of the domain, the upward hook emiragnérom the left edge of this plume and
its tapering through a fine connecting filamentadarger blob of material. The main
difference between the two results are in the pesef another kink in the interface, that has
developed just above the initial starting positentimet =0.95 <. In the simulation of
Lopezet al [43], the interface drops smoothly downward frompbsition on the high left to
the downward plume on the right side of the domairhese discrepancies are due to the
different natures of both schemes and are probdbpendent upon how compressive or
diffusive the scheme is in its treatment of theiiface.

Fluid Fraction
m .00
L GE0
.G.Cll:l

t=0.0:¢ t=0.2 t=0.4 t= 0.6 t=0.8 t=0.95

Figure 21. Illustration of the progression of the Rayleigh-Taylor instability with time as given by the
fraction of fluid across the domain at each of the times shown.
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7 CONCLUDING REMARKS

In general it has been seen that the Volume ddRMOF) method [21] solves a
convective scalar transport equation for a colounction, representing the fraction of a fluid
in each cell throughout the computational domaiBuch an equation is coupled to the
momentum equations through expressions for thd teasity and viscosity in each cell due
to the relative quantities of both fluids. An abgeic approach to solving this problem is to
discretise the equation in such a manner so asitat@mn both the boundedness of the volume
fraction and the resolution of the interface.

The scheme introduced in this report is basedtherCompressive Interface Capturing
scheme for Arbitrary Meshes (CICSAM) of Ubbink &sés [35]. The scheme switches
smoothly between the upper bound of the universatdr [31] and ULTIMATE-QUICK, a
combination of the universal limiter and QUICK [4@Fpendent upon the angle between the
interface and the direction of motion. The schémae been implemented in the implicit time
advancing algorithm, in conjunction with an in-heusavier-Stokes solver developed by the
Computational Engineering Group at Daresbury Latooya

Numerical results for four main test cases hawnhmesented. In the first two cases,
prescribed velocity fields were used and coupliaghe Navier-Stokes equations did not
occur, in order to enable direct testing of theeseh. Test one assessed the ability of the
scheme to simulate Zalesak’s solid body of rotafpooblem and the second its ability to
simulate the motion of a fluid volume in a sheanmgocity field. In both tests the current
scheme outperformed six other methods tested bynRnd28] and Ubbink & Issa [35] for
comparison.

In the final test cases, the advection equatioritfe volume fraction was coupled to
the Navier-Stokes equations and two real fluid flmeblems were examined. Test case three
examined the collapse of liquid columns under dgyaviepresenting various dam-breaks. It
was found that simulation data for the positiontled advancing water front and for the
residual height of the column against time, aca&lyaimodelled that presented in an
experimental investigation by Martin & Moyce [42pAdditionally, qualitative results for the
nature of the flow during the dam-break indicated presence of horizontal jets above the
boundary, an effect observed in an experimentadgtigation by Stansby, Chegini & Barnes
[1]. In the final test case, a Rayleigh-Taylortaislity problem was investigated and the
gualitative results obtained agreed with those mteskin numerical simulations by Lopetz
al [43].
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9 LIST OF TABLES

Table |. Results for the fractional error obtained after integrating a total of N steps forward, followed
by N steps back for each numerical scheme.

Scheme Used for Integration
N SLIC Hirt-Nichols FCT-VOF Youngs CICSAM-S CICSAM-U THOR
[28] [28] [28] [28] [35] [35]
250 | 2.72x10?| 3.24x 10° | 1.94x 10°| 2.61x 10°| 1.63x 10° | 9.39x 10° | 2.27x 10°
500 | 3.30x10?| 4.00x 10° | 2.35x 10°| 5.12x 10°] 2.09x 10° | 1.10x 10° | 3.46x 10°
1000 | 4.59x 10?| 6.60x 10? | 3.14x 10°| 8.60x 10°| 2.90x 10° | 1.82x 10° | 5.95% 10°
2000 | 9.02x 10?| 1.09x 10" | 1.44x 10" | 3.85x 10°| 5.67x 10° | 4.17x 10° | 1.17x 10°
Note: Data istaken fromthe relevant reference as indicated.
Tablell. The parametersused in each of the simulations for the square liquid column.
Physical Grid Grid Size in Cells used in | Horizontal Vertical Time Step,
Size, horizontally units of the horizontal | Grid Step Grid Step | when used
and vertically Column (x) and AX Ay At
(m) Height , H, vertical (y) (m) (m) (s)
horizontally directions
and vertically
0.2286 x 0.06858| 4H x 1.2H 64 x 19 3.57x 10° 3.61x 10° 2.0x 10°
0.2286 x 0.06858| 4H x 1.2H 80 x 24 2.86% 10° 2.86x 10° 2.0x 10
0.2286 x 0.06858| 4H x 1.2H 320 x 96 7.14x 10° 7.14x 10* 1.0x 10°

Note:

All dimensions are described horizontally and then vertically and that four additional

simulations employing the same grid parameters but variable time steps were also completed.

Tablelll. The parametersused in each of the simulations for the rectangular liquid column.

Physical Grid Grid Size in Cells used in | Horizontal Vertical Time Step,
Size, horizontally units of the horizontal | Grid Size Grid Size | when used
and vertically Column (x) and AX Ay At
(m) Height , H, vertical (y) (m) (m) (s)
horizontally directions
and vertically
0.4572x0.13716| 4Hx1.2H 160 x 48 2.86x 10° 2.86x 10° 2.0x 10"
0.4572 x 0.13716 4H x 1.2H 320 x 96 1.43x 10‘3 1.43x 10‘3 1.0% 10‘4

Note:

All dimensions are described horizontally and then vertically and that four additional

simulations employing the same grid parameters but variable time steps were also completed.
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