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Abstract 

This paper is concerned with the development of a quantitative analysis method that can 

extract the mixed linear and non-linear dynamical response of a viscoelastic process in 

composite materials. A tractable set of simultaneous equations with well behaved 

coefficients can be generated by taking time series moments of a suitably truncated Volterra 

series expansion. This moment hierarchy is a set of inhomogeneous non-linear integral 

equations, based on a vector multidimensional convolution form of the Volterra functional 

series expansion. The hierarchy developed is used to analyse the time dependent viscoelastic 

properties of fibre reinforced composite materials. Estimates of the temporal response of the 

measured stress to the measured mechanical force were then used to predict the out of 

sample stress field values. It is demonstrated that the response functions provided a good 

representation of the viscoelastic process. Generally speaking, the response functions 

estimated from the data are used to determine the dynamic and steady state transport 

coefficients, which can, be used to develop either an empirical field theory of the phenomena 

or alternatively be used in the design process. 



Introduction 

In ideal elastic bodies any deformation below the yield point is assumed to be reversible. In 

real materials the motion induced by the applied mechanical force is irreversible and energy 

is dissipated in the solid. The dissipation of the mechanical energy can manifest itself as heat, 

as permanent deformation or as internal friction, or viscosity, which tends to resist the 

deformation. Many materials have viscoelastic properties that are both non-linear and time 

dependent. In particular, composite materials have many distinctive characteristics that 

cannot be described by linear elastic or viscoelastic theories. The stress-strain and shear 

stress-strain curves typical of fibre-reinforced composites are manifestly non-linear. The 

viscoealstic behaviour of composite materials are usually considered to be due to the resin 

matrix. Hence, any complete theory of the viscoelasticity character of composite materials 

should be able to describe the local deformation gradient in terms of the forces acting and 

the material properties. The multidimensional convolution representation provides a natural 

way to characterise the viscoelastic response of the composite to the applied forces. 

The main difficulty in characterising viscoelastic behaviour, from an experimental point of 

view, is the non-linear and time dependent nature of the data to be analysed. A pre-requisite 

for any analysis performed is that the characterisation obtained from the data analysis should 

be related to an appropriate theory underpinning the process. Generally speaking, the ability 

of current data analysis methods to accurately and consistently quantify the observed 

behaviour under general dynamic boundary conditions is severely limited. Thus, there is a 

need to develop and refine data analysis techniques that can separate and quantify the 

viscoelastic processes and their interactions, and relate them to an appropriate theoretical 

description of the process. 

The notion of inverse equations has been used frequently in the description of the 

viscoelastic process, usually in the continuous form. In this work a discrete vector 

multidimensional convolution form of the Volterra series expansion, suitably truncated, is 

used. A tractable moment hierarchy with well behaved coefficients is obtained by statistical 

averaging, and the moment hierarchy is solved for the kernel values which characterise the 

observed viscoelastic behaviour. These kernel functions are usually known as the linear and 

non-linear response functions and, in the case of a closed physical system, are fundamental 

properties of the physical system being studied. The Volterra functional expansion is an 

extension of the Taylor's expansion to those processes which possess a memory. A 

multidimensional convolution form of the Volterra series is used in the present paper to 

analyse experimental data for the mixed linear and non-linear properties of viscoelastic 

behaviour in fibre reinforced composite materials. 
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Several viscoelastic theories have used the Volterra functionals to represent the relationship 
between the components of the stress field { 0' ii ( t)} and the strain field { E;i ( t)}; where the 

component of stress, 0' ii ( t), is considered to be the i th component of the force per unit 

area on the surface acting in a direction e i which is a unit normal and where E;i ( t) are the 

components of the local deformation gradient ,{Vx(t)} , the components being :X; (t) 
Xi(t) 

The most comprehensive of these theories is by Green and Rivilin [1], who used a tensor 

form of the Volterra functional series to develop a three dimensional non-linear viscoelastic 
theory. Their theory is based on the assumption that the observed stress field { O';i ( t)}, is a 

non-linear function of the history of observed deformation gradient {Vx(t)}. The values of 

the stress components { O';i ( t)} can be expressed to any desired degree of approximation as 

an ascending series of convolution functions with 

(1) 

where t k denotes delay with respect to the present time t, and where 

( ) f axm(tk) axm(tk) . th . od fth d s: • gP q t- tk = £..i 1s e mner pr uct o e eJ.ormatwn vector 
kk m=l axPk(tk)aXqk(tk) 

with itself, at the time ( t- tk). 

The kernels of the convolution expansion represent the dynamic response functions between 

the stress and strain fields, and they are called the dynamic relaxation modulus functions. 

The area under these response functions is the steady state gain between the components 

[2], and are called the relaxation modulus for each pair of components. 

The Volterra series representation is well conditioned for a wide range of loading functions. 

However, Gradowczyk [3] indicated that the Volterra series is ill conditioned under the step 

loading case. This result is not surprising, as it has long been recognised that the classical 

test loadings of the step, the single impulse and the single harmonic driving force are not 

appropriate for non-linear processes [4] and render, for example, the Volterra series and its 

transformations ill conditioned. Indeed, it was this fact that prompted Weiner [4] to propose 

that Gaussian white noise could be an appropriate loading function for non-linear systems. 
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Unfortunately, it can be trivially shown that a Gaussian white noise loading function 

produces an ill conditioned Volterra series when the system is of a mixed order higher than 

quadratic. This is perhaps why the Weiner school developed the homogeneous 

approximation method which uses Gaussian white noise [5], as that method only used the 

diagonal terms in Gradowczyk's matrix expression. The objective of the homogeneous 

approximation is to obtain a local single order radial basis transformation type of description 

which adequately describes the observed behaviour. 

Pipkin and Rogers [6] studied a three dimensional Stieltjes form of the Volterra series 
expansion and represented the components of the stress field, { cr ii ( t)}, as a functional 

expansion with 

(2) 

where the differentials 

have the properties of a characteristic function [7] . 

Pipkin and Rogers undertook a detailed examination of the one dimensional case of equation 

(2) under an incremental step loading scheme. Although reasonable results were obtained, it 

was later noticed that equation (2) is ill conditioned under the loading regime used, in the 

same way that the Green and Rivilin expansion is when a step loading is used. 

H local solutions are required then the Volterra series can be truncated to just the first 

(linear) term. The first term approximation has been used by a series of workers, notably 

Schapery [8], to develop an approximate constitutive theory for composite materials and 

then to apply their method to a range of material types with generally reasonable agreement 

between theory and experiment being observed. 

4 



In the Schapery approach, the components of the stress field are related to the temporal 

differentials of the time series history of deformation gradients. Experimental observations 

are, by nature, uncertain and their time series are stochastic processes. Most stochastic 

processes do not posses differentials in the ordinary sense [9], however, a few stochastic 

processes have differential properties in the mean square, or higher order moment, sense. 

This indicates that the fundamental relationships between any observed physical quantities 

should be developed in terms of their time series averaged or convoluted values, and not in 

terms of the derivatives of the time series values. 

More recent work in non-linear elastic dynamics has concentrated on functional analysis and 

the solution of non-linear differential equations [10,11]. The bifurcation and chaotic theories 

used to describe the non-linear elastic behaviour do not take into account the fading 

memory properties [12] of viscoelastic processes and consequently will not be considered 

further in the present work. 

The multidimensional convolution representation developed in the present work relates the 

applied mechanical force to components of the observed deformation gradient, { E;i ( t)}. 

The formalism is presented in general terms without specific properties being attributed to 

the functionals and their coefficients, the response function values. The linear-non-linear 

response functions of the formalism are estimated directly from the experimental data 

[13,2,12]. The formalism is then applied to experimental data to analyse the viscoelastic 

process in resin matrix composites under various loading conditions. 
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Linear elastic materials 

Before details of the multidimensional convolution formalism are given, it is of value to 

outline the underlying methodology with a simple example. The theory of linear perfectly 

elasticity materials is the cornerstone of the macroscopic treatment of solid mechanics. Such 

ideal materials deform instantaneously in response to an applied load and have the ability to 

store energy without dissipation, so that all of its stored energy can be recovered. For these 

materials Hook's law applies, so that the observed stress field if directly proportional to the 

applied strain and the behaviour is linear. On the other hand, a perfectly viscous fluid has the 

ability to dissipate energy but not to store it and the stress depends on the rate of change of 

the strain field. 

Real materials have the capacity to both store and dissipate energy and the response to an 

applied force will be a fast deformation followed by a slow flow process. In a linear 

viscoelastic material the strain is directly proportional to the strain field and for a given 

constant applied stress the strain increases with time. This process is known as creep and 

when the applied force is reduced, or stopped, there is a period of creep recovery when the 

material experiences strain decay. This is known as relaxation. The phenomena of relaxation 

and creep are basic characteristics of viscoelastic materials. Any theory that successfully 

describes the behaviour of viscoelastic materials should be able to characterise the 

constitutive relationship between the observed deformation and the forces acting and the 

fluxes flowing. In addition, the theory should be able to characterise the storage and 

dissipative processes that simultaneously act in the material. The present work attempts to 

develop such a theory and to illustrate how the coefficients which characterise these 

relationships can be estimated from experimental data. 

As an example of the basis of the methodology underlying the treatment of complex 

materials, consider a one dimensional linear elastic material that is submitted to a history of 

mechanical forces in the absence of other forces and thermodynamic fluxes. Then the local 

applied force, { cr(t)}, can be expressed as a convolution between the local stress, { E(t)}, 

and the response function, J Ecr ( 't1), which is called the relaxation modulus. 
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For a discrete process which possesses a local fading memory of duration ~. the 

convolution can be expressed as 

(5) 

wheret
1 

denotes delay with respect to the timet As it stands, it is ill posed because there 

are (~+1) unknowns and only one equation. Hence a set of (~+1) equations need to be 

formed and solved for the response function values, J e 0 (tt). If the local stress,{E(t) }, and 

the applied force, { cr(t) }, are drawn from stochastic processes, then equation (5) can be 

operated on to yield the moment equation 

(6) 

where ( E ( t- c;1 )cr ( t)) and ( E ( t- c;1 )E ( t- t 1)) are the cross and auto moments between the 

strain field { E(t)} and the stress field { cr(t) }. That is, the average product of each side with 

the delayed value of stress, E (t- c;1 ), has been obtained using the operator (e (t- c;l) *)for 

O::;'t1 ::;~ to give the (~+ 1) equations required. In this form the equations, given by (6), can 

be readily solved with standard matrix methods. 

Under steady state conditions the one dimensional linear stress-strain relationship becomes 

(7) 

* * that is cr = E J e 0 , where J e 0 is the steady relaxation modulus. If now the load is 

incremented form the steady state value by an amount Acr then after the stress field will be 

After ~ units of time have elapsed, the strain field will be given by 

(8) 

which satisfies the Boltzman superposition principle for a linear viscoelastic process. 
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Thus, the general linear stress strain expression for an arbitrary sequence of loading forces is 

the convolution equation 

However, it should be noted that this representation does not satisfy the causality 

relationship that exists in the physical situation. 

Alternatively the stress can be characterised as a linear function of the applied force 

Under steady state conditions this becomes 

Volterra functional series representation of viscoelasticity 

(9) 

(10) 

(11) 

There are many physical processes where the form of the differential equations that govern 

the observed behaviour are not known. In such cases other representations must be used to 

describe the physical process. For example, the fields of thermodynamics, fluid dynamics and 

elasticity use truncated Taylor's series expansion representations. When the Taylor's series 

expansion description is used, the physical laws that describe aspects of the observed 

behaviour can be based on the values of the coefficients of the ascending order terms in the 

expansion. 

Constitutive equations are expressions which characterise the observed behaviour between 

forces and fluxes and conservation expressions relate a conserved variable to the constituent 

variables. For example, an observed thermodynamic flux may be characterised in terms of 

the observed thermodynamic forces and observed properties of the medium. The empirical 

coefficients of the Taylor's series expansion describe the steady state transport properties of 

the process. Such empirical coefficients represent the, so called, steady state gains of the 

independent variable to the dependent variables and cannot be derived from any fundamental 

theory, but are estimated directly from the experimental data. 
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The constitutive equations which describe thermodynamic processes, each thermodynamic 

flux, fk ( t) , can be described as a multidimensional convolution expansion in terms of the 

local thermodynamic forces acting, and defined as 

(14) 

where N is the order of the system, where t denotes time and where the 't j's denotes time 

delay with respect to the time t. 

In this work we consider the univariate form which is used to relate the applied force to the 

stress field, explicitly 

is considered. 

A discrete approximation to the multidimensional convolution expansion can be defined as 

(12) 

where N is the order of truncation the system and where ll is the finite memory of the 

process. 

On discretisation, the truncated Volterra series remains ill posed in the sense that there are 

too many unknown coefficients to solve for. Thus, the approximate method of discretisation 

used for the linear case cannot by itself be used to solve the V olterra series. A tractable set 

of simultaneous equations with well behaved coefficients can be generated by taking time 

series moments of a suitably truncated Volterra series expansion. 

Integrating each kernel function yields the linear and non-linear gain between the dependent 

and independent variables [2] , with 

(13) 
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That is, the integral of the kernel function values yields the steady state gain between the 

observables and are equivalent to the ascending order transport coefficients of the 

phenomena being characterised. 

Equations (12) is ill posed, in the sense that there are many coefficients to solve for with 

only one equation. In addition, as thermodynamic processes are stochastic, in general, the 

equation is also ill conditioned because it has stochastic variables. 

The conditioning can be improved statistical averaging and the use of operators allows a set 

of tractable equations with average variable values to be generated. Equation (12) is 

operated on with a series of averaging operators, one for each permutation of delayed 

applied forces (.IT e ( t- ~i) *) which yields the moment hierarchy for viscoelasticy 
t=l 

(14) 

where <*> denotes the averaging operation. The moment hierarchy can be rewritten in the 

obvious matrix form C = Mh where M, is a square matrix whose elements are the auto­

moments of the observed stress,{e (t)}, where C is a column vector whose elements are 

the cross moments between the stress,{e (t)} and the applied force {cr (t)} and where h. is 
a column vector whose elements are the kernel function values of the mapping between 
{cr (t)} and {e (t)}. 

If the matrix M is non-singular then h = (Mt C has a unique solution. If however M is 

singular, then M is rank deficient and some of its rows will be linearly dependent on the 

others. If the same relationship holds between the corresponding elements of the column 

vector C, the solution will not be unique, indeed an infinity of solutions will exist. If this is 

not the case then the matrix expression is not consistent and there will not be any solution. 

Thus, in general, there may be a unique solution, an infinite number of solutions or no 

solution. However, given the construction of the moment values used in the moment 
hierarchy, the rows of M will be linearly independent of each other, thus the matrix will 

usually be non-singular and have a unique solution. This will be true for many mixed 

stochastic and deterministic processes. 
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At this stage an observation can be made. The Volterra functional expansion is not, in 

general, tractable. However, the application of averaging operators has generated a tractable 

hierarchy of moment equations which are likely to have well behaved coefficients for many 

physical processes. The truncated Volterra expansion has been operated on in order to 

obtain a linear algebraic expression where the elements of the vector and matrix retain all of 

the information about the complex dynamical non-linear process being studied. 

There are exceptions to this however, for example, 

1) when the data {x(t)} are composed of delta function, a step function, and for any 

distribution which has a delta functional form of each member of the ascending order of auto 

moments, or their transformation, of the data {x(t)} 

2) when the data {x(t)}at successive time series points are not causally linked 

3) when the data {x(t)} are composed of a very nonstationary sequence and 

4) when the representation of the process is not of a closed form, i.e. some of the 

contributing variables are not measured or analysed. 
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Facilities and analysis of the viscoelasticity experiments 

A series of test coupons were manufactured from glass/polyester composite and were 

representative of typical wind turbine blade design. Two types of GRP coupon were 

investigated, a oo -90° with a 90110 ratio of weave in the fabric and a balanced 45° fabric. In 

addition a curved plate section, cut from an existing turbine blade, was studied under 

uniaxialloading. The curved plate and the 90-10 fibre reinforced specimens were all cut 

from existing wind turbine blades manufactured by L/M Glassfibre who are collaborators in 

the present project. Dynamic fatigue loading is normally used to investigate the nature of 

the failure mechanisms of the material under study. Such accelerated lifetime methods 

provide fatigue life endurance and fatigue limit, but have the disadvantage that the results 

can be unrealistic. In this work fatigue loadings are used primarily to obtain time series 

sequences suitable for mixed linear-non-linear analysis. Notwithstanding the anticipated 

shortcomings of the fatigue method it is shown that realistic estimates of the material 

properties can be obtained from the time series analysis. It is well known that such GPR 

composite materials behave in a non-linear viscoelastic manner and when the material is 

fatigue loaded energy is dissipated as heat. This heating effect is ignored in the present 

paper but is considered in detail in an accompanying paper. 

In order to compare the findings of the present work with the standard summary statistic 

(the Young's modulus) it is assumed in the analysis that the applied load is a mixed linear­

non-linear dynamical function of the observed stress. The most commonly used excitation 

function is the sinusoid which is used in the present work. The fatigue loading on the 

specimens used in the present work was only approximately sinusoidal because of the non­

linear fluid interactions in the hydraulic system which coupled several different 

experimental rigs in the laboratory. Time series measurements were collected with a 

personnel computer through a data collection card. For each separate experiment some 

4000 time series points for each sensor were collected. Of these some 500, in sample, 

points were used to estimate the response factor values of the process and some 3000, out 

of sample, points were used to compare with the values of the strain field values predicted 

using the response factor values estimated in sample. This enabled the accuracy and time 

invariant nature of the estimated response function values to be determined. These response 

function values were then used to predict the behaviour of the sample under a different 

loading regime, thus testing the nature of the solutions determined by the moment hierarchy 

method. 
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The time series values of the stress field were considered 1) as a linear function of the 

applied load and 2) as a mixed linear and non-linear function of the applied load applied to 

the solid. In each case the properties of the process were characterised with 500 data points. 

The response functions estimated with these 500 points were then used to predict the future, 

out of sample, behaviour of the stress field for 3000 points with no obvious sign of 

dispersion between the predicted and the measured points. 

These predicted values of stress, { EP ( t)}, were then compared statistically with the observed 

values, {E (t)}. It should be stressed that during the prediction phase no use was made of 

the observed stress values. It should also be noted that the mean value had to be subtracted 

from the data in order to perform the linear analysis, no such modification was made in the 

non-linear analyses. This provides a quantitative measure of the quality of the response 

function characterisation of the viscoelastic process. The accuracy of the predicting ability 
was determined by comparing the root mean square differences between the actual, {E (t)}, 

and predicted { EP ( t)}, time series sequences. A typical example of the prediction together 

with the actual values is shown in figure 1. 

The results for the balanced 45° GRP sample under various uniaxial compressive loadings 

are presented. Sample estimates of the response function values were obtained in sample. 

Out of sample rolling predictions were then compared with the observed data. The Student's 

t-test--values determined in that analysis are presented in table 1 below. These out of sample 

predictions provide a sensitive and accurate measure of the quality of the response function 

characterisation of the viscoelastic process. 

Compressive experiments on uniaxial balanced 45° GRP sample 

T bl 1 St d t' t t t ~ th d" t d d t I t a e . u en s - es va ue or e _p_re ace an ac ua s ress va ues . 
Applied Linear analysis Mixed linear- Mixed linear-
Force quadratic analysis quadratic-cubic 
@ 1Hz analysis 

l~f~lOkN 39. *10-3 6.7 *10-3 6.7 * 10-3 

1 ~f~14 kN 38. *10 3 4.3 *10-3 4.3 *10-3 

1 ~f~20 kN 40. *10-3 4.0 *10-3 4.0 *10-3 
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The data were analysed for estimates of the response function values of 

(18) 

Linear, mixed linear-quadratic and mixed linear-quadratic-cubic analyses yielded the 

response function values. The Students t-test values given in table 1 show that only the 

mixed linear-quadratic-cubic non-linear hypothesis is not rejected. Considering only the 

results from that analysis, integrating each kernel function yields the linear and non-linear 

gain between the dependent and independent variables and these were used to generate the 

stress-strain curves shown in figure 2 using 

(19) 

where N=3 is the order of truncation the system and wh~re ~is the fmite memory of the 

process. Effective stress-strain curves were generated from the response functions estimated 

in the linear-quadratic-cubic analysis. The values for the Young's modulus determined from 

these stress-strain curves for the balanced 45° GRP coupon under uniaxialloadings are 

given in table 2 below. 

T bl 2 Ef~ f Y d I d t mined from the stress-strain curves a e . ec 1ve oung s mo u us e er . 
Applied Force Linear -quadratic-cubic 
@1Hz non-linear analysis 

l~f~20kN 15300 ± 400 N mm·2 

l~f~40kN 14360 ± 400 N mm·2 

l~f~60kN 13750 ± 400 N mm·2 

static test E11 15000 ± 400 N mm·2 

These estimated values agree well within the statistical uncertainties but the curves in figure 
2 clearly show an excess strain factor as the applied load is increased. The uncertainties 
quoted arise from the accuracy of the sensors used in the experiments. This excess strain is 
accompanied with an increasing heat flux observed at the surface of the samples under test. 
The coupled thermoviscoelastic effect is considered in detail elsewhere. 
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Next the results for the 0°-90° GRP sample under various uniaxial compressive and then 
compresive-tensile loadings are presented. As before, sample estimates of the response 
function values were obtained in sample. Out of sample rolling predictions were then 
compared with the observed data. The Student's t-test values determined in that analysis are 
presented in table 3 below. 

Table 3: Student's t-test value for the 0°-90° GRP sample 
Applied Force Linear analysis Mixed linear- Mixed linear-
@1Hz quadratic analysis quadratic-cubic 

analysis 

1 s; f s; 20 kN -7.8 -4.3 -0.09 

1s;fs;40kN -7.7 -4.4 -2.8 

1 s; f s; 60 kN -9.4 -9.1 3.0 

-5~f ~25 kN -0.79 -1.38 0.14 

-5 ~f~45 kN -11.5 -13.0 0.64 

-5~f ~65 kN -11.2 -13.0 2.7 

Linear, mixed linear-quadratic and mixed linear-quadrati':-cubic analyses using equation (18) 

yielded the response function values, from which the stress-strain curves shown in figures 3 

and 4 were calculated. The Student's t-test values given in tables 3 and 4 show that, using 

the union-intersection principle of statistics, only the mixed linear-quadratic-cubic non-linear 

hypothesis is not rejected. Effective stress-strain curves were generated from the response 

functions estimated in the linear-quadratic-cubic analysis. The values for the Young's 

modulus determined from these stress-strain curves the 0°-90° GRP sample under various 

uniaxial compressive and then compresive-tensile loadings are given in table 4 below. 

15 



T bl 4 Efti t' Y d I d t · d from the stress-strain curves a e . ec 1ve oung s mo u us e ermme . 
Applied Force Linear-quadratic-cubic 
@1Hz non-linear analysis 

l~f~20kN 31600 ± 800 N mm-2 

l~f~40kN 31300 ± 800 N mm-2 

l~f~60kN 31200 ± 800 N mm-2 

-5::;;f ::;;25 kN 28800 ± 800 N mm-2 

-5 ::;;f::;;45 kN 29000 ± 800 N mm-2 

-5 ::;;f ::;;65 kN 29300 ± 800 N mm-2 

static test E11 24000 ± 2000 N mm-2 

The Young's modulus values obtained from the fatigue testing are self consistent but 
systematically higher in magnitude than those determined in the static test. However, during 
the static testing of several 90-10 coupons the stress strain curves were irregular and non­
linear, consequently there was a wide spread in the values obtained. 
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Finally the results for the curved plate under various uniaxial compressive-tensile loadings 
are presented. Repeat experiments were performed at the same fatigue loading to investigate 
the consistency of the analysis method being used. As before, sample estimates of the 
response function values were obtained in sample. Out of sample rolling predictions were 
then compared with the observed data. The Student's t-test values determined in that 
analysis are presented in table 5 below. 

T 5 s d fi h d I 'I I d' able . tu ent s t-test va ue or t e curve pi ate compress1ve-tens1 e oa mgs . 
Applied Force Linear analysis Mixed linear- Mixed linear-
@1Hz quadratic analysis quadratic-cubic 

analysis 

-15~f ~5 kN 51.0 -9.34 -3.28 

-15 ~f ~5 kN 44.2 -1.67 5.72 

-15~f~5kN 48.8 2.02 0.94 

-15 ~f ~5 kN 50.5 -12.9 -5.91 

-15 ~ f ~ 5 kN 42.7 1.14 4.77 

-15 ~f ~5 kN 51.0 -1.44 1.16 

Linear, mixed linear-quadratic and mixed linear-quadratic-cubic analyses yielded the 

response function values. Again, effective stress-strain curves were generated from the 

response functions estimated in the linear-quadratic-cubic analysis. These values are given in 

table 6 below. 
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Table 6: Effective Young's modulus determined from the stress-strain curves 

Applied Force Linear-quadratic-cubic 
@ 1Hz non-linear analysis 

-15:Sf:S5kN 29800 ± 800 N mm·2 

-15 :S f :S 5 kN 27380 ± 800 N mm·2 

-15 :S f :S 5 kN 26700 ± 800 N mm·2 

-15:Sf:S5kN 30200 ± 800 N mm·2 

-15 :S f :S 5 kN 27740 ± 800 N mm·2 

-15 :S f :S 5 kN 27660 ± 800 N mm·2 

The Young's modulus values agree within the experimental uncertainties and are self 

consistent. In addition they lie close to the manufacturer's quoted value for the Young's 

modulus of their typical glass fibre reinforced resins for which E11 =22270 N mm·2 for the 

curved plate sample used in the present work. 

In summary, the linear and mixed linear-quadratic non-linear analyses of the differences 
between the measured, { e ( t)}, and predicted, { eP ( t)}, output stress field for both 

modelled and predicted data lay in the rejection region on the basis of a two tailed 5% 

probability level of rejection. However, the values of the test statistics for the differences 
between the measured, {e (t)}, and predicted, {eP(t)}, output stress field for both 

modelled and predicted data lay within the acceptance region; thus each representation 

accurately characterises the observed behaviour of the stress. That is, the sample statistics 

for the mixed-linear-quadratic-cubic non-linear analyses were not rejected at the two tailed 

5% level. In addition the value of the test statistic can be used as strength of evidence for 

acceptance of the viscoelastic representation used here. 
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Conclusions 

The results presented in this paper can be summarised as follows: a hierarchy of moment 

equations of the Volterra series can used to study non-linear viscoelastic process in complex 

materials. The nature of one dimensional viscoelasticity was considered. Linear and mixed 

linear-quadratic-cubic non-linear local constitutive representations were used to 

characterise the viscoelastic process of a composite solid under a range of applied loads. 

The first, second and third order response functions were estimated from the time series data 

collected from the applied force and strain gauge values. These estimated response 

functions were then used to predict the out of sample stress field values. These predictions 

demonstrated that the response functions provided a good non-linear representation of the 

viscoelastic process. 

The analysis has demonstrated that the moment hierarchy can extract and isolate linear and 

ascending order non-linear response functions when the input data are drawn from a 

stochastic process. The results of the linear and mixed linear-non-linear analyses of the one 

dimensional viscoelastic data show that the process is, within the experimental uncertainties, 

non-linear. The results also indicate that the effect of the thermal forces acting, which also 

arise from the applied fatigue load, should be considered in the determination of the material 

properties. The combined thermoviscoelastic properties are considered in detail in an 

accompanying paper. 
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