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Abstract 

The thermoviscoelastic behaviour of a composite material is represented as a mixed linear­

nonlinear convolution form of the Onsager equations. A vector multidinensional Volterra 

functional series expansion is used to describe the thermoviscoelastic constitutive 

relationships. Linear and mixed linear-nonlinear moment hierarchy time series analyses are 

performed to investigate the nature of the thermoviscoelastic phenomena. A tractable set of 

simultaneous equations with well behaved coefficients can be generated by taking time series 

moments of a suitably truncated Volterra series expansion. This moment hierarchy is used 

to determine the dynamic and steady state thermoviscoelastic properties of the composite. 

Statistical analyses on out of sample predictions made using the estimated response 

functions demonstrate that the characterisation provides a good description of the 

thermoviscoelastic process. The transport coefficients are estimated and used to determine 

the flux-force surfaces which characteries the behaviour of the composite. These surfaces 

illustrate that Curie's principle for combined thermodynamic phenomena does not hold for 

the thermoviscoelastic process. The thermoviscoelastic behaviour of composite materials 

under fatigue loadings is weakly nonlinear. The estimated response function values can be 

used to develop either an empirical field theory of the phenomena or alternatively be used in 

the design process. 



Introduction 

It has long been know that a relationship exists between the mechanical deformation and the 

thermal energy in a material [1]. The thermoviscoelastic phenomena was first considered 

theoretically by Lord Kelvin [2]. This relationship was first used by Belgen [3] to determine 

the stress field due to the thermoelastic effect in metals. It was assumed that, for an 

oscillatory fatigue loading the adiabatic approximation is valid and that the 

thermoviscoelastic behaviour could be detected using infrared thermography. Recent 

experimental and theoretical work [4] has demonstrated that the adiabatic assumption is not 

valid for fibre reinforced composites. That work, however, does not consider the finite 

memory of viscous effects in the material and is only valid for small temperature changes 

and ignores the effects of fluid interactions, such as convection, at the surface of the body. 

This work develops a more general formalism for the thermoviscoelastic process and applies 

novel time series methods to extract the physical properties of the process from the 

experimental data. The formalism can be appropriately applied to a wide range of material 

types and is valid for a wide range of applied mechanical and thermal forces. 

The main difficulty in characterising thermoviscoelastic behaviour, from an experimental 

point of view, is the accurate simultaneous measurement of all the variables needed to 

describe the process. A guide to the choice of observables in an experiment, is that the 

governing equation used should be in a closed form, for example, the conservation laws in a 

control volume should contain terms for all of the physical processes which significantly 

contribute to the process. The characterisation obtained from the data can then be related to 

the theory underpinning the process. Generally speaking, the ability of current data analysis 

methods to accurately and consistently quantify all of these interactions under general 

dynamic boundary conditions is severely limited. Thus, there is a need to develop and refine 

data analysis techniques that can separate and quantify the thermoviscoelastic processes and 

their interactions and relate them to an appropriate theoretical description of the process. 

The notion of inverse equations and their approximate solution by discretisation is 

commonly employed for linear ordinary differential equations. A coupled differential 

representation being developed, which is suitable for the analysis of the thermoviscoelastic 

process, will be discussed elsewhere. In this work a vector multidimensional convolution 

form of the Volterra series expansion, suitably truncated, is operated on to obtain a tractable 

moment hierarchy with well behaved coefficients, from which the dynamical response of the 

thermoviscoelastic process can be determined. 
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The solution of the moment hierarchy yields, directly, the Volterra kernel values. These 

kernel functions are usually known as the linear and non-linear response functions and are 

fundamental properties of the physical system being studied. The convolution form of 

representation is an extension of the Taylor's expansion to processes which possess a finite 

memory. The vector multidimensional convolution form of the Volterra series is used in the 

present paper to analyse experimental data for the mixed linear and non-linear properties of 

complex thermoviscoelastic behaviour. The response function values can be extracted at 

different times of the sample's life cycle and they represent elements of the life history of the 

thermoviscoelastic material. 

The multidimensional convolution representation develo~d in the present work relates the 

components of the observed deformation gradient, { eii ( t)}, to the applied mechanical and 

local thermal forces and is readily extendible to more complex situations. The formalism 

assumes that a causal relation exists between the deformation gradients, the forces acting on 

the body and the fluxes flowing through the body; whether they be mechanical, electrical, 

thermal or chemical in origin. This indicates that each experimental case should be 

examined, and a characterisation chosen that represents the causal nature of the interactions 

between the physical processes. 

That is, in the present case the deformation induced by the mechanical forcing and the 

thermal gradients are characterised by the estimated response function values. The 

formalism is presented in general terms without specific properties being attributed to the 

functionals and their coefficients, the response function values. The formalism is then used 

to analyse specific data and for that case meaning is attributed to the functionals and their 

coefficients. The formalism developed simultaneously characterises the dynamical properties 

of the thermal and mechanical process and their mutual interactions. The linear and non 

linear response functions of the formalism are estimated directly from the experimental data 

[5-7]. The formalism is then applied to experimental data to analyse the thermoviscoelastic 

process in resin matrix composites under stochastic loading conditions. 
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Linear thermoviscoelastic materials 

Before details of the multidimensional convolution formalism are given it is of value to 

outline the underlying methodology with a simple example. Ideal materials deform 

instantaneously in response to an applied load and have the ability to store energy without 

dissipation, so that all of its stored energy can be recovered. Real materials have the 

capacity to both store and dissipate energy, and the response to an applied force will be a 

fast deformation followed by a slow flow process. In a linear viscoelastic material the strain 

is directly proportional to the strain field and for a given constant applied stress the strain 

increases with time. This process is known as creep and when the applied force is reduced, 

or stopped, there is a period of creep recovery when the material experiences strain decay. 

This is known as relaxation. The phenomena of relaxation and creep are basic characteristics 

of viscoelastic materials. Any theory that successfully describes the behaviour of 

thermoviscoelastic materials should be able to characterise the constitutive relationship 

between the observed deformation and the forces acting and the fluxes flowing. In addition, 

the theory should be able to characterise the storage and dissipative processes that 

simultaneously act in the material. 

As an example of the basis of the methodology underlying the treatment of complex 

materials, consider a one dimensional linear thermoviscoelastic material that is submitted to 

a history of mechanical forces in the absence of other forces and thermodynamic fluxes. 

Then the most general linear relationship which characterises the local thermodynamic 

forces, {g (t)} and {VT(t)}, and local thermodynamic fluxes, { g_(t)} and {~(t)} is a 

vector convolution equation. 

For a discrete one dimensional process which possesses a local fading memory of duration 

Jl, then the coupled convolution equations can be expressed as 

J..l J..l 
E (t) = I J0 e('t1)cr (t-'t1)+ I JvTe('t1)VT (t-'t1) 

't1 =0 'tl =0 

J..l J..l 
(7) 

q (t) = I J0 q('t1)cr (t-'tt)+ I JvTq('t1)VT (t-'tt) 
't =0 't =0 1 1 

where't1 denotes delay with respect to the timet. 
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Under steady state conditions these coupled convolution equations reduce to a set of 

Onsager equations [8], with 

q J* a q J* VT q VT 
= (8) 

E fa£ fvTE cr 

where fa£= l JaE('t1), fVTE = l JVTE('t1), foq = l Joq('t1 ) and fVTq = l 1vTq('t1). 
1:1=0 1:1=0 'tl=O 1:1=0 

It is straightforward to form and solve a moment hierarchy from the experimental data in 
order to determine the response function values, JaE ( 't1 ), J VTE ('t1 ), J aq ( 't1) and JVTq ( 't1) 

which characterise the dynamic and steady state thermoelastic process and also the memory 

properties of the thermoviscoelastic process. 

Thus the heat flux at the surface of the solid under steady state conditions will be given by 

• • V q = J aqE+J VTq T 

In the adiabatic limit, the heat flux vanishes, leaving 

VT =- faq cr 
fvTq 

The relationship between a change in stress and temperature in the adiabatic limit is 

and the ratio of transport coefficients is a thermoelastic constant, which can be compared 

with Lord Kelvin's thermoelastic constant [2,9] 
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Volterra functional series representation of thermoviscoelasticity 

There are many physical processes where the form of the differential equations that govern 

the observed behaviour are not known. In such cases other representations must be used to 

describe the physical process. For example, in the fields of thermodynamics, fluid dynamics 

and elasticity use a truncated Taylor's series expansion representations have been used. 

When the Taylor's series expansion description is used, the physical laws that describe 

aspects of the observed behaviour can be based on the values of the coefficients of the 

ascending order terms in the expansion. 

Constitutive equations are expressions which characterise the observed behaviour between 

forces and fluxes and conservation expressions relate a conserved variable to the constituent 

variables. For example, an observed thermodynamic flux can be characterised in terms of the 

observed thermodynamic forces . The empirical coefficients of the Taylor's series expansion 

describe the steady state transport properties of the proc.ess. Such empirical coefficients 

represent the, so called, steady state gains of the dependent variable to the independent 

variables and cannot be derived from any fundamental theory, but are estimated directly 

from the experimental data. 

If the thermodynamic flux at a given point in space and instant of time depends on a set of 
local thermodynamic forces, {Fi (t)}, then the thermodynamic flux can be written as a 

multidimensional function of the forces, with 

(12) 

This multidimensional function can be written as an ascending multivariate Taylor's series 

expansion with 

(13) 

where N is the order of the process and where the lowest order transport coefficients are 

given by 

( ae J and L .. = k 
rk'l'2 a Fa F 

11 12 

In the linear approximation this expansion reduces to the well known Onsager relations [8]. 
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Equally, the phenomena can be described as an inverse problem in terms of an ascending 

order of functionals which characterises the physical processes as a mapping between 

functional spaces. If there is a unique solution to Taylor1s series expansion, then, formally at 

least, it will be in the form of the kernel functions of the inverse mapping. 

The inverse mapping associates each value of the dependent physical variable to the finite 

history of a set of independent physical variables. The emphasis of the inverse problem 

approach is to identify the form of relationship between the observables and hence establish 

the laws that govern the process. If the process has a finite memory, of duration J.L, then the 

non-linear nonequlibrium behaviour of a macroscopic thermodynamic process can be 

described as a functional expansion of physically observable causal time series quantities. 

For example, the constitutive equations which describe thermodynamic processes, each 

thermodynamic flux, fk ( t) I can be described as a multidimensional convolution expansion in 

terms of the local thermodynamic forces acting, and defined as 

(14) 

where N is the order of the system, where t denote time and where the 't i 1S denotes time 

delay with respect to the time t. 

A discrete approximation to the multidimensional convolution expansion can be defined as 

(15) 

where N is the order of truncation of the system, where t denote time, where I is the number 
of forces and where the 't i 

1
S denote time delay with respect to the time t. The kernel function 

values, J rkFi ... Fi ( 'tp ... , 'tn) I characterise the behaviour of fk (t), in terms of the forces, 
1 n 

{Fi(t)}. 

On discretisation, the truncated Volterra series remains ill posed in the sense that there are 

too many unknown coefficients to solve for. Thus, the approximate method of discretisation 

used for the linear case cannot by themselves be used to solve the Volterra series. A 

tractable set of simultaneous equations with well behaved coefficients can be generated by 

taking time series moments of a suitably truncated Volterra series expansion. 
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Integrating each kernel function yields the linear and non-linear gain between the dependent 

and independent variables [5], with 

(16) 

That is, the integral of the kernel function values yields the steady state gain between the 

observables and is equivalent to the ascending order transport coefficients of the phenomena 

being characterised. 

The conditioning can be improved by statistical averaging and the use of operators allows a 

set of tractable equations with average variable values to be generated. Equation (15) is 

operated on with a series of averaging operators, one for each permutation of delayed 
applied forces (Fi (t- 'ti) *),to give a moment hierarchy of the form [10] 

(17) 

where <*> denotes the averaging operation. The moment hierarchy can be rewritten in the 

obvious matrix form C = Mh where M is a square matrix whose elements are the auto­

moments of the applied forces { ~ ( t - 't i)}, where C is a column vector whose elements are 

the cross moments between the thermodynamic flux, {fk (t)} and the applied forces {Fi (t)} 

and where h. is a column vector whose elements are the kernel function values of the 

mapping between { Fi ( t)} and { fk ( t)}. 

If the matrix M is non-singular then h = (M t C has a unique solution. If however M is 

singular, then M is rank deficient and some of its rows will be linearly dependent on the 

others. If the same relationship holds between the corresponding elements of the column 

vector C, the solution will not be unique, indeed an infinity of solutions will exist. If this is 

not the case then the matrix expression is not consistent and there will not be any solution. 

Thus, in general, there may be a unique solution, an infinite number of solutions or no 

solution. However, given the construction of the moment values used in the moment 
hierarchy, the rows of M will be linearly independent of each other, thus the matrix will 

usually be non-singular and have a unique solution. This will be true for many mixed 

stochastic and deterministic processes. 
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The thermoviscoelastic effects can arise when simultaneous mechanical and thermal forces 

act on a solid body. The physical observables of thermoviscoelasticity can be represented as 

a vector valued functional series expansion which relate the components of the stress field, 

{ ei ( t)}, and heat flux, { qi ( t)}, to the mechanical, {cri ( t)}, and thermal, { VTi ( t)}, forces 

acting. The discrete form of the coupled functional expansions is defined as 

(18) 

where { ti} denote time delay, where N is the order of the expansion and I is the number of 
n 

independent observables (two in the present case) and where n er ( t- tk) denotes the 
k=l k 

delayed product of the independent variables {cri (t- tk )} and { VTi (t- tk )}. The estimated 

response function values Jqiar. ... ar (tp···•tn) andJE·B .... ar (tp···•tn) notonlycharacterise 
1 n 1 '1 n 

the observed behaviour, but they also yield the dynamical and steady state properties of the 

composite under study and represent the solutions to the equations which describe the 

process [6] and provide physical insight into the nature of the phenomena. 

The moment hierarchy in the thermoviscoelastic case is 
m N 1 I I ~ ~ 

<ne. Ct- ~p)qi(t))= r-r ... r r ... r 
p=l P n•In!r1=1 rn=rn-l'tl=O 'tn=O 

m n 

la .. 8 ('tp ... ,'tn)(ne. (t- ~p) rrer, (t- 'tk)) 
1 rl rn p=l p k•l k 

m N 1 I I ~ ~ 

<ne. (t- ~p)ei(t))= r-r ... r r ... r 
p=l P n=l n! r-1=1 r =r I 1:1=0 1: =0 n n· n 

(19) 
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m m 
Here the averaged values (II8s (t- ~P)qi(t)) and (II8s (t- ~P)Ei(t)) denote the 

p~l p p•l p 
m n 

ascendingordercrossmomentsand (II8s (t- ~p) rrer (t- 'tk))denotetheascending 
p=l p k•l k 

order auto moments between the thermodynamic fluxes and forces. 

Facilities and analysis of the thermoviscoelasticity experiments 

Test coupons were cut from an existing wind turbine blade manufactured by L/M Glassfiber. 

Their lay up was approximately uniaxial, composed of a resin matrix encapsulating a woven 

0°-90° fabric with a 90/10 ratio of weave. In addition a curved plate section, cut from an 

existing turbine blade was tested. The test coupons and curved plate were studied under 

uniaxial fatigue loadings. Dynamic fatigue loading is normally used to investigate the nature 

of the failure mechanisms of the material under study. The most commonly used excitation 

function is the sinusoid which is used in the present work. Such accelerated lifetime methods 

provide fatigue life endurance and fatigue limit, but have the disadvantage that the results 

can be unrealistic, due, for example, to the heating effects in the composite. This particular 

shortcoming is used to advantage in the present work to study the simultaneous action of 

the mechanical and thermal forces and fluxes. 

The applied force was measured with a balanced load cell, the stress measurements were 

made with a strain gauge, the heat flux reaching the surface was measured with heat flux 

mats and the thermal gradient within the solid was measured with thermocouples. During 

the series of experiments it was observed that the heat flux and temperature gradient were 

sensitive to the convective and radiative forces acting at the surface of the solid. In the 

present work these effects are assumed to be small. However, an experimental study is just 

about to commence that will quantify the effect on the transport coefficients determined 

from the data. Time series measurements were collected with a personal computer through a 

data collection card. For each separate experiment some 4000 time series points for each 

sensor were collected. Samples of the data are shown in figure 1. Of each 4000 data points 

measured some 500 in sample points were used to estimate the response factor values of the 

process and a further 3000 out of sample points were compared with the predicted values 

of the stress field. The stress being predicted with the estimated response function values 

and the measured applied force and temperature gradient values. This enabled the accuracy 

and consistency of the estimated response function values to be determined. These response 

function values were then used to predict the behaviour of the sample under a different 

loading regime, thus testing the nature of the solutions determined by the moment hierarchy 

method. 
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The time series values of the stress field were considered as 1) a linear function of the 

applied load and the local temperature gradient and 2) a mixed linear and non-linear function 

of the applied load and temperature within the solid. In each case the properties of the 

process were characterised with 500 data points. The response functions estimated with 

these 500 points were then used to predict the future, out of sample, behaviour of the stress 

field for 3000 points. 

These predicted values of stress, { E P ( t)}, were then statistically compared with the 

observed values, { E ( t)}. It should be stressed that during the prediction phase no use was 

made of the observed stress values. This provides a quantitative measure of the quality of 

the response function characterisation of the thermoviscoelastic process. The accuracy of 

the predicting ability was determined by the Student's t-test values for the differences 
between the actual, { E ( t)}, and predicted { E P ( t)} , time series sequences. An example of a 

sample prediction with the measured values is shown in figure 2 together with the 

differences with no obvious sign of dispersion between the predicted and the measured 

points. 

The data were analysed for estimates of the response function values of 

(18) 

for N=1 and 2. 

Linear and mixed linear-quadratic analyses yielded the response function values of the 

thermoviscoelastic process. The Student's t-test values for the difference between the 

predicted and measured stress values are given in table 1 below. 
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Table 1: Student's t-test value for the 0°-90° GRP sample 

Force Applied Linear vector Linear -quadratic 

@ 1Hz analysis vector analysis 

t=s;f:s;20kN 3.5 0.42 

t=s;f:s;40kN 1.4 0.35 

t=s;f:s;60kN 2.42 0.53 

-5 5: f 5: 25 kN 0.52 0.40 

-5 5: f 5: 45 kN 2.84 0.79 

-5 5: f :s; 65 kN 2.68 -0.43 

The sample statistics for the mixed linear-non-linear analyses lie within the acceptance 

region of the two tailed Student's t-test, whilst the linear hypothesis is rejected four out of 

six times. The acceptance range being -1. 96 5: t95% 5: 1. 96. Hence only the vector mixed 

linear-non-linear representation accurately characterise the observed combined behaviour of 

the mechanical and thermal forces. The actual test statistic values could be used as strength 

of evidence for the mixed linear-non-linear representations. However, a more sensible 

approach would be to analyse a statistically significant number of samples under a variety of 

different loading conditions. 

Integrating each kernel function yields the linear and non-linear gain between the dependent 

and independent variables, and these were used to generate the surfaces shown in figures 3 

and 4 using 

qi = f.l ± ... ± {ne.}{ f. ... f. Jq.a ... a ('tp···•'tn)} 
n=1 n! r1=1 r =r 1 k=1 k 't1=0 't =0 1 '1 1fl n n- n 

(19) 

respectively, where N=l and 2 are the order of truncation the system in each case, and 

where ~ is the finite memory of the process. 

12 



Until the present work, no simultaneous estimates of Young's modulus and the 

thermoviscoelastic transport coefficient have been made, for this reason only estimates of 

the mechanical transport coefficient are compared with previous estimates. This is 

reasonable, because it is clear from figures 3 and 4 that the force due to the temperature 

gradient force relatively small compared with the mechanical force. 

Effective values for the Young's modulus were then determined from the estimated response 

function values. These values are given in table 2 below. 

T bl 2 Effj f Y a e . ec tve oung s mo u us or e . samp e . 
Force Applied Linear vector analysis Linear-quadratic 

@ 1Hz vector analysis 

1 $; f $; 20 kN 23400 ± 400 N mm-2 23580 ± 400 N mm-2 

1 $; f $; 40 kN 24260 ± 400 N mm-2 23580 ± 400 N mm-2 

1 $; f $; 60 kN 24300 ± 400 N mm-2 23560 ± 400 N mm-2 

-5 $; f::;; 25 kN 24540 ± 400 N mm-2 24320± 400 N mm-2 

-5 ::;;f::;; 45 kN 24260 ± 400 N mm-2 23920 ± 400 N mm-2 

-5::;;f ::;;65 kN 24340 ± 400 N mm-2 23860 ± 400 N mm-2 

The Young's modulus values agree within the experimental uncertainties and are self 

consistent. In addition they lie close to the manufacturers quoted value for the Young's 

modulus of their typical glass fibre reinforced resins for which Eu =22270 N mm-2 for the 

curved plate sample used in the present work. 

The results for repeated experiments on the curved plate for a given uniaxial compressive­

tensile loadings are presented. As before, sample estimates of the response function values 

were obtained in sample. Out of sample rolling predictions were obtained from the response 

function values and force values. These predicted values were then compared with the 

measured data values. The Student's t-test values determined in that analysis are presented in 

table 3 below and the effective Young's modulus values are given in table 4 below. 
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Tb3Sd I~ h dl a le . tu ent s t-test va ue or t e curve pi ate sample . 
Force Applied Linear vector Linear-quadratic 

@1Hz analysis vector analysis 

-15 ~f ~5 kN 1.49 0.33 

-15~f ~5 kN -4.3 -1.54 

-15~f ~5 kN 0.76 0.39 

-15 ~f ~5 kN 3.5 0.87 

-15 ~f ~5 kN 2.43 0.21 

-15~f~5kN 0.13 -0.70 

T bl 4 Effi t. Y d I ~ th d I t a e . ec 1ve oung·s mo u us or e curve _p1 a e specimen . 
Force Applied Linear analysis Linear-quadratic 

@1Hz vector analysis 

-15~f~5kN 27100 ± 700 N mm·2 28860 ± 700 N mm·2 

-15~f ~5 kN 28400 ± 700 N mm·2 29240 ± 700 N mm·2 

-15~f~5kN 24560 ± 700 N mm·2 30020 ± 700 N mm·2 

-15~f~5kN 28480 ± 400 N mm·2 28700 ± 700 N mm·2 

-15~f ~5 kN 28440 ± 700 N mm·2 29060 ± 700 N mm·2 

-15 ~f ~5 kN 28460 ± 700 N mm·2 31340 ± 700 N mm·2 

The sample statistics for the mixed linear-non-linear analyses lie within the acceptance 

region of the two tailed Students t-test, the linear hypothesis being rejected two out of six 

times. Hence only the vector mixed linear-non-linear representation accurately and 

consistently characterise the observed combined behaviour of the mechanical and thermal 

forces. Again the Young's modulus values agree within the experimental uncertainties and 

are self consistent and lie reasonably close to the manufacturers quoted value for the 

Young's modulus of E 11 =22270 N mm·2 for the curved pla,te sample used in the present 

work. 
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Conclusions 

The results presented in this paper can be summarised as follows. A theoretical description 

of thermoviscoelasticity based on a vector form of the truncated Volterra functional 

expansion and the Onsager equations was developed. A tractable set simultaneous mixed 

linear-non-linear integral equations were obtained by the use of averaging operators. The 

resulting moment hierarchy was used to characterise the thermoviscoelastic process in 

complex materials. Values of the kernel, or response, functions of the Volterra series were 

estimated from the experimental data using the moment hierarchy. 

The moment hierarchy was used to determine the properties of a composite solid under a 

range of applied loads. The first and second order response functions were estimated from 

the time series data collected from the heat flux, applied force, strain gauge and temperature 

gradient values. These estimated response functions were then used to predict the out of 

sample stress field values. These predictions demonstrated that the response functions 

provided a good, locally time invariant, representation of the thermoviscoelastic process. 

The analysis has demonstrated that the moment hierarchy can extract and isolate linear and 

ascending order non-linear response functions when the input data are drawn from a 

stochastic process. The Young's modulus values obtained from the fatigue load data agree 

with those obtained in static testing procedures. The thermal conductivities obtained in the 

analysis were typically 50% larger than those obtained in standard hot box measurements. 

This is due to the continuum of thermal source terms that exist in the mechanically forced 

solid and a further study into this effect is underway. The stress-strain-temperature gradient 

and heat flux-strain-temperature gradient surfaces illustrate the Curies principle for 

thermodynamic processes does not hold for the thermoviscoelastic case. 

The nature of one dimensional thermoviscoelasticity was considered. Linear and mixed 

linear-quadratic non-linear local constitutive representations were used to characterise the 

thermoviscoelastic process. 
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Figure captions 

1. Sample of the time series sequences of applied force, the strain, temperature gradient 

and heat flux measurements in the thermoviscoelastic experiments. 

2. Sample of the observed and the predicted stress values. 

3. The heat flux-applied force-temperature gradient surface generated using the 

response function values estimated from the thermoviscoelastic data. 

4. The stress-applied force-temperature gradient surface generated using the response 

function values estimated from the thermoviscoelastic data. 
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