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INTRODUCTION

The approach to the refinement of macromolecular models has changed radically
in the past few years. Structures are solved more quickly, and much less time
is now devoted to understanding their details. This has partly arisen because
more powerful algorithms such as those encoded in ‘X-PLOR’ make it appar-
ently easy to reach a satisfactory R-factor, and partly because the scientists are
often now primarily biochemists with little experience in the finer points of the
mathematical basis of refinement.

This meeting covered the underlying theory of different types of refinement which
are commonly used and also explored new techniques. The use of maximum like-
lihood refinement was covered in some detail. It has recently been implemented
in two new programs and appears to be a very promising new option. Insight
into how to handle motion in crystals was provided by several speakers. There
was discussion on indicators which can detect both gross errors and sub-optimal
refinement. Various case studies were used to give examples of different types of
refinement problems.

The meeting was held at Chester College again this year. The facilities available
at this venue being suited to the large number of participants. There were 385
participants in total, including 99 participants from Europe and 14 from the
Americas. 55 of the Europeans participants were young scientists who were able
to come to the meeting due to support from the EC Human Capital and Mobility
Scheme. The speakers comprised 13 from the UK, 5 from elsewhere in Europe
and 6 from the USA and Canada.

The meeting was organised and supported by the BBSRC Collaborative Compu-
tational Project in Protein Crystallography (CCP4) and the EC Human Capital
and Mobility Scheme. We thank the invited speakers for sharing their expert-
ise with us and for the contributions to this booklet. We are very grateful to
Daresbury Laboratory for providing organisational support.

Eleanor Dodson
Madeleine Moore
Adam Ralph
Sue Bailey

July 1996
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The Limits of Interpretatibn

Dale E. Tronrud
Howard Hughes Medical Institute
Institute of Molecular Biology
University of Oregon

Abétract

The standard method.of refining a macromolecular model uses both
automated and manual methods. This combination allows the best abili-
ties of both the computer and the human to be applied to the problem. At a

‘basic level, however, both methods are examining the same indicators of er-
ror. This paper discusses some of the properties of these indicators which
limit the investigator’s ability to identify errors in their models.

Introduction

Our automated refinement packages are limited in that they cannot
alter the basic form of the models they are optimizing. Initially the model
must be constructed . Interspersed with the automated refinement are
sessions of manual intervention. During these sessions at the computer
graphics workstation the crystallographic information is presented in the
form. of density and difference density maps. To properly interpret these
maps you must have an understanding of the way errors are represented
in these maps and kinds of information not shown by them.

Usually one examines a Fo-Fc map to identify errors in a model and
a 2Fo-Fc map to guide the construction of the new model. Since the Fo-Fc
map is used to detect the error most of this paper will be devoted to a de-
scription of the appearance of these maps.

The first order description of the signal in a Fo-Fc map is know to
all crystallographers. Locations in space where there should be electrons
show positive features in the map while locations where the model inap-
propriately contains electrons show negative features. For example, if the
model is missing a bound water molecule the Fo-Fc map will show a posi-
- tive peak at the location where the water molecule should be placed.

A more complicated signal is expected when an atom is modeled but
1s slightly misplaced. In this case you will expect to see a positive peak
next to a negative peak with the atom’s current location between. This
feature indicates that the atom should be moved toward the positive peak.

These are the signals that all crystallographers are taught to iden-
tify. The real situation is more complicated. There are peaks in Fo-F¢
maps which do not indicate that atoms should be added to the model and



sometimes atoms ha¥ve errors in their positions which are not marked by
pairs of peaks. The proper interpretation of a Fo-Fc map requires that you
be familiar with these limitations.

Fo-Fc Map Theory and Limitations

It was shown some time ago (Crukshank, 1951) that least squares
minimization and flattening a Fo-Fc map are closely related tasks. This
relationship is what allows us to use Fo-Fc map refitting side-by-side with
least squares refinement. It was later shown that a relatively simple
transformation can convert a Fo-Fc map to the gradient of the least
squares’ residual (Agarwal, 1978). In fact, this is the way many refine-
ment packages calculate the gradient today. Agarwal’s result allows us to
treat the Fo-Fc map and the gradient of the least squares’ residual func-
tion as equivalent.

Therefore, moving atoms to cause the Fo-Fc map to become flat is
the same as moving the parameters of the model down the gradient vector.
This describes the steepest descent method of function minimization
(Leuenberger, 1971). While the steepest descent method is quite robust it
is also quite limited.

The principle omission from the steepest descent method is the lack
of consideration of any second derivative information. The second deriva-
tive of the least squares expression contains several types of information
about the model, including

o The precision or “significance” of each parameter, and
e The correlation and anticorrelation of pairs of parameters.

While the Fo-Fc map does not present any second derivative infor-
mation all refinement packages incorporate some or all of it either directly
or indirectly. XPLOR (Briinger, 1987) only includes the second derivative
information indirectly via the conjugate gradient procedure (Fletcher and
Reeves, 1964, Konnert, 1975). PROLSQ (Hendrickson and Konnert, 1980)
uses the precision part (diagonal) of the second derivatives as well as some
of the correlation part (off-diagonal) but uses this data ineffectively by
using the conjugate gradient method of minimization in roughly the same
fashion as XPLOR. TNT (Tronrud, et al, 1987) uses the precision part of
the second derivatives with the preconditioned conjugate gradient method
(Axelsson, 1985, Tronrud, 1990). While SHELXL (Sheldrick, and Schnei-
der) can use all of the second derivative information the size of the compu-
tation required to determine the shift limits its use to small proteins.



The Effect of Parameter Correlation on the Fo-Fc
Map |

To demonstrate the effect of correlated errors in the parameters of a
model I have constructed the following test case.

This is one section of a Fo-Fc map.
Positive density is white and negative den-
sity is black. Regions with no difference

- density appear neutral gray. The length of
each edge is 40A. The full unit cell contains
10 atoms, all of which are in their correct po-
sition except for the atom in this section = .
which is placed in error by 1.5A. While the
expected pair of peaks is quite evident there
are a considerable number of other features
in this section. Despite the complications

the pair of peaks are sufficiently clear to indicate the error in the atom’s

position.

For comparison I have created another
Fo-Fc map where I have simply added nine
more atoms to the section, each of which are
positioned in error by 1.54 in the same direc-
tion. In this case there is not a pair of peaks
for each atom but a single pair for the entire
group of atoms. If you did not consider this
group of atoms as a block you would be
tempted to simply add a water molecule in
| the positive peak on the right and increase
: ‘the B factor of the furthest atom on the left.
Since some of the difference density (the three positive peaks on the far
right) is fairly strong you might add water molecules there as well. These
incorrect modifications of the model would lock the positions of these at-
oms in the wrong position. This map is very easy to misinterpret.

Since the refinement packages usually do not include second deriva-
tive information either they will not usually correct the error in this model
either. When there is a concerted shift of a number of atoms you must
specifically instruct the refinement package to look for such a shift. How-
ever, you will not be able to recognize the existence of this problem from
looking at the map and if you perform automated refinement without pre-
cautions the computer will make inappropriate shifts and trap your model
in error forever.

The lack of consideration of the second derivatives of most refine-
ment packages results in the requirement that you perform rigid body re-



finement whenever it is possible that your model contains such errors.
Usually a model constructed by reference to an m.i.r,, s.i.r., or m.a.d. map
will not contain errors of this type. However models generated by mo-
lecular replacement or molecular substitution (isomorphous mutant.or in-
hibitor structures) often do. In these cases you must perform rigid body
refinement with first each entire molecule in a group, then each domain in
a rigid group, and perhaps finishing with significant portions of domains
defined as rigid groups. Only then can you proceed to individual atom re-
finement.

You will not see clear indications in your Fo-Fc map that such er-
rors are present even if they are present. To be safe you must perform the
rigid body refinement in all cases.

Correlation of Parameters for a Single Atom

While the difference map signals mentioned above, a pair of peaks
of opposite sign indicating a positional error and a peak centered on the
atom indicating a B factor error, are the form generally taught they are
rarely observed in refined difference maps. This is because there is a cor-
relation between the position and B factor of each atom.

If a model is refined and, for some reason, an atom cannot move to
accommodate the diffraction data the difference map will develop a pair of
peaks. However the atom does not lie halfway between the two peaks — it
will be a little closer to the negative peak. Since we have assumed that the
atom cannot move to correct the error the only option available to the pro-
gram is to raise the B factor to attempt to remove the negative peak. By
. the time the map is examined all that is left to see is a positive peak near
an atom. The B factor may be unusually large but that may not be recog-
nizable given the expected fluctuation of this type of parameter.

The most common difference density feature in a refined difference
map is positive density near a atom. If there is any density at the position
of the atom it is due to restraints preventing the B factor from changing.
The response to this density is to search for the restraint which is pre-
venting the atom from moving. If you simply move the atom manually
whatever restraint caused the problem will pull the atom back to its origi-
nal location.

The density of a difference map calculated with an unrefined model
will exhibit the classical features.

Series Termination in Fo-Fc Maps

The maps above each contain two principle peaks which indicate
the error in position of the group of atoms. Each map also contains a
number of other peaks. These peaks are caused by series termination -



The lack of certain Fourier terms in the calculation of the maps. All den-
sity maps will contain a certain amount of series termination.

The principle cause of series termination is the incompleteness of
the observed data set. While the incompleteness of a data set could have
many forms usually it is described by an inner (or low) resolution and
outer (or high) resolution limit. While the outer resolution limit usually
exists because the crystal does not diffract with sufficient intensity to ac-
curately measure (or the structure factors cannot be phased well enough)
the inner limit is either chosen arbitrarily or imposed by the technical
limitations of the data collection procedure (e.g. the beam stop). The sig-
nificance of a resolution limit is determined by the amount of intensity
lost from the calculation. If the outer resolution limit is caused by the
weak diffraction of the crystal at that resolution this limit will not cause
significant artifacts in the maps. '

If the outer resolution limit is imposed because of phasing errors, as
in a m.i.r. map with a breakdown of isomorphism at high resolution, there
can be significant series termination errors. In addition the low resolution

 limit always excludes significant reflections and causes more errors. Since

these limits are simple shapes in reciprocal space their effects are simple
in real space as well. They cause every feature to be surrounded by rip- -
ples. The wavelength of the ripple will be somewhat beyond the resolution
limit of the data. For example, a 3A outer resolution limit will cause all
features in a map to be surrounded by ripples with a wavelength some-
what shorter than 3A. A 64 inner resolution limit Wlll cause ripples
somewhat longer than 6A.

To demonstrate the affect of series termination on the appearance of
a 2Fo-Fc map I will show the results of some model calculations. Thez =0
section of a calculated electron density map for the protein Thermolysin
(Holland, et al, 1992) is



. The crystal is hexagonal which explains the gray triangles on the maps
sides. Since this map is simply calculated from the atomic positions it
does not exhibit any defects due to resolution limits. The bulk solvent re-
gions are devoid of density and the atoms are as resolved as we]l as can be
expected for atoms with B factors of ~15.

A'2F0-Fc map will never look this good. It will always be missing
some of the low resolution data and most likely some of the high resolu-
tion data as well. If we recalculate the map shown above with the resolu-
tion limits 20 to 1.8A the result is




You will note that while the solvent region now appears to contain density
the principle features of the protein are still quite recognizable. This map
could be used to build a model of the protein without much difficulty.

If the map is calculated again, this time with the resolution limits 6
to 1.84, the result is : '

In this map considerable density appears in the bulk solvent regions.
While the core of the protein still exhibits sufficient detail to allow the po-
sitions of the atoms to be recognized the superposition of the false solvent

~density on the surface regions of the protein could cause regions with high
B factors-to be difficult to interpret. In addition there is a great tempta-
tion to interpret the “features” in the bulk solvent region as structured
solvation.

One must be very cautious when interpreting weak density. There
are many explanations for weak features in a map that do not involve the
presence of ordered atoms.

Series Termination in Fo-Fc méps

The example shown above mimics a 2Fo-Fc map but series termina-
tion also affects Fo-Fc maps. Any error in the protein model will result in
features in the Fo-Fc map. These features will be of the classical form — a
-pair of peaks of opposite sign for positional errors, a peak centered on the
atom for a B factor error, and positive density for unmodeled protein — but
will be modified by the series termination ripples.

When interpreting a Fo-Fc map you should only attempt to model
the strongest features. The weaker features will be distorted by the rip-
ples from the stronger and cannot be reliably interpreted. Once you have



corrected the major problems with your model you can calculate a new Fo-
Fc map which will show a clearer image of the remaining problems.

Reducing the Parameter Uncertainty

The parameters of your final model will contain uncertainties.
These uncertainties arise from the uncertainties in the measurement of
the data and are modulated by the mathematical transformation required
to calculate the model from those data. Since we do not know how to cal-
culate the model from the data (we can only calculate what the data
should be given a model.) the calculation of the uncertainties of our final
parameters is quite difficult.

We do know the character of these uncertainties. While we usually
talk about the uncertainty of a parameter by estimating a standard de-
viation, this list of “sigmas” does not tell the whole story. The more trou-
blesome aspect of the uncertainty is the covariance.

The covariance of two parameters quantifies the extent that one pa-
rameter can change to compensate for a change in another. Whenever a
pair of parameters have a large covariance their values have a much
larger uncertainty than their individual standard deviations would indi-
cate.

While it is quite difficult to calculate the covariance of every pair of -
parameters in a model there are steps which can be taken to reduce the
uncertainty. The most powerful is to change the parameters of the model
to another set which exhibit less correlation. Usually proteins are mod-
eled by supplying a position and B factor for each atom. When the diffrac-
tion data only cover low resolution the parameters for neighboring atoms
become highly correlated and their positions quite difficult to refine and
their final values quite uncertain. If we knew the basic fold of the protein
from some other source (say molecular replacement) we can redefine the
parameters of the model. An example of this would be to define the pa-
rameters to be the position, orientation, and B factor of each domain in the
protein and refine these parameters. Since the electron density of each
domain does not overlap the covariance of these parameters will be much
smaller. -

This example is simply rigid body refinement and is a commonly
used means of aiding refinement convergence. While these types of pa-
rameter changes are quite powerful current refinement packages are quite
limited in their ability to allow parameterizations other than md1v1dua1
atoms and rigid groups.

Usually a new parameterization is devised to make use of some ad-
ditional source of information. An analogy between the current structure
and one solved in another space group provides the information used in
the rigid body parameterization. The analogy from one crystal form to an-



other is usually only considered valid at low resolution and the rigid body
model is abandoned when refining against high resolution diffraction
data.

It would seem reasonable that an analogy between two very similar,
isomorphous, structures would be valid to high resolution. If true one
could redefine the parameters of the models to be more sensitive to the dif-
ferences between the two structures. Terwilliger & Berendzen, (1995)
have proposed a means of redefining the refinement process to emphasize
the differences between the “derivative” and “native” structures (be they
mutant verses wild type or inhibited verses uninhibited).” While their ap-
proach appears promising it does not change the parameterization of ei-
ther model. The next step would be to define a set of parameters which
express the structural details of the two structures in a minimalist form.

Summarsr

The best source of information about the quality of your model is
your maps. If a detail of the structure is not visible in the 2Fo-Fc map and
a trial change in this feature of your model does not affect the Fo-Fc map
then that detail is probably artifactual. You must be very careful, how-
ever, because these maps will contain features which do not arise from the
true structure of the protein but are artifacts due to series termination,
phase errors, incomplete data, and other sources. To achieve the best
maps you must include all available data in their calculation (no omission
of the low resolution data) and model all aspects of the structure, includ- -
ing the bulk solvent.

If you are interested in the fine details of your structure you will
have to carefully choose the parameters of your model. You should not
allow the model to violate facts about the structure such as the conforma-
tion of related structures. The parameters of the model should be con-
trived to allow variability in only those aspects which are believed to differ
from known quantities. The fewer parameters the better.
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PROTEIN PRECISION RE-EXAMINED:
LUZZAT! PLOTS DO NOT ESTIMATE FINAL ERRORS

D.W.J.CRUICKSHANK
Chemistry Department, UMIST, Manchester ME0 1QD

INTRODUCTION

Almost 50 years ago E.G. Cox and G.A. Jeffrey started my
interest in the accuracy of the structures of small molecules
as determined by X-ray crystallography. Recently, for two
reasons, | became interested in protein accuracy: first, the
paper by Daopin et al/. (1994) on the accuracy of two
structures of TGF-p2 made generous remarks about -error
formulae of mine dating back to 1849; second, numerous protein
papers are reporting the estimation of final errors by Luzzati
(1952) plots. Unfortunately Luzzati developed his theory for
a quite different purpose, and this use of Luzzati plots is
wrong. A critical discussion of Luzzati’s theory will be
offered later in this paper. However plots of R versus
2sinB8/A can still be used to provide a statistical estimate of
global uncertainty.

Even in 1967 when the first few protein structures had been
solved, it would have been hard to imagine that a time would
come when the best protein structures would be determined with
a precision approaching that of small molecules. That time
was reached some while ago. Consequently the methods for the
assessment of the precision of small molecules can be extended
to good gquality protein structures.

The key proposition is simply stated. At the conclusion of
a refinement, the estimated variances and covariances of the
parameters may be obtained through the inversion of the

least-squares full matrix. The inversion of the full matrix
for a large protein is a gigantic computational task, but has
been achieved for a few cases. Alternatively, approximations

may be sought. Often these can be no more than rough
order-of-magnitude estimates. Some of these approximations
are considered below.

Caveat. Quite apart from their large number of atoms,
protein structures show different features from well-ordered

small molecule structures. Protein crystals contain large
amounts of solvent, possibly not well ordered. Parts of the
protein chain may be floppy or disordered. All protein

crystals are non-centrosymmetric, hence the simplifications of
error assessment for centrosymmetric structures are
inapplicable. The effects of incomplete modelling of disorder
on phase angles, and thus on parameter errors, are not
addressed in the following analysis. Nor does this analysis
address the quite different problem of possible gross errors
or misplacements in a structure, other than by their
indication through high B values or high coordinate e.s.d.’'s.

11



EFFECT OF TEMPERATURE FACTORS

It is useful to begin with a reminder that the Debye B =

8nc<u<> where u is the atomic displacement amplitude. If B =
80 AZ, the r.m.s. amplitude is 1.01 A. The centroid of such
an atom is unlikely to be precisely determined. For B = 40

AZ, the 0.71 A r.m.s. amplitude of an atom reaches the
mid-point of a C-N bond. For B = 20 or 5 &2, <uZ>% = 0.50 or
0.25 A. Scattering power degends on exp[-zB(sinB/A)zl =
expl-B/(2d2)>1. For B = 20 A2 and d = 4, 2 or 1 A, this factor
is 0.54, 0.08 or 0.0001. For d = 2 A and B = 80, 20 or 5 AZ,
the factor is 0.0001, 0.08 or 0.54. The scattering power of
‘an atom thus depends strongly on B and on the resolution d =
1/s = A/2sinB. Scattering at high-resolution (low.d) is
dominated by atoms with low B.

Daopin, Davies, Schlunegger and Grutter (1994) compared
their two independent determinations of transforming growth
factor-g2 (112 amino acids). Each refinement of TGF-BZ used
the TNT package. The 1TGl structure had dgjp = 1.8 A and a
final residual R = 0.173. The 1TFG structure had 1.85 A and
0.188. The authors plotted the r.m.s. position differences
<ar> of the C4 atoms versus residue number, and showed that
these structural differences were highly correlated with the
Debye B factors. This provided another direct demonstration
that atomic precision in proteins depends strongly on B. They
then showed (Fig. 1) that the agreement between the observed
r.m.s. structure differences <Ar»> and the errors estimated by
a tormula of Cruickshank (18948a, 1958) was "quite good
throughout the entire range of B values".

T T T T T

Atom Type: C

20F / .

15} .
H 4
]

<
=<10F a s
a
05F .
00F .
1 _ ——l " L " 1 A 1 - .
0 20 40 60 80 100

8 values (A?)

Fig.1. Daopin et al.'s comparison for all C atoms of the
observed r.m.s. deviations between the two structures
of TGF-B2 and the theorgtical distribution curve
calculated using (1),

12



This formula, based on a Fourier map approach, can be
described approximately as

o(x) = co(slope)/(atomic peak "curvature™). (1)

The co(slope) term is the same for all atoms and is
proportional to [ZobshZ!AFézlﬁ. The "curvature" term, which
depends on B and the atom type, is proportional to
beshszexp(—Bsinze/Az)J[m/ZJ, where m = 1 or 2 for acentric
or centric reflections. Thus ¢(x) increases steadily with B
as observed.

RESTRAINED REFINEMENT

Proteins are usually refined by a restrained refinement
program such as PROLSQ@. Here a function of type

R' = IWp(AF)Z + Fwg(aQ)? (2)

is minimised, where @ denotes a geometrical restraint, e.g. a
bond length. Formally, all one is doing is extending the list
of observations. One is adding to the protein diffraction
data geometrical data from a stereochemical dictionary such as
that of Engh and Huber (1881). A chain C-N bond length may be
known from the dictionary with much greater precision 1/w %,
say 0.02 A, than from an unrestrained diffraction—data-on%y
protein refinement.

In a high-resolution unrestrained refinement of a small
molecule, the estimated standard deviation (e.s.d.) of a bond
length A-B is often well approximated by ¢(l) = (o’A2 +
033)1/2. However in a protein determination ¢(l) is often
much smaller than either ¢p or ¢p because of the excellent
information available from the stereochemical dictionary which
correlates the positions of A and B.

Laying aside computational size and complexity, the protein
error problem is straightforward in principle. When a
restrained refinement has converged to an acceptable structure
and the shifts in successive rounds have become negligible,
invert the full-matrix. The inverse matrix immediately yields
estimates of the variances and covariances of all parameters.

A very simple protein model

Some aspects of restrained refinement are easily understood
by considering a one-dimensional protein consisting of two
like atoms in the asymmetric unit, with coordinates x; and xp
and bond length | = x5 - x3. In the refinement the normal
equations are of the type NAx = . For two non-overlapping
like atoms the diffraction data will yield a normal matrix

[ a o} ] with inverse 1/a O ]
0 a (0] 1/a
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where a = ﬂwh(BFh/axi)z. A geometric restraint on the length
wil{ yield a normal matrix

[ b -b ] with no inverse since determinant = O
-b b

where b = wg(Bl/Bii)z. Note ®l/9xp = -®l/8xy = 1, and b = wg
= 1/¢45<, where ¢y, is the variance assigned to the length in

the stereochemical dictionary.

Combining the diffraction data and the restraint the normal
matrix becomes

[ atb -b ] with inverse [1/a(a+2b)][ a+b b ]
-b a+b b a+b

For the diffraction data alone the variance of xj 1is
cdz(xi) = 1/a.
For the diffraction data plus restraint the variance of xj is
op2(xy) = (a+b)/La(a+2b)] < o642 (xj). (3)
Note that though the restraint says nothing about the position
of xj, the variance of xj has been reduced because of the
coupling to the position of the other atom.

Analysis shows that the bond length | determined in the
restrained refinement is the weighted mean of the
diffraction-data only length and the geometric-dictionary
length.

For the diffraction data alone it can be shown

0d2(l) = 2/a = chz(xi), as expected.

For the diffraction data plus restraint

op2(1) = 1/(a/2 + b) < og42(1). (4)
The centroid has coordinate c = (x3 + xp)/2. 1t is easily
found that crz(c) = ogq=«(c) = 1/2a. Thus, as expected, the

restraint says nothing about the centroid of the molecule.

STATISTICAL EXPECTATION OF ERROR DEPENDENCE

From general statistical theory, one would expect the e.s.d,
of an atomic coordinate determined from the diffraction data
alone to show dependence on four factors:

g(x) & ("R"™) [(natoms’/(Nobs - Nparams’l® (1/sppg). (5)

"R" is some measure of the precision of the data, ngpg is the
number of independent data, but to achisve the correct number
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of degrees of freedom this must be reducsd by the number of
parameters determined, ng{gops is the recognition the
information content of the data has to be shared out, and
1/syps is a more specialised factor arising from the
sensitivity 9:Fi/ox of the data to the parameter x. Any error
gstimate must show show some correspondence to these four
factors.

Cruickshank (1960) published, based on a least-squares
approach, a simple order-of-magnitude formula for &(x) in
small molecules. It was intended for use in experimental
design: how many data of what precision are needed to achieve
a given precision in the results. The formula, derived from a
very rough estimate of a least-squares diagonal element in
non-centrosymmetric space groups, was

o(x) = (1/2) [N/pl% [R/sppgl. (8)

Here p = Nopg ~ nparams’ R is the usual residual LIAFi/LIFi,
and N is the number of atoms, similar to atom i1 whose ¢(x) is
in guestion, needed to give scattering power at s.pc equal to

that of the asymmstric unit of the structure, i.e. ijjz =
Nf;2.

For small molecules, this definition of N allowed the
treatment of different types of atom with not-too-different
B's. However it is not suitable for individual atoms in
proteins where there is a very large range of B values and
some atoms have B's so large as to possess negligible

scattering power at s
rms*

Often, as in isotropic refinement, Nparams = 4Natoms: Where
Natomg 15 the total number of atoms in the assymetric unit.

A very rough extension of (6) for application in proteins to
an atom with B = B is

olxz) = k (N;j/p)>% [g(B;)/g(By)) €~1/3 g ;. R, 7

where k is about 1.0, Nj = IZ;2/Z;2, By is the Wilson B for
the structure, and C is the fractional completeness of the
data to dpjp. In deriving (7) from (6) 1/s.5o has been
replaced by 1.3dpin, and the factor (1/2) x 1.3 = 0.65 has
been increased to 1.0 as a measurs of caution in the
replacement of a full-matrix by a diagonal approximation.

g(B) = 1 + a;B + 3282 is an empirical function to alliow for
the dependence of ¢(x) on B. Based only on the data of Daopin
et al. (1994), a provisional estimate for g(B) is

g(B) = 1 + 0,04B + 0.003B2, (8)
A useful comparison of the relative precision of different
structures may be obtained by comparing atoms with B = By in

the different structures. (7) then reduces to

ow(x) = 1.0 (Ny/p ¥ c-1/3 d_._ g, (9)
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The smailer dpjn and the smaller R the better the precision of
the structure. (9) is not to be regarded as having absolute
validity. It is a quick and rough guide for the
diffraction-data-only error contribution for an atom with
temperature factor equal to the Wilson B for the structure.

We shall call it the Diffraction-data Precision Indicator, or
DF1. it contains none of the restraint data.

TABLE 1. DIFFRACTION-DATA PRECISION INDICATOR oy(x)

og(x) = 1.0 (Nj/p>¥ c1/3 ap:n R

Protein Natoms Nobs [N/plk dmin R oW CLuzz

Crambin 504 23759 0.160 0.83 0.080 0.013 0.03

Rubredoxin 479 18532 0.170 1.0 0.160 0.029 0.08

TGF-g2 :

1TGI 948 14000 0.305 1.8 0.173 0.094 0.13

1TFG 974 11000 0.370 1.95 0.188 0.14 0.14

Plastocyanin

295 K 849 14303 0.279 1.33 0.149 0.061 0.09

173 K Sydney 928 7393 0.502 1.6 0.132 0.12 0.08

173 K Hamburg 910 7393 0.492 1.6 0.153 0.14 -

S protease D 4295 23249 0.841 2.0 0.188 0.32 0.14

Thaumatin C2 1552 (4622 (0.649) 2.6 0.184 (0.34) 0.16
+5274)

EXAMPLES OF DIFFRACTION-DATA PRECISION INDICATOR

Table 1 shows some details of the application of the

Diffraction-data Precision

differing precision,

resolution and 130 K (Stec,
results were obtained from an unrestrained full-matrix

anisotropic refinement.

Their

Indicator
starting with the best.
examples, N; has been set equal i
number of atoms. The first entry is for crambin at 0.83 A
Zhou and Teeter,

to N

(9)

gave e.s.d’s 0.0096 A for backbone atoms,
chain atoms and 0.0409 A for solvent atoms, with an average

for all atoms of 0.022 X.

- The DPI

Natoms*

gives oy(x) =

1995).

to proteins of
In all
the total

0.013 A,

the

Their

inversion of the full-matrix
0.0168 A for side

which is satisfactorily between the full-matrix values for the
backbone and side chain atoms.

The next entry in Table 1 is for rubredoxin at 1.0 A
(Dauter, Sieker and Wilson,

1992).,

16

They carried out both-
unrestrained and restrained isotropic refinements.
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are given for the unrestrained refinement. They did not make
formal calculations of e.s.d’s, but from the deviations of the
bond lengths from the dictionary values, they suggested the
r.m.s. errors in the coordinates of the well-ordgred atoms
were about 0.04 A. The DPl gives oy(x) = 0.029 A for By = 5.9
A2; the mean main-chain B was 8.0 A<.

The next entries concern the two lower resolution studies of
TGF-pg2 (Daopin et al/., 1994). The DPI gives ou(x) = 0.094 A
for 1TG! and 0.14 A for 1TFG. This indicates an r.m.s.
position difference between the structures for atoms with B =
By of (0.0942 + 0.142)%/3 = 0.29 A. Daopin et a/. reported
the differences between the two determinations, omitting poor
parts, as <Ar>ppe = 0.15 (main chain) and 0.28 A (all
protein). :

The next entries concern popliar plastocyanin at 285 K (Guss
et al., 1992) and 173 K (Fields et al/., 1994), For 173 K a
single set of Hamburg synchrotron data was refined quite
independently in Sydney and Hamburg. The r.m.s. difference in
position between the two models was 0.12 A (excluding six
outiiers). The DPI expectation is (0.122 + 0.142)¥%/3 = 0.32
A, which is much larger. This is not surprising, since these
were two refinements of the same data. The higher resolution
room temperature study was more precise.

Serine protease factor D (Carson et al/., 1894) is an example
of a large protein at lower resolution with a high value of
[IN/pl%, leading to oy = 0.32 A.

Three crystal forms of thaumatin were studied by Ko et al.
(18994). The orthorhombic and tetragonal forms diffracted to
1.75 A, but the monoclinic C2 form diffracted only to 2.6 A
with 4622 reflections. The structures with 1552 protein atoms
were successfully refined with XPLOR and TNT. For the
monoclinic form the number of parameters exceeds the number of
diffraction observations, so [N/pl is negative and no estimate
of the diffraction-only error is possible. However the
refinement introduced 5274 geometrical restraints, and if,
improperly, these are regarded as additional diffraction
observations, we may derive ouix) = 0.34 A. Perhaps such a
calculation should be called simply a Precision Indicator.

The usual DPl formula (9) gives 0.17 and 0.16 A for the
orthorhomic and tetragonal forms.

EFFECT OF RESTRAINTS

At the end of a restrained refinement the proper estimates
of precision should be based on the normal matrix including
the restraint contributions.

Some aspects of restrained refinement were illustrated in
the simplest possible two-atom model discussed above. In a
protein the restraints are applied between the atoms in each
peptide and in each side-chain group. Thus there are numerous
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significant off-disgonal terms in the full matrix. A simple
algebraic approximation to the inversion does not seem
possible. Approximation (7), based only on the diffraction
contribution to the matrix diagonal, overestimates true
coordinate errors. Final errors in bond lengths will be often
‘more nearly representsd by the criginal geometric weights.

Geometric dictionaries typically use bond length weights
based on ¢,(1) of around 0.02 or 0.03 A. Table 1 shows that
even 1.5 A resolution studies have diffraction-only errors
gy(x) of 0.08 A and upwards. Only for resolutions of 1.0 A or
so are the diffraction-only errors comparable with the
dictionary weights. Of course, the dictionary offers no
values for many geometric/configurational parameters of the
protein structure, -including the centroid-and orientation.

l1f the protein main chain were represented by a chain of
rigid peptide groups, 12 new coordinate parameters per
successive group would be rsduced to 2 torsion angles per
group. Off-diagonal terms between these variables would be
relatively less significant. Even if successsive peptide
groups were treated as not coupled at the C, atoms, each group
could be specified by 3 coordinates and 3 orientation angles.
Thus one may suspect in 1.5 A and lower resolution restrained
refinements that the true atomic ¢(x) in such groups may be
between (2/12)% and (6/12)% times the values given by (7).

Similar arguments apply to side-chain groups.

Monoclinic C2 thaumatin with 2.6 A data illustrated a
low~resolution problem. There are fewer observations than
parameters, so no diffraction-only error estimate is
possible. But thanks to the sxtensive geometric dictionary,
coupled with the diffraction observations, the structure has
been validly determined. The diffraction data will have added
practically nothing to the dictionary knowledge of dictionary
parameters, but the true atomic oy(x) may be better than the
0.34 A calculated by the, improper, Precision Indicator.

CRITIQUE OF LUZZAT]1 PLOTS

Luzzati (1952) did not provide a theory for estimating
errors at the end of a refinement. He provided a means for
estimating how far the refinement still had to go to reach
R = Q.

(1) His theory assumed that the Fobs had no errors, and that
the F.5;ic model (scattering factors, thermal parameters, etc.)
was perfect apart from coordinate errors.

(Z2) The Gaussian probability distribution for these coordinate
errors was assumed to be the same for all atoms , independent
of B or Z.

(3) The atoms were not required to be identical, and the
position errors were not required to be small.

Luzzati gave families of curves for R vs. sinB8/A for varying
{a&r> for both centrosymmetric and non-centrosymmetric
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structures. The curves do not depend on the number N of atoms
in the cell. They all rise from R = 0 at sinB8/A = 0O to the
Wilson valuss 0.828 and 0.586 for random structures at high
sin@/A. In a footnote (p.807) Luzzati suggested that at the
end of a refinement (with R non-zero due to experimental and
model errors, etc.) the curves would indicate an upper limit
for <ar>. As examples, the Luzzati plots for TGF-B2 are shown
in Fig. 2. They suggest average Ar around 0.21 and 0.23 A.

or=035A
ar = 0.30

ar = 0.25

ar'= 0.20

ar=0.15

R tactor

ar=0.10

ar = 0.05

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
2 sinb/A

-

Fig. &, Luzzati plots for TGF-B2 showing the refined R
factor as a function of 2sin8/A for 1TG]l (solid
squares) and 1TFG (open squares), from Daopin et al.
(1994).

For proteins, there are obvious difficulties with Luzzati’s
assumption (2). Errors do increase markedly with B. in the
high-angle data shells, atoms with large B's contribute
neither to AF nor to IFi and so have no effect on R in these
shells. In an important paper on protein accuracy, Chambers
and Stroud (1979) said "the [Luzzatil) estimate derived from
reflections in this range applies mainly to [(thel] best
determined atoms."”™ Thus it has seemed that a Luzzati plot
provides some sort of cautious statement about the good parts
of a structure, but that it gives no indication for the poor
parts except possibly in the lowest resolution shell.

Unfortunately there is a more fundamental objection to the

use of Luzzati plots. This is that the Luzzati theory applies
to incomplete refinements and estimates the r.m.s. shifts
needed to reach R = O. In the least-squares method the

equations for shifts are quite different from the equations to
estimate variances in completed refinements.

However Luzzati-style plots of R versus sin8/A can be
re-interpreted to give statistically based estimates of o(x).
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During Cruickshank's 1960 derivation of the approximate
estimate (6) for o<(x) in diagonal least squares, he reached
an intermediate egquation

cZ(x) = N / (4 Tgpsls®/RZ1. (100

He then assumed R to be independent of s, and took R outside
the summation to reach (8) above.

Luzzati (1952) calculated the acentric residual R as a
function of s and <Ar>, the average radial error of the atomic
positions. His Appendix 3 shows that <Ar> = (8710 %¥5(x) = 1.60
¢{(x), where ¢(x) is the r.m.s. error in the x direction. We
may call this quantity o yzz(x). Luzzati’s main-arnalysis
shows that R is a linear function of s and o yzz(x) for a
substantial range of s.¢, with

R(s,06) = 4 s oLyuzz(x). (11)

The theoretical Luzzati plots of R are nearly linear for small
to medium s = Z2sinB/A (see Fig. 2). If we substitute this R
in the least-squares estimate (10), a little manipulation ,
including the earlier cautionary factor 1/0.65, then gives

oLS, Luzz (X? = 3.0 IN/pP1% oy, (x), (12a)
or, oLS,Luzz(X) = 0.75 [N/p1% [R(sp)/sp], (12b)

where R(sg) is the value of R at some chosen, presumably high,
value of s = sp.

Subject to the stated approximations, (1Z2a,b) is a proper
statistical estimate of the diffraction-data-only ¢(x) when
the final residual behaves as a function of s in the manner
considered by Luzzati. As expected statistically, the numbers
of observations and parameters and the proportionate
scattering power of a single atom enter into the result.

These terms are absent in Luzzati’'s estimate of opyz2(x) from
R(s).

Authors using Luzzati plots, as in Fig. 2, usually follow
Luzzati and give values of <Ar>, the average positional
error. For the examples of Table 1 the reported values of
{a4r> have been converted to r.m.s. coordinate errors o[ yzz(x)
= <ar>/1.80. From (12a) we see that o yzz(x) = 6.5 Luzz(x)
when [N/pl% = 1/3.0 = 0.33. Here o5, Lyuzz(X) is the correct
statistical estimate for the atom type implied in N when R

behaves as a function of s = 2sinB/A in the manner envisaged
by Luzzati.

We can now see why reported Luzzati values of <Ar> were
often plausible. For many proteins [N/pl¥%¥ is around 0.4, and
CLuzz 1S then comparable with oy. For large [N/p]% Luzzati
underestimates the error. Conversely for atomic resolution
studies, with (N/pll’é < 0.2, the Luzzati plot overestimates the
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errors tas Luzzati had suppossd in 195Z).

Actually the equality of o, ;5 and oy at 0.14 A in Table 1
for 1TFG is a little lucky. It required that

dpin R = 0.75 [RUspay)/Spax!: (13)
i.e. R = 0.75 Rispgyx): While one expects R(spzy) to be about
this much larger than a conventional averaged R, the actual
valus of R(sp;,’ depended on whers the original authors placed
their Luzzati line among the scattered experimental points.

Equation (1Zb) provides a means of making a statistical

estimate of error for an atom with B = By from a plot of R
versus 2sin8/A, If the original.-published Luzzati .values of
{ar» = 1.60 o,yzz are substituted in (12a), the resulting

o1, Luzz(Xx) are within 20% of the oy(x) in Table 1 for all the
proteins.

CONCLUSION

The previous use of Luzzati plots to estimate final
coordinate errors has been shown to be invalid.
Paradoxically, (12a,b) allows the Luzzati parameter to be
converted to a valid statistical form. Indeed the
crystallographer has a choice of using R as a constant in (8)
or Rispgx? 3s & single point from a linear plot as in (12b) !
Examination of Fig. 2 suggests the assumption R(s)
proportional to 5 as in (12b) could sometimes be a better
approximation than assuming R to be constant as in (9). If
so, the protein crystallographer should continue to plot R as
a function of 2sin8/A, but should interpret the results by
(1Z2b) rather than by Luzzati’s Table,

It must be stressed that the error estimate (7), the
Diffraction-data Precision Indicator (8), and (12b) are only
very rough formulae for the diffraction-data contribution to
coordinate precision. None the less Table 1 shows that the
DPI gives useful order-of-magnitude results for the global
average precision of structures.

The question of local precision is obviously of great
importance. Equation (7) offers the possibility of a simple
formula for diffraction-data error estimates for atoms of
given B and Z. It has a plausible dependence on B and Z but
has not been tested yet.

An attractive (Fig. 1) and less approximate estimate for the
diffraction-data error of an individual atom is offered by
Daopin et al’s (1994) use of equation (i1). This formula
(Cruickshank, 1949a, 1859) requires the summation of various
series over all (h,k, 1) observations; such calculations are
not customarily provided in protein programmes. However due
to the fundamental similarities between Fourier and
least-squares methods demonstrated by Cochran (1848),
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Cruickshank (1949b) and Cruickshank and Robertson (1853),
similar estimates of the errors of individual atoms can be
obtained from the reciprocals of the diagonal elements of the
diffraction-data least-squares matrix. These elements will
often already have been calculated within the protein
refinement programs, but possibly never output. Such
estimates couid be routinely available. They will usually be
overestimates of the true errors. Correspondingly, the
reciprocals of the diagonal elements of the
diffraction-cum-restraints matrix may be underestimates of the
true coordinate errors.

Perhaps more efforts should be made to approach the proper
method, which involves the inverse of the
diffraction-cum-restraints full- -matrix. As far.back. as.1973
Watenpaugh et al. in a study of a rubredoxin at 1.5 A
resolution effectively inverted the diffraction full-matrix in
200 parameter blocks to obtain individual e.s.d’s. A
comparable scheme might be to calculate blocks for each
residue, and for the block interactions between successive
residues. Then invert the matrices in running groups of three
successive residues, using only the inverted elements for the
central residue as the estimates of its variances and
covariances.
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Review: Cross-Validation and the Free-R
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Abstract

Macromolecular crystallography is an example of a scientific measurement problem which starts
with a diffraction pattern and ends with an atomic model. The path in between is sufficiently
complex that it is hard to relate the precision of the final model to the original measurements. As
a result it is hard to distinguish between an improvement to the model which fits a genuine feature
of the signal, and one which merely fits noise in the data.

A statistical technique, Cross Validation, is available to counter this problem. Its crystallo-
graphic application has been pioneered by Axel Briinger in the form of the Free-R factor (Briinger,
1992).

1 Introduction

In fitting an atomic model to a set of experimental structure factors we refine the model parameters
in order to best reproduce the measured structure factors (in the least-squares approximation).
However, in the case of macromolecules, the refinement is frequently poorly determined, since it
is common to work at resolutions where the number of atomic parameters exceeds the number of
measured intensities. Thus additional parameters (for example - individual atomic B’s, multiple
conformations, solvent atoms) must be introduced with extreme care, since it is quite possible that
new parameters introduced to improve the fit of the model to the data, will simply fit the noise in
the data rather than revealing any genuine features of the structure.

If the purpose of the model were simple to represent the electron density in a compact form,
then there would be no problem. However, structures are usually solved with a view to learning
about biological function. If erroneous features are introduced into a model in order to fit noisy
data, then it is entirely possible that those erroneous features will lead to incorrect conclusions
about function.

The traditional indicator of structure quality is the R-factor:

anlh “Fabnl - IFcalc“
R=<2
Saun 1 Foba] (1)

This quantity measures the agreement between the observed structure factor magnitudes and the
values predicted from the model. It is therefore a measure of how well the model fits the data.
Unfortunately, an arbitrarily good fit, and therefore an arbitrarily low R-factor, may be obtained by
introducing enough parameters into the model - although in practice we generally restrict ourselves
to introducing parameters with some plausible chemical interpretation.

Thus there is a problem in deciding which model parameters may be adequately determined
from a noisy data set. In the case were the parameter-to-observable ratio is low, the introduction
of excess parameters may lead to a functionally misleading model.
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2 Cross Validation

Fortunately, a statistical technique is available to provide precisely the discrimination between
modelling signal and modelling noise which we require. This technique is Cross Validation, and
will be illustrated by a simple example (inspired by Briinger, 1995).

An experiment is used to determine the dependence of a single variable on another variable. The
variables are linearly dependent, however the measurement process is noisy and so the observations
have some scatter about the straight line (Figure 1).

The observer does not know the form of the functional dependence, and so tries to fit a variety
of polynomials of different orders. A constant is a poor fit to the data, however (as is expected),
a straight line fits quite well (Figure 2). Higher order curves pass closer to the data points, as the
curve begins to model the noise in the data. The R-factor does not help in identifying the best
model, since each higher order polynomial gives a better fit to the data and so a lower R-factor.

The cross validation approach is to omit one of the data points from the fitting of the polynomial
coefficients. In Figure 3, the third datapoint from the left has been omitted from the fitting. It can
be seen from the graph that while the higher order polynomials make a better fit to the included
points, the fit to the omitted point is worse.

What is happening here? The key point is that the signal is common across all the data, whereas
the noise is independent for each data point. If increasing the number of parameters gives a better
fit to the signal part of the data, then we would expect the fit to both included and excluded points
to improve. If however new parameters provide are simply fitting the noise, then only the fit to
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the included data will improve.

To incorporate this concept into a statistic, it is necessary to combine information from more
than one data point. The normal approach in this sort of case would be to omit each point in turn,
refine a function of the desired form against the remaining points, and calculate a cross-validated,
or 'Free’ residual over the points omitted from each calculation.

The conventional and free residuals for the test case are shown in Figure 4. It can be seen that
the residual always decreases as the number of model parameters is increased, although the drop in
the residual is much smaller when more than two parameters are used. The free residual however
has a minima when the model has two parameters, correctly indicating the best model.

3 Crystallographic Application

In a conventional crystallographic refinement, the model is refined against all the data, and then
a test (the R-factor) is performed against the same data. Any increase in the number of model
parameters must therefore lead to a reduction in R-factor (Figure 5).

Refine
(Isq)

Test
(R-factor)

Figure 5: Conventional refinement procedure

In the crystallographic case, the number of observations is very large. It is therefore usually
possible to simply omit a small fraction of the data which includes enough reflections to provide
statistically meaningful information. Thus only one refinement calculation is required, during
which one subset of the data is omitted (Figure 6).

(Free R-factor)

Figure 6: Cross-validated refinement procedure
This omitted, or Free set need only contain about 1000 reflections to provide a reasonable

statistical indicator (Dodson, Klegwegt & Wilson, 1996) - typically in the protein case this will be
5% of the data or less. The Free-R is defined in the same way as the R-factor, but is calculated
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over the reflections in the Free set alone:

R= Zhefree—let [|Fobs| — | Featell @)
Zhefree-set lFobll

Typically the Free-R factor for a refined structure will be higher than the R-factor, since it is
impossible to completely separate parameters which fit signal and noise. Brunger suggests upper
bounds beyond which a structure is almost certainly wrong of R = 25% and Rgree = 40%. These
figures would be expected from a structure with mean coordinate error > 1A°

How many parameters may be realistically refined? Dodson, Klegwegt & Wilson (1996) give
some guidelines, beyond which any additional parameters should be justified by.cross-validation:

1. At worse than 2.8A resolution, there are less observed intensities than coordinates (assuming
50% solvent), and so coordinate refinement is unrealistic. This limit may be relaxed by in-
troducing NCS constraints, torsion-angle refinement, or refinement against phases; otherwise
the model should be refined as a series of rigid domains only. '

2. Between 2.8A and 2.5A it is possible to perform coordinate refinement, with up to 2 B-factors
per residue. It is probably wise to start with a single overall B-factor.

3. At greater 2.5A it is possible to refine individual atomic B’s.

Whenever new parameters are introduced to the model and refined, the R-factor and Free-R
should be examined. If neither drops significantly, the the parameters are useless in improving the
fit to the data and should be removed. If the R-factor drops but the Free-R does not, then over-
fitting is occurring. The additional parameters are fitting noise rather than signal and should be
removed. Only if both the R-factor and Free-R drop should the additional parameters be regarded
as meaningful. In marginal cases where the Free-R falls far less than the R-factor, it may be worth
seeking an alternative parameterisation, for example a bulk solvent model instead of individual
solvent molecules.

In the CCP4 suite the recommended procedure for using the Free-R factor is show in Figure 7.
The Free-R flags are assigned immediately after data reduction stage (program ‘freertflag’), so
that the same free-set may be used throughout the structure solution process. It is recommended
that the program ‘unique’ is used to create empty records for any missing reflections in the file.
This avoids the problem of calculating Free-R flags for new reflections if they are collected at a
later stage, and in the future will allow the extrapolation of those reflections when appropriate
software becomes available. The programs ‘rstats’ and ‘sfall’ both calculate the Free-R factor.

4 Problems

The Free-R factor provides a good indicator of over-fitting, however it should be used with care.
The following points should be borne in mind:

1. The ‘Memory Effect’. Once a model has been refined against the whole set of reflections,
further refinement against a working set alone does not perturb the fit to the free-set. Thus in
this case Rpyee 18 seriously underestimated. It is therefore important to exclude the Free-set
throughout the whole refinement.

Once the model is complete, it can be refined against all the data, but no new parameters
should be introduced. Briinger suggests that the bias to the free-set caused by refinement
against all the data can be removed by applying simulated annealing from a moderate tem-
perature.
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/reduction
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reflections
is enough.
Density modification
Map fitting
Refinement

Figure 7: Free-R calculation within CCP4

2. Underestimation of Rpye. due to NCS. Non-crystallographic symmetry in the crystal will
lead to strong correlations between reflections in reciprocal space. Reflections in the free-set
may be strongly correlated with other reflections in the working set, and thus no longer
provide an independent indication of over-fitting. In this case Rpree Will be systematically
underestimated.

It may be possible to obtain an unbiased estimate of Rp.. by picking the Free-set refiections
in thin resolution shells, thus ensuring that all reflections correlated to a Free-set reflection
will also be in the Free-set.

3. The Free-R validates the protocol, rather than the model. It can be used to determine
whether a set of observed data justifies the modelling of solvent, thermal motion, etc., but
not whether an individual structural feature is correct.

4. Should the Free refiection be used in map calculations? Omitting the free-set may produce
spurious map features, however including the reflections and fitting to the resultant density
may bias Rpre.. If 2 map fitting tool is used which performs real space refinement of fitted
residues, then probably it is best to omit the free-set from the map calculation.

Omitting the free-set from a map used in a phase improvement/density modification calcu-
lation has potentially more serious consequences (Cowtan & Main, 1996)

5 Conclusion

The statistical technique of Cross Validation, as implemented in the form of the Free-R factor,
provides a more reliable validator of structure refinement than the R-factor because it is sensitive
to over-fitting against noisy data. Its behaviour provides a strong indication of what parameters
may be reasonably determined from a given data set. However, it does not provide a numerical
indication of the magnitudes of coordinate errors in the model, and some care must be taken to
avoid inadvertently biasing the free-set reflections with their experimental values. The problem
of distiguishing between errors in observed data and errors in an atomic model is far from being
solved, but the Free-R factor is an important step in the right direction.
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INTRODUCTION

Observations and parameters

The refinement of a crystal structure is aimed to minimise the difference between
the experimental electron density, obtained by Fourier transforming the observed
structure factors obtained by measured amplitudes and calculated phases, and the
electron density of the structural model represented by a set of variable parameters,
which are refined. The refinement is usually performed in reciprocal space by least-
fguares minimisation of the differences between observed and calculated structure

actors.

In X-ray crystallography a molecule is typically described as an ensemble of
spherical atoms which oscillate harmonically around an equilibrium position,
identified by the atomic fractional coordinates (3 parameters per atom). The atomic
thermal displacement is anisotropic and is described by vibrational ellipsoids (6
parameters per atom). Static or dynamic disorder is accounted for by means of the site
occupancy factor (1 parameter per atom). Ideally, ten parameters should be
determined for each atom in the structure, including hydrogens. Moreover the
modeling of solvent continuum, extinction or absorption effects requires the
introduction of some additional parameters in the refinement. Unfortunately, very
seldom experimental data contain enough information to allow a reliable
determination of all the parameters which ideally fully describe the structure. It is
therefore necessary to reduce the complexity of the model in order to gain reliability.
The introduction of isotropic hydrogen atoms in calculated positions is a very
common example of model simplification. Usually the crystallographic refinements
start from a simple model, to which more and more detailed features are added
progressively.

In general increasing the complexity of the model means to increase the number of
independent parameters and produces a better agreement between calculated and
experimental data, at the expense of a loss in the number of ways in which
experimental errors can be accounted for.

As a very simple example, Figure 1 shows that although it is possible to fit
perfectly three experimental (x,y) points with a parabola (obtaining an apparently very
satisfactory R-factor=0.0%), it would be probably more realistic to choose a model
with less parameters, i.e. a line, giving a worse R-factor (1.7%), but allowing for
experimental errors.
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Figure 1.

It is convenient to express the number of degrees of freedom of the refinement as
the number of observations minus the number of parameters (these are the degrees of
freedom of the noise, and are not to be confused with the degrees of freedom of the
molecule!). Since in the crystallographic experiment the number of parameters that
effectively best describe the model is not known a priori, a validation procedure is
required to avoid overfitting. This problem is particularly severe for proteins, where
the number of observations available from the diffraction experiment is low if
compared to the number of parameters R'pically used for the description of the
structure. At resolution lower than 2.5 A the number of observations no longer
exceeds the number of parameters.

To overcome the problem of low data/parameters ratio, it is required to increase the
number of degrees of freedom of the refinement, either by augmenting the number of
observations or by decreasing the number of parameters used to describe the model.
The former condition implies introduction of additional observational equations
containing a priori information about the model in the form of restraints. Typically
these are expressed as geometric or energetic conditions which the crystallographer
might think the structure should satisfy (Waser, 1974; Sussman, Holbrook, Church &
Kim, 1977; Konnert & Hendrickson, 1980). Restraints are included in the design
matrix of the experiment as extra equations and are treated as observed data.
Examples are: restraining bond distances to approach target values derived from
accurately determined structures, as those contained in the Cambridge Structural
Database (Allen, Kennard and Taylor, 1983); planarity restraints (Urzhumtsev, 1991);
restraining bonded atoms to have comparable anisotropic thermal motion along the
bond direction (rigid bond approximation, Hirshfeld, 1976), imposing non-
cgystallographic symmetry between stereochemically equivalent fragments (Bricogne,
1974).

The second way to increase the number of degrees of freedom of the refinement is
to diminish the number of refined parameters. This is achieved by constraining them
to obey exact conditions (Prince, Finger and Konnert, 1995). Examples are: imposing
the space group crystallographic symmetry; introducing hydrogen atoms at their
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calculated positions, riding on their carrier atoms; constraining occupancies of related
complementary disordered atoms to sum up to one. Isotropic refinements are in fact
anisotropic refinements where the ellipsoids describing the atomic thermal motion are
constrained to be spheres, reducing the number of atomic thermal displacement
parameters from 6 to 1. -

The number of degrees of freedom of the refinement can be tuned by varying the
number of restraints and constraints. It is necessary to ensure that this number is the
most appropriate choice to describe the data, by carrying out a validation procedure in
parallel with the refinement.

Cross- and self-validation
Two general kinds of validation methods are self-validation and cross-validation.

In self-validation descriptors are defined, either in reciprocal or in real space, to
assess the quality of the refinement procedure. Examples are the R-factor, the real-
space R-factor (Brinden & Jones, 1990), stereochemical criteria (Vriend, 1990;
Laskowski, MacArthur, Moss and Thornton, 1993), maximum likelihood methods
(Bricogne, 1984).

The most popular cross-validation evaluator in protein crystallography is the R free
factor (Briinger, 1992). This is to some extent analogous to full statistical cross-
validation which determines the power of the model to reproduce the experimental
results and to predict unmeasured data. The rationale in cross-validation methods is to
split the complete data set into a training set, on which the model is built, and a test
set, on which the model is tested; the procedure is repeated by considering, in turn,
every data subset as the test set. In crystallography it is not possible to test the model
against all the possible data subsets, as this requires unrealistic computing time. The
compromise adopted is to evaluate the quality of the refinement on the basis of a
randomly selected subset of the data. Use of R free cross-validation in crystallography
requires the omission of the reflections in the test set, for instance 10% randomly
selected in the reciprocal space, Briinger (1992), from the refinement.

METHOD

The linear Hamilton R factor test

The question as to whether an improvement in R factor due to a decrease in the
number of degrees of freedom is significant was first tackled by Hamilton (1964, pp.
157-162; 1965), who considered the problem of linear constrained refinements..

Hamilton defined the R-factor ratio R =§—; , where R1 and R2 are the r.m.s. R factors

referring to the constrained and the unconstrained refinements, respectively. The null
hypothesis is that the two refinements do not differ significantly; it is shown that :

Rb,n-m,a=’\ﬁ?mFb.n-m.a+1 ¢y,

where Fb,n.m,adenotes the F-test analysis of the variance ratio for b constraints and

with n-m degrees of freedom; a is the probability of wrongly considering significant
the improvement when in fact the second refinement gives no advantage compared to
the first one (type I error). Usually refinements proceed from a more to a less
constrained model, i.e. from less to more parameters, and the hypothesis that the
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releasing of restrictions really improves the model should be tested. Hamilton’s
analysis refers to unconstrained refinement of m parameters against n data, giving n-m
degrees of freedom. Introducing b linear constraints reduces the number of refined
parameters leading to a higher number of degrees of freedom (n-(m-b)). The two
r.m.s. R-factors, R2 and R1, are the relative estimated standard deviations of the
distributions of the weighted Fo-Fc deviates for the two refinements:

. . . 2
rms.R= X wi( Foj- Fci)
. Zwj F0i2

The probability that the observed r.m.s. R-factor ratio R expresses .a significant
improvement is:

03

P(Fb,n-m)=1-Ix(5%2) 3.
I x is the incomplete beta function (Press et al., 1989) and x= — 8- The
n-m+bF

behaviour of the function depends on the numerical values of n1=n°Tm and n2=g,

Figure 2. In protein crystallography these are typically large, and P (F p n-m)

approaches a step-function centred at the critical point R = ‘\/ L ;r_n; b
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Figure 2. Probability that the improvement expressed by R is significant for
different values of n1 and n2.

Extension for restrained refinements

Hamilton limited his analysis to the case of refinements differing by the presence
of b linear constraints. The more general case is now examined where the number of
observations and the number of parameters change and restraints are applied..
Consider two refinements with different degrees of freedom, Df1 and Df2, and the
condition that Df1>Df2 and R1>R2, which means that the first is more constrained
and gives a higher r.m.s. R-factor. Is the improvement in r.m.s. R-factor significant or
does it merely reflect a reduction of the number of degrees of freedom? The number
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of degrees of freedom is defined as the number of observation minus the number of
parameters. A linear constraint expresses an exact linear relation between parameters
and reduces the number of the refined parameters. A restraint introduces a condition
that the system must obey within a certain degree of confidence expressed by a
weighting coefficient. A restraint is an additional weighted observational equation.
Both the introduction of constraints and of restraints increases the number of degrees
of freedom. However some restraints are redundant or are applied only if certain
conditions arise (e.g. anti-bumping) and these cannot be easily counted.

Therefore, we introduce a restraints completeness weighting coefficient w to define
the effective number of observational equations:

Nobs=Nrefl+w Nrestr C))
w=0 corresponds to completely unrestrained refinement and w=1 to a refinement
“where every restraint is treated as a full additional observation.
Let Nrl1 and Nr2 be the number of reflections, S1 and S2 the number of restraints and
P1 and P2 the number of parameters for the two refinements. The dimensionality
(Dim) of the hypothesis is the difference between the number of degrees of freedom :

Dim=Df1-Df2=(Nr1+w1-S1-P1)-(Nr2+w2-S2-P2) 5)
Hamilton’s linear hypothesis refers to the particular case where Nr1=Nr2, P1=P2,
S$2=0, wl=1, w2 is indeterminate and Dim=S1.
Since we are considering the case where R1>R2 when Df1>Df2, the condition Dim>0
must hold. This implies that w1l and w2 must satisfy the inequality:

W2<er Nrs22+P2 P1 + wlg—; ©)
In the two-dimensional space spanned by w1 and w2, a straight line with intercept
Nrl1-Nr2+P2-P1 S1 .

S 73 and slope S5 Scparates the weight-allowed area from the

weight-forbidden area, Figure 3.

w2 N

1

wl=w2

- /// ‘

0 1w
Figure 3. Weights for restraints. The shaded area represents the points (wl,w2)
which satisfy the assumption that the dimensionality must be positive.

Sincc-g—;—zo,iferhNgz;Pz'Pl 21 there are no restrictions on wl and w2.

If the intercept is between O and 1, then the greater the value of g—; (i.e. the less

restrained is the second refinement compared to the first), the greater the allowed
value of w2 for a given wl.
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Under these assumptions, the probability that the improvement is significant can be

calculated by a modification of Equation 3:
Df2 Di
P(FDim,Df2)=1-Ix (733 )

... o Dfl
The critical pointis R =\| 373 (8).

APPLICATION AND DISCUSSION

The refinement of xylanase at 1.5 A (Lamzin, Dauter, Dauter, Bisgard-Frantzen,
Halkier & Wilson, to be published) using SHELXL-93 (Sheldrick, 1993) is now

considered.
Reflections Parameters Re‘strra:intsﬂ | r.m.s.
R-factor (%)
Isotropic 34460 7460 6450 20.3
Anisotropic 34460 17770 20610 14.9

Comparison of isotropic and anisotropic refinement for xylanase at 1.5 A.

Two refinements with isotropic and then anisotropic description of atomic thermal

. . r.m.s. Riso
motxongavcaranoR—r.m.S. Raniso = 136

The probability P(R,w1,w2) that the improvement expressed by R is significant
depends on w1l and w2, which are unknown. Figure 3 shows the behaviour of the

function P (R ,w1,w2) in the hypothetical case when wil=w2. In this case for any
value of wl=w2 the probability P (R =1.36) is essentially unity, indicating that the
anisotropic model leads to a significant improvement..

Wiso =0.7 Wiso =0.5 wWiso =0.25 Wiso =0.0
Wanis=0.7 Wanis=0.5 Wanis=0.25 Wanis=0.0
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Figure 4. Probability of a significant improvement in R factor for different
values of wl=w2 for anisotropic refinement of xylanase.
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w2

In the more general case, the probability is expressed as a function of R , wl and
w2, Figure 5(a) shows that for R = 1.36 the improvement is significant for almost any
value of wl and w2. The small region at the bottom of Figure 5(a) where the
improvement in the r.m.s. R factor is not significant corresponds to an essentially
unrestrained anisotropic model (w2=0) which is not realistic. Suppose that a poorer
ratio R = 1.21 (r.m.s.Raniso=11.6, r.m.s. Raniso=17.0) had been achieved, Figure
5(b). This would be significant provided w1 is not lower than the threshold limit
given by the borderline between areas 1 and 2 in the plot. On further decrease of R,
Figure 5(c), P (R), becomes more selective and for R =1 (i.e. r.m.s. Raniso = r.m.s.

Riso) P (R), is high only for weighting schemes such ‘that Dim = 0, where the
number of degrees of freedom is equal for the two refinements. Under this condition
the anisotropic model would be clearly shown not to be statistically meaningful.

=

[
w2
[
w2

0 wi 1 0 wl 10 wi 1

Figure 5. Probability isolines (20%, 40%, 60%, 80%, 100%) of r.m.s. R-factor
ratio, R , as a function of weighting coefficients in the case of xylanase: a) for
R=1.36 (actual value obtained with anisotropic refinement); b) for a
hypothetically poorer improvement R =1.21; ¢) for R=1.03. Label 1 indicates the
region where the improvement is significant, 2 where it is not significant, 3
indicates impossible weighting schemes where inequality (6) does not hold.

SUMMARY

An extension is developed for the self-validation Hamilton test (Hamilton, 1965)
for crystallographic refinements. The method is based on the F-test and evaluates the
significance of the R-factor ratio between two refinement protocols. The general case
of two refinements carried out with different numbers and types of non-linear
restraints is examined. The restraints are considered as extra observations weighted by
a coefficient expressing their effective number. Robustness of the test in the presence
of systematic errors in the estimation of weights and of the resulting non-Gaussian
distribution of the residuals is achieved by the introduction of the restraints

completeness coefficient w, which damps the instability in the R parameter by
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varying the formal number of restraints. There exists a restriction on the weighting
coefficients between the two refinements. Examination of the probability that the
improvement in the model is significant as a function of (w1,w2) indicates which
ranges of weights are allowed for introduction of a new set of parameters. The
significance of the improvement obtained by moving from isotropic to anisotropic
description of thermal parameters in the refinement of a protein at 1.5 A resolution is
used as an example.

The self-validation procedure based on the Hamilton test overcomes the problems
related to omitting data and provides an objective monitor for refinement protocols.
An intrinsic drawback in Hamilton’s approach to validation is that it is based on a
linear hypothesis, assumes Gaussian distribution for the deviates and is designed to
work in the absence of systematic errors. Strictly speaking, not all crystallographic
restraints are linear but an approximately linear behaviour can be assumed at least at
the end of refinement. The weakness of purely statistical methods in the presence of
systematic errors was clearly pointed out by Hamilton (1965) and the method is meant
to be a guide to the crystallographer rather than a final verdict.

The results presented here are part of the work by A. Bacchi, V.S. Lamzin, and
K.S. Wilson: 'A Self-validation Technique for Protein Crystallography: the Extended
Hamilton Test'. Acta Crystallogr. Sect. D, D52, in press.
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Knowledge is proud that he has learned so much;
Wisdom is humble that he knows no more.

William Cowper, The Task, bk. 6 (1785)

Refinement of macromolecular structures as a mathematical problem is not dif-
ferent from refinement of small molecule structures. Both are straightforward
optimization problems. The difficulties arise because the macromolecular crys-
tallographer rarely has sufficient data to answer questions at the same level
of detail as the small molecule crystallographer. Nevertheless, he has a lot of
data, and the temptation to over-interpret it is sometimes overwhelming. As
a personal note, I began work on refinement of protein structures when I real-
ized that despite having hundreds of thousands of observations I was unable to
say with any certainty whether the heme group in deoxyhemoglobin was signifi-
cantly domed. A quarter of a century later it is still not possible to put a direct
measure of accuracy on estimates of the heme geometry in hemoglobin.

Structural questions about macromolecules can be posed on several levels,
ranging from “What is the fold?” to “Is one of the bonds in the iron-sulfur
cluster significantly different from the others?” The level of detail is widely
variable, and structures which are adequate -for the former purpose may not
be adequate for the latter. Any of us who practice our craft for any length of
time will see some beautiful-looking maps, which lead to structures in which we
have high confidence - but we cannot put reliable numbers on that confidence.
Similarly, we will see maps which are charitably described as obscure, where we
can (perhaps) build the chain, but cannot be positive that the density we see
is not a phase artifact. Sometimes we see both kinds of density in the same
map. This presents us with a real problem. The accuracy of the structures we
report is not uniform, but the methods for characterizing this information and
reporting it to the users of the coordinates are very poor indeed.

There are a number of common practices in refinement of macromolecular
structures which cause serious problems with the accuracy of the final struc-
ture. Some of these are omission of weak data, omission of low resolution data,

*Supported by a grant NSF/BIR 9223760 from the National Science Foundation.
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improper treatment of solvent, and improper treatment of non- crystallographic
symmetry restraints. Kleywegt and Jones [1, 2] discuss some of the problems
that arise from these practices.

Many of these practices arise from the confusion of two distinct problems.
The first problem is to solve the structure, which means to find the correct
model. In this stage of the problem it is often highly appropriate to leave out
weak data and concentrate on the strongest signal. It can also be appropriate
to alter weights on restraints, relax non- crystallographic symmetry restraints,
and generally let the molecule distort in order to fall into the best minimum.
Once the model is determined there is the second problem of finding the best
values for the parameters of the model. This is a quite different problem and
requires different treatment of the data. Much confusion arises because both
problems are generally handled by the same software, and superficially appear
the same.

The method of analysis presented here is directed at two problems. The
first problem is to derive a reliable method of estimating the uncertainty of
each individual parameter, which works for all resolutions and for all forms
of parameterizing or restraining the model. It is shown below how to ascertain
which parameters are determined precisely and which are not, by methods which
are not limited by low resolution data. It is also shown how to determine the
effect of different ways of parameterizing the problem on the accuracy of the
parameters. Practical analysis according to these methods is not complete, but
the results are almost certain to be pessimistic. In the words of Ecclesiastes 1:18,
For in much wisdom is much grief: and he that increaseth knowledge increaseth
sorrow.

Another problem which can be addressed by the methods presented in this
paper is to determine how the results of the crystallographic experiment can
be improved. There are many open questions as to the “best practice” in any
experimental field. For example, there are widely varying practices in the use
of low resolution data, inclusion of weak reflections in refinement calculations,
incorporation of non-crystallographic symmetry restraints, and the tradeoff be-
tween completeness and resolution in data collection. There are significantly
different conceptual and mathematical descriptions of the models being refined.
The mathematical and computational apparatus discussed in this paper pro-
vides a rigorous method for analysis of these questions. It appears that it may
be possible to use these methods to determine optimal data collection protocols
for answering specific questions about a particular structure at higher resolu-
tion, and will in general tell what must be done to achieve a specified level of
accuracy in a structure determination. Due to space limitations this application
will be given very short treatment.

Theoretical discussion of least squares analysis

The theory of least squares analysis of poorly determined systems is well ad-
vanced mathematically, but seldom used extensively in practice. The books
by Lawson and Hanson {3}, and by Golub and Van Loan [4] are highly recom-
mended to the reader. Excellent material is also found in Diamond’s discussion
of real-space refinement [5]. The following derivations are completely general
for all least squares problems, linear and non-linear. To avoid severe notational
complexity the specific language of the crystallographic problem is deferred until
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necessary.
The general problem of fitting a non-linear model function to a set of obser-
vations can be written as a minimization of

1 N 2 2
Nﬂ=§Z¥Hﬁ®—w) (1)

where ®(x) is the sum of squares of residuals, y; is an observed value, w; is a
weighting factor based on the reliability of y;, and f;(x) is the function which
calculates the theoretical value of the observable quantity given the parameters
x and the index j which specifies the conditions of the observation. There are
a variety of methods for finding the parameters x which minimize ®(x). The
commonly used methods for the macromolecular crystallographic problem are
simulated annealing [6], conjugate gradients applied directly to the non-linear
function itself [7], and conjugate gradients applied to the linear approximation
to ®(x) [8, 9]. Refinement of parameters in small molecule crystallography
is normally done by directly solving successive linear approximations to ®(x),
a method known as full matrix least squares [10, 11]. All of these methods
work, some faster than others. - Generally speaking, simulated annealing has
the largest radius of convergence, conjugate gradients applied to the non-linear
function (especially as modified by Tronrud [12]) is the fastest, and full matrix
least squares is the most accurate.

The simplest description of the linear approximation is to expand ®(x) as
a Taylor series about the minimum point ¢g = ®(xo), where x¢ is the set of
parameters which minimize ®(x) . The expansion is

O(x) ~ do+ <(x_x°) (g_:)xo>

1 %
+3 (x — xg) dwiz; ),

where the Dirac bra-ket notation expresses a column vector as |z;}, a row vector
as (z;|, and a matrix as |z;;]. (z|y) is thus the inner product of the vectors =
and y. Since the expansion is about a minimum, the gradient at x¢ vanishes for
all parameters z,. Thus we have the approximation that (to second order)

(=)
Oz;z; o

(x—xo)>+... (2)

<I>(x) & do + % <(x - XO)

(x—~ x0)> (3)

and, by differentiation,

(5.0~ (==)

6::,- x 317,'17_1' Xo
Given the first and second derivatives of ®(x), Equation (4) can be solved
for the correction to x which brings it closer to x5. The approximation is
the use of second derivatives evaluated at x instead of xo, and the neglect of

higher order terms in the Taylor series. Neither condition is a problem for
parameter estimates close to xg. Note that the assumption that the function

(x—- xo)> . 4)
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can be approximated locally by a quadratic polynomial is equivalent to assuming
that the matrix of second derivatives is constant.

An alternative is to expand the residuals in terms of the parameter shifts.
In this formulation each weighted observation is expanded in a Taylor series as

o =ity s (52

where w; is the weight associated with observation y;. Writing the system of
equations (5) as a matrix equation we have

(x0-x)) (5)

A(x—xp)=r (6)

where A has m rows and n columns, x is a column vector of length n, and r is
a column vector of length m, with elements w; (f;(x) — y;). ®(x) is given by
1 1 1
$(x) = 5 (r Ir) = -2-rTr =5(x- x0)T ATA (x - xo) (7)
where the superscript T denotes the transpose of a matrix or vector. It is well
known [3] that the solution to (5) which minimizes ||A (x — x¢) — r|| (and hence
minimizes ®(x)) is the solution to the n x n matrix equation

ATA (x —x0) = ATr (8)

The equivalence of the two approaches is readily demonstrated by expanding
the terms in the two formulations. The elements g; of g = ATr and h;; of
H = ATA are given by

- = 2 _ 8f (x)
0= vk 0w (5) ©)
&L (0 ) (95 (%)
i ,;wk( 0z; )( Oz; > (10)
Differentiation of Equation (1) gives
(F52) = Lutnm-w (42) y
820 (x)\ | «— 0f (x)\ [ 0fk (x)
(sa) = 2 (55) (5522)
2 _ 62 fi (x)
sl (Fh) o

The second derivative term on the right hand side of Equation (12) which is
not found in Equation (10) vanishes as x — Xo. Equations (4) and (8) thus
converge to the same form.
The matrix equation
H(x-x0)=g (13)

is the set of normal equations for the least squares problem. Since a protein
refinement can easily have 10* parameters, the size of the normal matrices can
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become very large. Full matrix least squares is not normally applied to large
proteins. .
The normal equations can be solved by inverting H,

H 'g=H 'H (x—x¢) = (x — X0) ' (14)

S = H-! is the covariance matrix times the mean square residual, which means
that after scaling the elements of S are

8ij = €i;0i0; (15)

where ¢;; is the correlation coefficient between parameters i and j, and o; is the
standard deviation of parameter i. Since the correlation of any parameter with
itself is 1, the diagonal elements are the variances of the parameters determined
by solving the normal equations. The inverse of the normal matriz is the source
of the detailed accuracy information from traditional small molecule least squares
analysis of X-ray diffraction data.

The matrix of correlation coefficients is often used to detect dependencies
between variables in a least squares problem. Values of |c;;| close to 1 indicate
dependencies. However, this is limited to the detection of pairwise dependencies.
Higher order dependencies do not necessarily have pairwise components. Lawson
and Hanson [3, page 72] give a 3 x 3 example of strongly interdependent variables
in which the magnitude of the largest correlation is 0.49.

If there are insufficient observations to explicitly determine all parameters,
the matrix H becomes singular and the inverse matrix is not defined. For crys-
tallography this occurs if the resolution is low, which is a common case for
macromolecules. All of the preceding analysis concerning the Taylor series ex-
pansions and normal equations is still valid up through Equation (13). Methods
for minimizing ®(x) which do not depend on inverting the matrix H (such as
simulated annealing or conjugate gradients) will still find a minimum, but in
a formal sense the variance of some of the parameters will be infinite. The
minimum will not be unique.

Even singular normal equations can be solved by diagonalizing the matrix
H. The eigenvalues and eigenvectors of H are solutions to the matrix equation

Hv = Av (16)

where ) is an eigenvalue of H and v is the corresponding eigenvector of H.
For the case in which H is a normal matrix for a least squares problem, we
have the interesting result from Equation (7) that

1
)

/\,-v,-Tv,- = l/\, (17)

& (xo+ vi) = lv,-THv,- 5

2
when v; is the i** eigenvector of H and J; is the corresponding eigenvalue. The
eigenvectors of H specify combinations of parameters which are statistically in-
dependent of one another, and the eigenvalues are proportional to the reciprocal
of the variance of those parameter combinations. Another way of expressing the
same idea is that the eigenvectors which correspond to large eigenvalues are di-
rections in which parameter shifts have a large effect on the sum of squares of
the residuals, and thus are well determined. Eigenvectors which correspond to
small eigenvalues have little effect on the sum of squares of the residuals and
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Figure 1: Both ellipses have the same eigenvectors, but the eigenvalues are
swapped. The eigenvector in the (4,+) quadrant corresponds to a shift of
parameters which preserves the distance between two points. The eigenvector
in the (+,—) quadrant corresponds to a shift of parameters which preserves
the center of mass of two points. The two ellipses reflect situations in which
either the separation is more accurately known than the position, or in which
the position is known more accurately than the separation.

thus correspond to poorly determined combinations of parameter shifts. (In
fact the reciprocals of the eigenvalues are proportional to the variances of the
corresponding combinations of parameters.)

This situation is illustrated for a two-parameter case in Figure 1. The ellipses
are contours of constant ®(x) in the second order approximation. The principal
axes of the ellipses correspond to the variances of the parameters. The short axis
of the ellipse gives the direction in which ®(x) has the most sharply determined
minimum.

Undetermined and Poorly Determined Systems

The inverse of a matrix can be constructed from the eigenvectors and eigenvalues
of the matrix. If V is the orthogonal matrix constructed so that the columns of
V are the eigenvectors v of H, it is easily shown that

H!=VA~VT (18)

where A~! is a diagonal matrix containing the reciprocals of the eigenvalues of
H. If H is singular some of the eigenvalues are zero, and A~! is not defined.
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However, if we define the pseudo-inverse of A as

/A A>0andi=j
+ _ i §
A "{o A=0ori#j _ (19)
then ) I. 0
+ —
AA“[o o]

where the matrix product yields an identity matrix of the same rank as H, with
the remainder of the product being 0. The equation corresponding to 18 is A
give

H* =vA+V’. (20)

The elements of H contain the same correlation information and variance
information as the elements of H™!, except that it applies only to the parameter
combinations which are in fact still determined by the data. The pseudo-inverse
is identical to the inverse if the matrix H is of full rank.

This apparatus provides a complete mechanism for determining which pa-
rameters of a model are actually determined by the least squares procedure. It
also gives direct measures of the precision of the determinations of the parame-
ters for those parameters which are actually derived from the data. Preliminary
calculations on two small molecules and a protein have shown that even singular
crystallographic systems contain a large number of large eigenvalues, and hence
many accurately determined parameters.

Separation of restraints from data

There are several different methods for applying restraints, and there are differ-
ent degrees of approximation that can be used in computing the elements of the
normal matrices. It is important that the effects of these different approaches
be understood precisely. When the restraints are put into the least squares cal-
culation as additional observations to be fit, the matrix A of Equation (6) can
be partitioned as

A= [ ﬁ; ] andAT = [ATA7] (21)
where all of the experimental observational equations are in A; and all of the
restraint equations are in A,. If we attach an explicit scale factor K, to the
equations of restraint the matrix H becomes

H = ATA
= ATA, + KIATA,
= H;+K!H, (22)

This directly separates the contributions of the two portions of the problem to
the solution and will at long last clarify the effects of different restraint schemes
on the results of a crystal structure refinement.

Construction of H from Equation (22) has the advantage that the quality
of the parameters and the goodness of fit can be studied as a function of K,
to determine the correct relative weight to assign to the restraints. The benefit
of this approach over Briinger’s [13] is that all of the data can be used while
still avoiding overfitting. Briinger’s cross-validation approach requires that a
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fraction of the data not be used in the refinement so that it can be used as an
objective check on the progress of the refinement and on the validity of changes
in parameters. In cases which are poorly determined it is not desirable to give
up a fraction of the data if it can be avoided. (It should be noted that cross
validation is good-for testing other things besides K., such as the validity of
basic changes in the model. It is not yet clear whether the methods being
developed here could replace R, for those purposes.)

Data Collection Protocol Analysis
Substitution of crystallographic variables into Equations (7) and (14) gives

8 |F¢ 8 |F¢$
hi; = thkl ( la;IHl) ( laz';k‘l) (23)

hki

which shows that the normal matrix does not depend directly on the observed
data. The normal matrix depends on the model, the set of observations which
are included in the calculation, and the statistical weight assigned to each ob-
servation, but does not depend on the values of the observations. The values
of the parameters of the model do depend on the data, and this does affect the
values of the elements of the normal matrix.

It is thus possible, given a model, to evaluate the effect of different data col-
lection protocols on the accuracy with which the parameters will be determined.
This formalism will decisively answer the question as to whether the omission
of data observed at less than 26 harms the accuracy of the model (it does), and
settle the wars concerning the inclusion or omission of data inside the 6A sphere
during refinement. It will also tell specifically how the collection of additional
data will improve the accuracy of the model, subject to the assumption that the
model does not change dramatically in view of the new data. For example, just
how good does your data have to get before you can tell if one bond in your
iron-sulfur cluster is significantly different from the others? Are you better off
getting more data, or improving the accuracy of the data you already have?
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Least-Squares Refinement of Macromolecules: Estimated Standard
Deviations, NCS Restraints and Factors Affecting Convergence

George M. Sheldrick, Institut fur anorganische Chemie der Universitdt Géttingen,
Tammannstr. 4, D37077 Géttingen.

1. Introduction

This contribution is based on the experiences of the author in (mis)using a small
molecule structure refinement program (SHELXL-93) for macromolecules, and
describes some of the features that it is hoped to include in the next release
(SHELXL-96 ?).

This program uses an exact structure-factor summation rather than an FFT
approximation, and so is extremely slow; on the other hand it is very general, and
includes a number of features not usually found in programs written specifically for
macromolecules. It is valid for all space groups and types of structure, and includes
restrained, rigid group and riding models, restrained anisotropic refinement,
anomalous dispersion, CIF output etc. It can handle Laue data, twins, and
complicated disorder. For the least-squares refinement either (blocked) full-matrix or

conjugate-gradient solution of the sparse normal equations may be employed.

It is to be expected that the use of SHELXL for macromolecules will be restricted to
small structures (say not more than 5000 unique atoms) at high resolution (2 A or
better). For further details of macromolecular applications of the program see
Sheldrick & Schneider (1996).

2. How to Estimate Esds in Atomic Positions

Given a small protein and data to (almost) atomic resolution, it is indeed possible to
obtain estimated standard deviations (shortly to be renamed standard uncertainties)
in atomic positions (and the geometrical parameters derived from them) by similar

methods to those used for small molecules.
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The structure should first be refined to convergence by conjugate-gradient solution
of sparse-matrix normal equations (CGLS). Then one final full-matrix cycle should
be performed with zero damping and zero shift multiplier (L.S. 1 and DAMP 0 0) and
all restraints switched off. Restraints and Marquardt damping would lead to
underestimated esds. All the reflection data should be used, i.e. no threshold should
be used to suppress. weak data, and no resolution shells should be excluded. If a
full-matrix cycle would take longer than a week or require the purchase of extra
memory, an adequate compromise is BLOC 1 to define a full-matrix block consisting

of all geometrical but no thermal displacement parameters.

SHELXL uses the full covariance matrix and the estimated unit-cell errors to
estimate the esds in ALL dependent parameters (for the esd in the angle between

two least-squares planes a small approximation is involved).

Fig. 1 shows the distribution of the (three-dimensional) atomic positional esds of the
fully occupied carbon atoms as a function of the effective B-value (B=8n2U,q, where
Ueq is one third ot the trace of the orthogonalised U'-tensor) for a cytochrome c¢
refined anisotropically against data collected to 1.1 A by Frazao et al. (1995), and
Fig. 2 shows the corresponding diagram for the oxygen atoms (including the solvent
waters). There is a surprisingly good correlation between the esd and B; it is not far
from linear, and a quadratic function in B would be even closer. The slope of the
curve depends inversely on the atomic number; the points for nitrogen lie in between
those for carbon and oxygen. The esds for the bond lengths show similar trends
when plotted against the average B-values of the two atoms concerned; Fig. 3
shows the C-C bond length esds for this structure (excluding disordered atoms).
The esds in the bond lengths are smaller than those in the (3-dimensional) atomic
positions by about the factor of ¥(2/3) expected for uncorrelated atoms. Preliminary
tests on other small proteins refined at very high resolution give similar results to .

those shown here for cytochrome cq.

48



anfea-g uafeainbyg

0s o 0g 0T 01 0
. e 1 I 8.°
...’

., e

LS
. . oW - €00

] . . Mv‘\o\o
Li, o™ %
. o ooo ﬂo““
¢ M * . 'oﬂn .
L4 o o lg.o
A . o“ 78@
[ ] R : . ¢

. L 210
SI0

(swons3uy) spss [euonisod woye uadhxQ 'z Sy

ps? feuonisod

0§

anfea-g juapeainbg

114 0t (174 ot
.

N It

000

€00

ﬁ@c.c

600

-21°0

(swons3uy) spsa feuoryisod woie uoqre) ‘| ‘31

S10

PS9 [euonisoqd

49



swosjs3uy Ul JOU3 U

01

(swons3uy reoosdioas) p/i

Lo 90 §0 vo

It i N

1o

mo.j

0170+

SU0A

0T°04

$T°0+

000

-$0°0

-01'0

-S1°0

-02°0

~$T0

-0t'0

-SE°0

-$v'0

10[d nezzng ‘4 ‘81

[(DewBisy<A] xopuf- 1Y

0s

anfea-g 1ugeainbs adelroay

ov ()

A A

(1[4

ol

000

-€0°0

900

600

+C10

(swons3uy) spsa 3ua| puoq DD ‘¢ 31

S1°0

pse Yi8ud| puog

50



Cruickshank (1949, 1960, 1995) has made some most instructive comments on the
treatment of errors in crystallographic least-squares refinement. In 1995 he
suggested a formula for the average atomic positional error in terms of the R-index,
the resolution, and the completeness of the data. From the preliminary
investigations presented here, it looks as though it should be possible to extend
Cruickshanck’s Diffraction Precision Indicator to obtain quite reasonable estimates
of individual errors in atomic positions by adding empirical terms in B, Z (the atomic
number) and perhaps also the occupancy. As Cruickshank pointed out, the widely
used Luzzati (1952) plot was never intended to estimate such errors, although it has
often been used for this purpose. The Luzzati plot for the cytochrome c¢ (Fig. 4)

does in fact give numbers of roughly the right order of magnitude.

3. Rigid-Group refinement of the initial Model

Full-matrix refinement has other applications in macromolecular refinement,
especially for problems with high correlations and a relatively small number of
parameters, as for example in the early stages of refinement after solving a structure
by molecular replacement.

Molecular replacement may well give us a model consisting of domains that can be
refined as rigid groups, linked by hinges that are better described by restraints. The
resoiution range may be restricted, and fixed or group temperature factors
employed. At this stage of the refinement, there are not many parameters, but there
may be large correlations between them. A good way to handie these is by full-

matrix refinement, usually with Marquardt damping.
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4. Anti-Bumping Restraints

Refinement at low (>2A) resolution can result in unwanted contacts involving solvent
molecules and even main-chain atoms. How can one deal with this situation without

the need for user intervention ?

SHELXL (now) checks all short non-bonded distances, taking symmetry equivalents
into account, before each cycle. If two atoms that are not linked by one, two or three
bonds in the connectivity array are too close, an anti-bumping restraint is generated

to push them apart.

HeesH anti-bumping restraints may also be generated automatically and used to

discourage energetically unfavourable side-chain rotamers.

5. Non-Crystallographic Symmetry (NCS) Constraints and Restraints

NCS is usually applied as a constraint. Structure factors are calculated for one
repeating unit (monomer) defined using a mask, and the contributions from the NCS-
related units are then found by applying a rotation matrix and transiation vector. This
method is fast but inflexible, and requires a mechanism for finding and possibly

refining the mask, matrix and vector.

For small (and many macro-)molecules, it is not unusual to have more than one
chemically identical molecule in the asymmetric unit. A very simple and effective
restraint is to assume that all bond lengths (1,2-distances) and all 1,3-distances (i.e.
distances through one angle) can be restrained so that chemically equivalent
distances are equal. In SHELXL this requires one instruction (SAME) per equivalent
molecule. The torsion angles are not restrained, and it is assumed that the
differences between the molecules are purely conformational. In practice this is an
excellent assumption, and since its introduction in SHELXL-93, this restraint has

found extensive application.
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This procedure has found some application in macromolecules - for example by
restraining the equivalent 1,2- and 1,3-distances to be equal in the sugar and
phosphate groups of oligonucleotides, or to take advantage of the 4- or 8-fold
redundancy of chemically equivalent distances in heme groups - but for proteins the
idea of making all copies of each amino-acid equal is less appropriate because
some amino-acids may occur often and others only once in typical small proteins. In
practice it is better to restrain the 1,2- and 1,3-distances in proteins to standard
target values, for example those recommended by Engh & Huber (1991), which are
also used in the standard restraints dictionary for SHELXL.

The idea can be carried one bond further for macromolecules, and the
corresponding 1,4-distances restrained to be equal. Similarly, the isotropic U-values
of the non-crystallographic symmetry related atoms can also be restrained to be
equal. SHELXL applies NCS as a local restraint rather than a global constraint. This
method is slower, but is much more flexible, and is much easier to apply than a NCS

constraint because it does not require a mask, matrix or vector

3-Fold NCS could be specified by the SHELXL instructions:

NCSY 1000 N_1001>0T2_1109
NCSY 2000 N_1001>0T2_1109

where the residues in the three chains are numbered 1001-1109, 2002-2109 and
3001-3109.

Fig. 5 shows the results of applying such NCS restraints to the refinement against
1.7 A data for a Rei, immunoglobulin mutant containing two light-chain monomers in
the asymmetric unit. The structure exhibits good two-fold non-crystallographic
symmetry. It will be seen that the absolute differences in the NCS-related phi- and
psi-angles are all small, but that a few of the chi-angles differ for lysine residues

(and one arginine) that project into the solvent and so are poorly defined.

53



‘AjewwAs o1ydeibojjeysAio-uou pjojomy Aq pajelal siawouow jo uosuedwos ‘g ‘b1

Jaquinu anpisay
00t 08 09 ov 0z

F Sl

- Ot

+ SY

SWIOIR UTRYD-IPIS JOJ g UBSW I SIOUILIJJIP AN[OSqY (J)

001 08 09 or 0z

21
- 0

I SV

SUIOTE UTeYD-UTBW JOJ g UBSL UI SIDUAIILIP AN[0sqy (3)

001 08 09 or 0z

Sv

SWIONE UTeYD-UTeU JO san[ea-g Uedly (p)

20ua1a)J1Q souaralid

anjeA-g ueay

Iaquinu anpisay

001 08 09 ov 0z
- 0
X3
09
+ 06
F 0TI
10 €7 [ YD Ul SIDUIIJJIP AIN[OSqR Wnwrkep (9)
001 08 09 or 174
0
S
01
S1
1sd ut s90UaIaJJ1p AIN[OSqY (q) 0
001 08 0 ov 0z
- 0
- S
- 01
- 61
0T

yd ut $3DUIISJJIP ANJOSQY (B)

(*3ap) aouarsyq (*3ap) aouaiagjiy

(*3ap) aouaszyjig

54



The NCS deviations of the arginine could be eliminated by refining both residues

with two-fold disorder, but an investigation of the lysine deviations showed that these
+ -
arose because the 1,4-distances are the same for the gauche and gauche

conformations, and so for unbranched chains the NCS restraints do not distinguish
between these. On the other hand, these different conformations, although poorly
defined, are chemically quite plausible.

The comparison of the mean B-values (B=8z°U) shows that in general the
agreement is excellent, but there are small deviations around residues 16 and 80
caused by contact with other molecules not related by the NCS, and there are also
deviations for the C-terminus for which the density is poorly defined. The 3F.-2F.

maps after application of the NCS-restraints were of excellent quality.

6. Disorder made simple

The disorder components are included with the same atom names in the same
residues but identified by different PART numbers. Atoms in PART 1 may bond to
other atoms in PART 1 and also to those in PART 0, but not to those in PART 2 etc.
All other instructions are the same as for non-disordered residues. The program

works out itself how to apply the restraints, add H-atoms etc.

RESI 38 SER

N 3 0.77141 0.92674 0.00625 11. .10936
CA 1 0.78873 0.97402 0.07449 11. .13706
PART 1

CB 1 0.83868 1.04271 0.05517 41. .11889
OG 4 0.89948 1.00271 0.02305 41. .18205
PART 2

CB 1 0.84149 1.03666 0.06538 -41. .14933
OG 4 0.83686 1.10360 0.01026 -41. .17328
PART O

C 1 0.74143 1.01670 0.10383 11. .08401
O 4 0.70724 1.02319 0.06903 11. .10188
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The PART numbers used by SHELXL map exactly onto the codes A,B,C... used by
the PDB format to flag disorder, so this way of representing disorder should be
completely compatible with any program that adheres rigorously (as does SHELXL in
its PDB output file) to the Brookhaven PDB rules. In this example, the use of a free
variable for the refinement of common occupancies as p and 1-p for the two disorder

components should also be noted.

7. Making the most of weak data

By small-molecule standards, ALL macromolecular data are weak ! Throwing away
weak data (by imposing a threshold of say F>4c(F)) may artificially improve the R-
factor, but it wastes valuable experimental information, usually obtained at

considerable effort.

Refinement against F? enables ALL data to be used (properly weighted). It is not
advisable to use all data when refining against F because of the difficulty of deriving

o(F) from o(F?) when F? is small or negative.

The conventional index R = Z|F,-F¢ / ZF, is still useful for the comparison of
structures determined at similar resolution and data completeness, even when

refining against F?; it is difficult to fudge it by adjusting the weights !

8. How to avoid Local Minima

Refinement techniques that ignore correlations are more likely to appear to stick in
false minima. For example, if a structure has been solved by molecular
replacement, some of the loops may well be displaced from their correct positions.
Direct minimisation without taking correlations involving restraints into account may
well not be able to move the loops, because (if a well refined search structure has
been used) the restraints will all hold well already. The Konnert-Hendrickson (1980)

solution of the sparse-matrix normal equations employed in SHELXL takes all
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correlations introduced by the restraints into account, and is able to refine all
parameters in the same refinement cycle, which also increases the radius of

convergence.

Refinement against F? for ALL data without the use of a sigma threshold makes the
most of the diffraction data, but it may well be advisable to extend the data to higher

resolution gradually during the refinement.

The presence or absence of local minima depends very much on the form of the
function that is being minimised, and in particular upon the -contributions to this
function from the restraints. UNIMODAL restraint functions, such as distances,
angles, chiral volumes, least-squares planes and A(UY restraints do not generate
additional local minima - indeed they rhay remove them - whereas MULTIMODAL
functions, i.e. functions that themselves have multiple minima, will usually generate
extra local minima. Examples of such multimodal functions are torsion angle and.
hydrogen bond restraints. Fortunately we have a choice - indeed we must make a
choice - of which prior information we should include in the refinement in the form of
restraints, and which should be kept in reserve to check the validity of the structure.
MULTIMODAL functions are clearly better employed as criteria for the correctness of
a structure. Very fortunately, torsion angles and hydrogen bonds and other non-
bonded contacts are the very functions most useful in PROCHECK (Laskowski,
MacArthur, Moss & Thornton, 1993) and other programs for independently verifying
the structure !

The author is grateful to all the guinea pigs who were kind enough to test these (and
other less successful) ideas, and for their diplomatic suggestions for improvements,
and in particular to Isabel Usén, Miene Schéafer, Thomas Schneider and Johan

Wouters who provided examples used to illustrate this talk.
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Torsion angle dynamics refinement of the Chaperonin GroEL
at 2.8 A resolution
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The refinement of a crystal structure consists of fitting an atomic model to the diffraction
data. In general, macromolecular structures are not solved at sufficiently high resolution to
be multifold over-determined (i.e. many more observations than refined parameters). In fact,
macromolecular crystal structures are sometimes refined at resolutions (2.5 A or less) where
the number of observations is approximately equal to the number of refined parameters. The
refinement process is therefore prone to two main problems:

e Convergence (is the starting model close enough to the correct answer?)

e Over-fitting (is the model too complex?)

The refinement process can be made more robust by incorporation of chemical informa-
tion, i.e. restraining bond lengths and angles to values typically observed in high resolution
structures [1]. The refinement of a crystallographic structure often suffers from the multiple
minima problem; there are many local minima of the target function which the model can
easily become trapped in. The use of molecular dynamics methods coupled with simulated an-
nealing techniques greatly increases the chance of finding the global minimum, and it reduces
the need for human intervention in the refinement process [2]. While this method increases
the convergence of refinement it also increases the danger of overfitting poor or insufficient
diffraction data.

The introduction of the free R-value allows an objective assessment of the validity of a
refined structure in order to prevent overfitting [3]. However, the free R-value is an empirical
measure, and as such provides little information of how to improve the model to prevent
overfitting. A new refinement methodology has been recently introduced which extends the
radius of convergence of refinement and decreases the likelihood of overfitting. The method
uses a torsion angle representation of macromolecules where bond lengths and angles remain
fixed during the refinement process [4]. These constraints on the model reduce the number of
free parameters by about an order of magnitude. The removal of bond and angle vibrations
allows higher temperatures to be employed to extend the searching power, overfitting to be
reduced, and refinement to be carried out in less time than conventional simulated annealing
methods. Possible solutions to the problems outlined above are:

e Convergence - higher temperatures (torsion angle dynamics)

e Less over-fitting - decreased degrees of freedom (torsion angle dynamics, NCS) and as-
sessed by an objective measure (free R-value)
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Torsion angle dynamics

The use of a torsion angle representation for

macromolecules in the context of least squares [ Coordinates, PARHCSDX.PRO parameter setj
crystallographic refinement was first proposed
as long ago as 1971 [5]. However, the new
method [4] used here is different in that the tor- Energy minimize 150 steps j

sion angle representation is maintained within : without X-ray restraints
a molecular dynamics framework. The in-
tramolecular motion of the molecules in the
system is constrained to torsion angles; bond

Torsion angle dynamics

lengths and bond angles remain fixed.” This with X-ray restraints at constant temperature
serves to significantly decrease the number of 1000 steps, 2500/5000K, 2fs timestep
degrees of freedom, by about a factor of ten, repulsive nonbonded forcefield
which reduces the chance of overfitting the 1

data. In addition, the algorithm allows longer

time steps and is stable at higher tempera- Cartesian or Torsion angle dynamics
tures, thus permitting more extensive search- with X-ray restraints at constant temperature
ing of conformational space. The conformation 200 steps, 300K, Ifs timestep

Lennard-Jones and Coulombic forcefield

space explored is restrained to sensible macro-
molecular geometry throughout the refinement
making the method more efficient. The applica- ]

tion of torsion angle dynamics to the refinement Energy minimize 50 steps
of the GroEL structure used a constant temper- with X ray restraints
ature protocol (figure 1), although slow cooling
simulated annealing protocols could also have
been used. In addition, a purely repulsive non-
bonded potential [6] was used to facilitate mo-
tion about torsion angles.

Figure 1: Refinement protocol for X-PLOR
using torsion angle dynamics (see [4] and [12]
for further details).

The Chaperonin GroEL

Little is known about the mechanism by which newly synthesized proteins fold in the cell. In
1973 Anfinsen had shown that polypeptides can fold under in vitro conditions spontaneously
and reach their native state [7). However, under non-ideal conditions such as found in the cell,
folding of newly synthesized polypeptides is often inefficient due to competing off-pathway-
reactions. Recently a group of specialized proteins, molecular chaperones, has been identified
as playing an essential role in enabling polypeptides to reach their biologically active forms
in a number of cellular compartments [8]. GroEL is the best characterized chaperonin. It is
a 720 kDa complex consisting of two heptameric rings of 57 kDa subunits which are stacked
back to back. Based on electron microscopic studies it has been suggested that nonnative
polypeptides can at least in part be held within the central channel enclosed by the members
of each ring [9]. The determination of the native GroEL crystal structure [10] in combination
with extensive mutational analysis [11] has provided valuable information that allowed the
assignment of functional properties to different regions of the structure. Unfortunately there
were problems extending the refinement of the initial structure to all seven protomers, as
indicated by high R-values (32.6% R-value and 36.8% free R-value).
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Application of Torsion Angle Dynamics in Refinement

= | protomer (R=43.2, Rf=44.1) |

Cartesian dynamics
NCS constraints

Torsion Angle dynamics
NCS constraints

A

[ 1 protomer (R=37.2, Rf=41.8) ] [ 1 protomer (R=37.3, Rf=41.1) |

Torsion Angle dynamics

NCS constraints, Group B-factors

y
| 7 protomers (R=33.4, Rf=36.0) |

Figure 2: Refinement of GroEL started using

NCS constraints.

These constraints were used un-
til the refinement had converged (no
significant further change in the R-
values was observed), then NCS re-
straints instead of constraints were

Torsion Angle dynamics
no NCS restraints

For complete details of the initial structure
determination see ref. [10] and for the refine-
ment see ref. [12]. In the final refinement a
conservative scheme was used, being care-
ful not to overfit the model to the diffrac-
tion data. The refinement started from a
partially refined model instead of the pre-
viously published final model [10] in order
to minimize any possible model bias which
may have been introduced. This model com-
prised residues 6 to 523 which had under-
gone one round of standard simulated an-
nealing refinement using “strict” NCS con-
straints, where all protomers in the asym-
metric unit were considered identical [13].
The first stages of refinement continued to
use strict NCS constraints that impose strict
seven-fold symmetry (figure 2).

7 protomers (R=33.4, Rf=36.0)

Torsion Angle dynamics

Cartesian dynamics
NCS restraints - I domain

no NCS restraints

| 7 protomers (R=28.0, Rf=31.1) |

used [13]. Here the assumption
was made that the protomers are

7 protomers
(R=24.0, Rf=33.3)

7 protomers
(R=24.2, Rf=33.3)

Torsion Angle dynamics

essentially identical but deviations
from seven-fold symmetry are pos-
sible (figure 3).

Estimation of the weight [13,
14] for the NCS restraints was im-
portant; too large a weight would
prevent conformational variation
among protomers, while too small a
weight would allow too much vari-

NCS restraints - 3 domains
Individual B-factors

| 7 protomers (R=24.4, Rf=29.4) ]

Torsion Angle dynamics
NCS restraints - 3 domains

| 7 protomers (R=22.8, Rf=27.2) |

Figure 3: Refinement of GroEL continued using NCS
restraints.

ation and lead to overfitting of the model. During the intermediate steps of the refinement,
different domains of the structure were given different weights reflecting greater mobility in
some regions compared to others, which was suggested by very different average B-factors for
each domain (figures 4). Initial weights were choosen to be high in the equatorial and interme-
diate domains (300 kcal mole~! A~2) and six-fold lower in the apical domain (50 kcal mole™!
A-2) reflecting the differences in average B-factors for the domains. Several short refinements
with progressively lower NCS restraint weights were carried out (figure 5). Decreasing the
weights for the three domains resulted in an increase in the free R-value and a decrease in the
conventional R-value; the diffraction data was being over-fitted. Therefore these NCS restraint
weights for the three distinct topological domains were used until the final refinement cycle.
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Figure 4: Average B-factor (solid line) and RMS deviation (dashed line) for all seven protomers
in the final model.

Once the refinement of the model had con-

verged the NCS restraint weights were redeter- 0.33 y

mined. The restraint weights were increased e ey
and a short refinement cycle carried out as pre- N
viously described, the free R-value was again 0319 T~
used as an indicator of the most correct model. 0.30-

This indicated that the most simple and conser- J

vative restraint weights (300 kcal mole™! A~2 «g 029

for each domain) gave a minimum of the free R- = 0284

value. We conclude that the weaker restraints

were required during initial refinement in order 0277

to escape local minima, but after convergence 0.264

of refinement the tighter restraints were more s

weaker  stronger

appropriate.

0.24 — ey
0.02 0.03 006 013025 0.5 1 2

The improved radius of convergence of the
torsion angle dynamics method [4] is demon-
strated by comparison to the refinement car-
ried out using the standard simulated annealing
protocol. The very first cycle of refinement, us-
ing NCS constraints, was repeated using slow-
cool simulated annealing and Cartesian molec-
ular dynamics (figure 2). Visual analysis of
the result showed that the standard slowcool-
ing method was unable to correct some of the larger differences in the apical domain (figure 6),
these errors would have been propagated through the subsequent refinement cycles.

NCS weight factor

Figure 5: Effect of NCS restraint weight on
R-value (solid line) and free R-value (dashed
line) during refinement. Weights were modi-
fied and a short cycle of torsion angle refine-
ment performed.
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The importance of NCS restraints dur-
ing the refinement is indicated by the results
if these restraints are removed (figure 7).
It is clear that removing the restraints al-
lows artificially high rms deviations between
protomers. This indicates overfitting of the
diffraction data - which can only be detected
by the use of the free R-value. It is also of
interest to note that there is little difference
between the results for torsion angle based
refinement and the standard simulated an-
nealing method. This is because both meth-
ods perform equally well once they are close
to the global minimum (the correct solu-
tion).

Conformational variability

The refined, atomic restrained B-factors for
the structure are unusually high in the api-
cal domains (a maximum of 150 A2) (fig-
ure 4). The decrease in free R-value upon
B-factor refinement indicates that these B-
values are an appropriate description of the
diffraction data. A comparison between the
superimposed seven subunits shows a high

Figure 6: Comparision of the results of torsion
angle dynamics (solid) and standard simulating
annealing protocol (dotted) for first refinement
cycle using NCS constraints (the rms deviation
between the structures is 0.8 A for C, atoms and
1.4 A for all atoms).

correlation between B-factors and RMS deviation between protomers and the average pro-
tomer structure (figures 4 and 8). The high absolute value of the refined B-factors in the
apical domain are therefore a result of the rigid body motions between individual protomers
in a ring (and presumably throughout the crystal lattice).

Torsion Cartesian Torsion Cartesian Final Model

NCS NCS noNCS noNCS NCS

R-value 0.279 0.277 0.240 0.242 0.228

Free R-value 0.309 0.305 0.333 0.333 0.272

<ANCS> (A) 0.085 0.089 1.055 1.233 0.024
RMSD (A) 0.9/1.49 0.93/148 1.0/1.65 1.0/1.68 -/-

(vs. final model)

Figure 7: Comparision of refinements with and without NCS restraints using esther torsion
angle dynamics or slow cooling simulated annealing with Cartesian molecular dynamics.
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In mediating the folding of newly syn-
thesized proteins, GroEL has to bind a wide
variety of substrates, spanning a spectrum
of molecular mass and chemico-physical
properties [16]. A protein that has such
diverse substrates probably has a high de-
gree of structural flexibility, defying a rigid
lock-and-key model for interaction with
polpeptide substrate. Although the GroEL
complex consists of chemically identical
subunits electron microscopic studies have
clearly demonstrated that the native com-
plex with either bound GroES and/or sub-
strate is far from symmetric [17]. Electron
microscopic studies [17, 18] and mutational
analysis [11] have indicated that non-native
proteins bind to the internal face of the api-
cal domain. This domain contains regions
exposed to the large central cavity (helices
HS8 and H9) which show high B-values (fig-
ures 4 and 8) which may be a result of
conformational variability. This variability _
may be essential for interactions with such igure 8: Superposition of all seven protomers

a diversity of substrates. in the asymmetric unit showing the rigid body
motion between the three domains (see [12] for
details).
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Introduction

Recent developments in recombinant DNA techniques, crystallisation
protocols, X-ray data collection techniques and devices, and computing
have led to a substantial increase in the speed and number of protein
structure determinations in modern crystallographic laboratories.
However, there still remains a number of key stages in the
crystallographic process which limit the rate of structure determination.
One of these is fitting electron density maps, either in the initial stages
of tracing a chain to a new map, or in the manual rebuilding during
refinement.

The talk discussed the refinement techniques available within the
model building application of QUANTA96 (MSI), and how these
refinement techniques can be used as tools for model building. Since
denovo tracing of the first experimental phased maps and model
building as part of refinement represent processes that cannot be
carried out by conventional refinement methods, the algorithms
developed as part of this application represent new approaches to this
problem, and are probably not applicable to black box refinement.

This article describes four methods of refinement, as well as their
implementation in real space using the torsion angles as variables. The
advantages as well as approaches to overcome disadvantages associated
with these methods is described.

Overview

Four methods of refinement have been developed that approach the
problem of modeling in different ways. These are: gradient torsion
angle refinement, Monte Carlo torsion angle refinement, grid search
refinement, and geometric refinement as a modelling tool. All of these
refinement methods have been developed within real space rather than
reciprocal space which provides some advantages and one disadvantage.
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In real space it is possible to easily refine local regions of the model,
which is not true in reciprocal space. In particular, it is difficult to refine
water atoms in reciprocal space because of the lack of restraints. As
refinement is carried out in real space it is possible to provide a
graphical representation of the progress of refinement to provide
feedback to the crystallographer. It is therefore possible to provide
tools that have a higher radius of convergence, but also have a risk of
producing wrong structure, because the changes can be observed and
aborted if obviously going wrong. The user remains in control
throughout via the graphical user interface. This does mean that the
algorithms developed must be fast, so great deal of attention has been
made to provide extremely rapid calculations that can be used on
moderately priced workstations. Since refinement is carried out in real
space against an existing map, phase information is included in the
calculation by default. This can be a disadvantage because phase
information determined from the model is used (except for the first
maps with experimental phase information), and so the process results
in the inclusion of bias from previous refinement. However this is true
for any model building into density of the form (n+1)Fo-(n)Fc and least
squares minimisation that assumes that the true phase equals that
calculated from the current model.

It must be stressed that the algorithms developed for the model
building process should, if possible, have different targets, and at least
different weighting, than those used in reciprocal space automated
refinement programs (such as XPLOR, Prolsq, TNT etc), as no advantage
would be obtained if the targets were the same. Real space torsion angle
refinement provides these different targets.

Implicit in torsion angle refinement is that the bonds, non-bonds,
angles, planes and chiral centres have restraints while the torsions
angles can change as they have no explicit restraint. For gradient
refinement the torsion angles are allowed to change so as to increase
the fit to density, while for Monte Carlo refinement the torsions angles
are assigned random values, and for grid refinement the torsion angles
are set to all possible values between O and 360 degrees. An important
exception to this is the omega torsion defined in proteins which is not
freely rotatable due to the partial double bond. The omega torsion
angle is therefore restrained with a low weight to either trans or cis
conformation.
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Gradient real space torsion angle refinement.

Bob Diamond first developed torsion angle refinement as a tool for
protein crystallographic refinement.(Diamond R.) The refinement
algorithm described here here is a completely new implementation of
torsion angle refinement that allows anything from single atoms to
entire molecules to be refined towards experimental data extremely
rapidly. Torsion angle refinement has a problem associated with very
high correlation along the polypeptide chain, so the algorithm developed
here cycles between the use of full restraints, and single residue only
restraints during the refinement. This breaks the correlation of the
many torsion angles in a polypeptide chain while maintaining sensible
structure.

The advantage of gradient torsion angle refinement over xyzb
refinement is that the radius of convergence is much higher. A radius
of convergence of around 2A is usually observed with torsion angle real
space gradient refinement compared with 0.7A with xyzb reciprocal
space refinement.

Side chain _and main chain grid search density fitting.

The principle of this refinement techniques is that if we can define at
least one atom that has a correct position, then other atoms connected to
this atom by rotatable bonds can be fitted by trying all combinations of
rotomers using a grid search. This has been implemented for amino
acids where the CA atom is defined as being in a correct position, and
the side chain atoms are fitted by grid searching all the chi angles in the
side chain with a discrimination of minima of 10 degrees and a
precision of 2 degrees. For main chain fitting, two CA atoms are defined
as correctly fitted, and the -N-C=O- peptide plane is fitted by rotation
about the pseudo CA-CA bond, and the omega angle allowed to vary
+10 degrees. This method as implemented has two advantages for
model building single residues. It has an "infinite" radius of
convergence as defined by the length of the amino acid side chain, and
the actual fitting is extremely quick (< 0.1 seconds/torsion - SGI R4000
indigo). The major problem is that it assumes the CA atom is correct.
For amino acids, it is possible to get round this problem by providing a
tool that allows the crystallographer to pick up the CA atom and move it
in x/y/z space. As the fitting is very fast, the crystallographer sees new
fitted conformations as the CA atom is moved so the result is an
interactive side chain fitting tool Once the side chain atoms looks right,
the new CA position can be accepted. Later stages of model building for
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the majority of side chains can often be carried out by just using this
tool, followed by regularisation.

The main chain and side chain fitting algorithm has been
implemented as a powerful method of generating an all atom model
from just a CA trace. Hence it is possible to use this refinement
methods to take the CA trace generated by denovo fitting and build an
all atom model at a rate of about 8 residues/second. The routine is
extremely robust to poor CA atom positioning, and also produce very
good results when fitting to the poor density associated with initial
maps.

Morite Carlo refinement

Monte Carlo refinement provides a method of refinement when the
conformation the main chain atoms is not obvious in a local region. This
algorithm has been found to be an extremely powerful method for
fitting loops and termini where there is only an indication of the main
chain pathway in the density, but it is usually limited to maximum of
seven/eight residues before the search becomes impossibly long.

The application generates an poly-alanine segment with a set of
random phi psi angles. The poly-alanine segment is then attached at
one end to the known structure, and if a loop is to be fitted, checked to
see if it will span the loop region. If a terminal is to be searched, then
this stage is not required. The application then checks the fit to density
for this random polypeptide section, and selects/rejects this on the basis
of whether it is a better fit than the worst of the best 10 solutions found
to this point in time. Non-bond clashes are avoided by masking the
electron density already occupied by known atoms in the neighbour-
hood of the search region. The conformations are generated and fitted
at a rate of more than 2000/second (SGI R4000 indigo) allowing
millions of completely random conformations to be screened in 10's of
minutes. The GUI is continually updated to show the best 10 solutions
found up to that time so the crystallographer can abort the search at
any time they observe a sensible solution to the problem. The range of
density fits (by fit value, and colour) for these solutions is also shown so
that convergence can be observed. As the search is so rapid, there is no
improvement in the convergence of the algorithm from screening based
on "predicted" conformations. The time taken to screen a conformation
as a function of predicted expectation was found to take longer than the
time taken to find another conformation, and this screening also
"directed" the search which was not the original aim of the idea. On
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acceptance of the loop conformation the application adds the side chain
atoms using the real space grid search algorithm previously described.

The algorithm has also been implemented to provide a method for
fitting ligands. This ligand fitting application first finds all the sites
with significant density and without molecular coordinates. It then fits
the ligand here by searching conformational space for the ligand using
the Monte Carlo refinement algorithm based on the rotatable bonds in
the ligand as well as refining the position and orientation of the ligand.
Finally the application refines the ligand using the real space torsion
angle refinement algorithm described earlier. This procedure has been
to shown to work for ligand such as phosphate ions, polypeptides,
polysacchoride to even poor density. It has an extremely high success
rate (it has not yet produced a solution judged to be incorrect), and only
takes minutes to complete of the refinement automatically with no user
intervention.

Refinement of géometry.

The ‘refinement of geometry, usually called regularisation, was
included in the discussion of refinement techniques. The regulariser
has been implemented to allow extremely fast convergence of the
geometric terms describing the molecular structure. It will improve
bonds, angles, chiral centres (pro-chiral centres), planes, and optionally,
non- bonded contacts. As the routine is very fast it is possible to define
a region of connected molecular structure for "active regularisation". As
the crystallographer picks and moves any atom in this region, the
algorithm maintains the expected geometry of the regularised region.
Hence the effect is a pick up a drag facility that allows the
crystallographer to just place, for example, CA atoms, while the
remaining structure is dragged to compensate for the changes made.
This has been found to be a much more natural tool to use than the
manual manipulation of "zones" of residues using just the translation
and rotation of the fragment being edited. If the non-bonding is not
active then it is possible to edit more than 20 residues (SGI R4000
indigo), while the use of non-bonds will reduce this to about 10 residues
maximum. This is usually far more than would normally be edited by
this facility.

Since parameters can automatically be generated for ligands built
within QUANTA96, it is possible to pick up a ligand molecule with
several rotatable bonds and just pull it round the active site. The ligand
can be pushed into the protein and will flex to take up a complementary
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conformation. An obvious extension to this facility is to allow the
crystallographer to define a "flexible" region in the protein, and then
model the ligand here while the amino acids can move due to non-
bonding interactions. A preliminary version of this active site modeling
facility has been developed to test whether this facility will prove a
useful modeling tool for ligand docking.

Ramachandran restraints

A further optional restraint of specific "Ramachandran” torsion angles
can be applied when using the gradient refinement and the geometry
refinement. This option allows the specification of minima for the
torsion pairs know as phi and psi along the backbone chain of a protein.
It is possible to set the minima to correspond to the conformations of
alpha helix, beta sheet, and the nearest allowed point on the
Ramachandran plot to each phi/psi torsion pair. These restraints are
small and will push the conformation of a polypeptide chain very slowly
towards the designated conformation once all the other restraints
(bonds, angles, chiral centres, planes and non-bonds) are near their
minima. The aim was to provide a modeling facility when there is only
low resolution experimental data, or no experimental data at all. The
use of these restraints are obviously open to abuse, and it is
questionable whether derived torsional restraints should ever be used
in refinement. Since this application provides a Ramachandran plot of
the current molecule, the crystallographer will be trying to manually
correct the phi/psi angle pairs during model building. Hence this
facility will allow the inclusion of expected torsion angles at much faster
rate than can be by manual modeling. Can the Ramachandran angles of
a protein be used as an independent measure of the quality of said
protein once the crystallographer has observed the Ramachandran plot

and acted on this information ?
Summary

The refinement techniques described have been implemented in
QUANTA96 as part of the large application known as X-Autofit and X-
Build. The completely automated ligand fitting is also provided in
QUANTA96 as the application X-Ligand.

Other_facilities in this application include:-

1) Map masks (generation, interactive editing, void deletion).
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2) Electron density skeletonisation (fast calculation, improved
connectivity, smooth lines, auto main/side chain determination fast
editing tools, and symmetry).

3) Semi automated CA tracing, Rule based fitting, helix/strand fitting,
CA-trace refinement.

4) Automatic CA-trace to all atom model

5) Fuzzy logic sequence assignment

6) Rigid body refinement for molecules or any part of a molecule

7) 3D text editor, User annotation of molecules/maps, automatic
annotation of validation errors

8) Symmetry generation at 10,000 atoms/bones points per second (NCS
also supported)

9) Pickable Ramachandran and CA conformation plots.

10) Alternate conformations fully supported -throughout.

11) Protein validation

12) X-solvate: automate solvent fitting

13) Automated water refinement
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Improved Structure Refinement Through Maximum Likelihood
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When crystal structures of proteins or small molecules are used to address questions
of scientific relevance, the accuracy and precision of the atomic coordinates are crucial.
Accordingly, the model is generally improved by refining it to improve agreement with
the observed diffraction data. Refinement of crystal structures is conventionally based on
least-squares methods, but such procedures are handicapped, since conditions necessary
for the use of the least-squares target are not satisfied. We propose that refinement
should be based on maximum likelihood, and we have implemented two maximum
likelihood targets in the program XPLOR. Preliminary tests with protein structures give
dramatic results. Compared to least-squares, maximum likelihood refinement can
achieve more than twice the improvement in average phase error. The resulting electron
density maps are correspondingly clearer and suffer less from model bias.

Introduction

To obtain the most accurate possible crystal structure, one typically refines the atomic
model to optimize its agreement with the observed diffraction data. However, the quality of
the resulting model will depend on the validity of the target function that is optimized. We
believe that, since the conventional least-squares target is poorly justified in this case, the
refinement procedures are unduly handicapped. A maximum likelihood target is much better
justified, and we show that it performs significantly better in macromolecular refinement.

The standard macromolecular refinement programs, PROLSQ(Konnert & Hendrickson,
1980), TNT(Tronrud, Ten Eyck & Matthews, 1987), XPLOR(Briinger, Kuriyan & Karplus,
1987) and GROMOS (Fujinaga, Gros & van Gunsteren, 1989), minimize a residual that is the
weighted sum of squared deviations between the observed (F) and calculated (F) structure

“factor amplitudes, including a relative scale factor k, i.e. Y w(Fo-kFc)2. The refinement
programs differ primarily in minimization methods. Even though the atomic model is
improved, problems arise because such a least-squares residual is poorly justified, especially
early in refinement. As Silva and Rossmann (1985) have pointed out, what is minimized
(ignoring weights) is the rms deviation between the model electron density and the density
computed from Fourier coefficients Fpexp(iar). This deviation can be minimized either by
improving the model or by introducing systematic errors that obliterate differences from the
model in the Fpexp(iac) map. Since most macromolecular refinements have an unfavorable
parameter to observation ratio, the data are typically overfit, which means that such
systematic errors must be introduced.

The least-squares refinement target could be considered to arise from the principle of
maximum likelihood, if the following assumptions héld: the deviation between Fy and kF ¢
would have to be Gaussian, the mean deviation would have to be zero, and the standard
deviation of the Gaussian would have to be independent of the parameters of the atomic
model. This is not true, as shown below, because the errors have a (changing) phase
component. For this reason, we should return to first principles and apply a maximum
likelihood analysis to the problem of protein structure refinement, as we (Read, 1990) and
Bricogne (Bricogne, 1991; Bricogne, 1993) have suggested. Garib Murshudov (this volume)
is also working on an implementation of maximum likelihood. In another crystallographic
context, that of multiple isomorphous replacement, a maximum likelihood treatment has also
been applied with good results (Otwinowski, 1991).

75



Devising a likelihood function

The principle of maximum likelihood formalizes the idea that the quality of a model is
judged by its consistency with the observations. To say that a model is consistent with an
observation means that, if the model were correct, there would be a reasonably high
probability of making an observation with that value. Taking all the relevant observations as
a set, then, the probability of making the entire set of observations is an excellent measure of
the quality of the model. If we assume that the observations are independent, the joint
probability of making the set of observations is the product of the probabilities of making
each independent observation. This joint probability is the likelihood function.

L=[]p(Fo:Fc)
hkl

Since it is more convenient to work with sums than products, one typically works with the
logarithm of the likelihood function. As well, the maximization problem can be turned into a

minimization problem by multiplying by negative one. Therefore, defining A = —In(L)

gives the following:
= - In(p(Fp:Fc))
hkl

In the case of crystallographic refinement, it is not strictly true that the diffraction
observations are independent; if they were, direct methods and density modification would
not work. There is doubtless much useful information to be gained by working with higher
order collections of structure factors (Bricogne, 1993) but, as we will show, useful results are
obtained even when independence is assumed.

To apply maximum likelihood, one must start from the probability of making a
measurement, given the model, its errors, and the measurement errors. We have shown
previously that various sources of random error in the model have equivalent effects on the
probability distribution for the true structure factor, whether the errors are in atomic positions
or temperature factors or whether there are missing or extra atoms; in each case the
distribution of the true structure factor is well approximated by a Gaussian distribution
centered on DF. (Read, 1990). (D can be considered, roughly, as the fraction of the
calculated structure factor that is correct.) In the case of acentric structure factors, which

make up the bulk of data for macromolecular structures, the distribution p,(F; FC) is a two-
dimensional Gaussian in the complex plane, while for centric structure factors it is a one-
dimensional Gaussian (p,(F;Fc)).

pa(F:Fc)=— 7 exp('(L——Df_c)iJ

TEC), €0,
2
1 (F-DF¢)
F;F exp| —
P. ( C) \[2”80_1\ XP[ 280’% J

» &= expected intensity factor
4 O-A = ZN -D ZP
*Xy= dlStI‘lbuthI‘l parameter of the Wilson distribution for F (Wilson, 1949)

* X, =distribution parameter of the Wilson distribution for F¢
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The probability of the true structure factor amplitude F, conditional on the calculated
amplitude F, is obtained by integrating over the unknown phase difference to give the

following:
2F F? + D*F? 2FDF
po(F;Fc) = 2CXP(" —< 11, =<
€0,

2 F? + D*F2 FDF_
FiF.)= {——-ex ~——— |cosh
pe(FiFec) nEcS p( 2e02 £0x

where oﬁ =2y —DZZP

The probability distribution required to apply maximum likelihood, however, is the
probability of the observed diffraction measurement given the calculated diffraction
measurement, as the true value is not known. We have used two methods to approximate this
distribution, differing in the level of approximation and in the distribution assumed for the
observational error. In the first method (MLF1), the measurement error is assumed to be
Gaussian in structure factor amplitudes, and a Gaussian approximation is made for the
resultant combined distribution, expressed in terms of structure factor amplitudes. In the
second method (MLF2), the measurement error is assumed to be Gaussian in the intensities,
and a series representation of the resultant combined distribution is expressed in terms of
structure factor amplitudes squared.

MLF1: An amplitude-based likelihood function

If the probability of the measurement error is assumed to be Gaussian in structure factor
amplitudes, with standard deviation OF, the required probability distribution, p(F:F ), 1s
obtained by convoluting p(F;F) by p(F — F).

p(Fo3Fc) = p(F;Fc)®p(Fo ~F)

As far as we have been able to determine, there is no analytical solution to this
convolution for the important acentric case. (A series representation could be derived
similarly to MLF2, as discussed below. We believe that it is better to use MLF2, if one goes
to the effort of computing the series representation.) However, a good Gaussian
approximation can be obtained using the first two central moments of the distribution. The
expected value for the acentric case is given by the following:

D?*F?
(7o) = ek of 4122

For the centric case, the expected value is:

2 22
(Fo) = 2603 o _1 1 _DFC
0 T 2’2" 2¢02

In these expressions, ®(a,b,z) is Kummer's confluent hypergeometric function, also denoted
by F,(a,b,z). The variance for both the acentric and centric distributions is given by the
following:

01%41, = <(Fo “<F0>)2>

= €0 + 0% + D’FZ ~(Fo)’
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As F¢ increases, O‘%M tends towards 80‘2 + O‘%- in the centric case, or %80‘2 + 0,2; in the

acentric case because, in the limit, only the component of model error parallel to F¢
contributes to the error in the amplitude. When these moments are used to construct a

Gaussian approximation, the negative log likelihood function (A) is:

A ==Y in{p(FoiFc)) =~ In| e (Fo={Fo))”

exp| —
27Oy 2073,

= %%ln(Zn)+ln(0‘ML)+zc‘:%l_L(Fo _(F0>)2

The quality of the Gaussian approximation can be judged from a comparison of
distributions shown in Figure 1.

Po{|FoklFcl)

A

Figure 1. Comparison of the Gaussian approximation to p(FO;FC) (thin lines) with the

exact form determined by numerical integration (thick lines). Three pairs of curves are
shown, corresponding to weak, average and strong reflections with D=0.7. This figure,
Figure 2, and some of the mathematical derivations were made with the assistance of the
program Mathematica (Wolfram, 1991).

%ol

If o), is assumed to be relatively constant within a cycle of refinement, maximum

likelihood refinement can be approximated as a modified least-squares refinement, in which
the following target is minimized.

1 2
WSSQ = Y, ——(Fo —(Fo))
hkl OML :
This target can readily be implemented in any crystallographic refinement program that uses
a least-squares target by weighting each term by 1/0'/2%’ replacing kF . with (F0> and
oF, AF,) JF
replacing —£ with —<—Ol—§-, where p is any parameter of the model being refined. The
dp JF- Jp

required derivative for the acentric case is given by
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A [ 0% oy, 0
eox 2 - eoa

and for the centric case by

NFo) _ [2 o 13 _ D*F
= D’F, @\ 1,3,-
JF ¢ necy 2603

Note that the F term eliminates the singularity in the derivatives that can arise in least-
squares refinement on amplitudes (Schwarzenbach et al., 1989).

MLE2: An intensitv-ba likelihood function

The second method that we use to derive the required probability distribution works in
terms of structure factor amplitudes squared (J = F2). Two advantages are attained by
working in J instead of F. First, measurement errors frequently lead to a negative net
intensity, which is reduced to negative J; when these legitimate observations are transformed
to F, one has the choice of omitting them, replacing them with zero, or replacing them with a
non-zero Bayesian posterior value (French & Wilson, 1978). By working in terms of J, this
problem is avoided. Furthermore, a Gaussian measurement error is better justified in J than
in F. In principle, maximum likelihood is insensitive to variable transformations such as
from F to F2 (Edwards, 1992). If MLF2 did not differ from MLF1 in the distribution
assumed for the measurement error, the two likelihood functions would differ only in
precision of the approximation.

The required probability distribution p(JO;JC) is derived by multiplying p(J ;JC) by a

Gaussian probability for the measurement error with standard deviation oy, and integrating
over the true structure factor amplitude squared (/).

p(Joidc) = J p(Jo:J)xp(J5Jc) dI

A series representation of p(JO;JC) can be computed. For acentric reflections the
distribution is

Jo:J
Pallo c)= \/ZHSO'A ( 2012- eoﬁ

2
XZ[DZJCGJ L (o?—Joeol) D_n_{of—JoeoiJ

' DZJC]

— €Xp
: 2 4 2
o\ € O'A n! 4e“c eole}-

D_,_(x) is a parabolic cylinder function. For centric reflections,

1 J5 D%
P A\Jpilc) = —F——=8xp| ~——F5 - —
ol ) 2./ mec;0; 207 2¢04
2
- ( D? JCG " (67 —270¢03) 0% -2J,€0;
xz “exp 2502 D_,,_L —
r, (2n)! 16”0, 0; 2| 260,0;
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/_\fteg' eliminating terms that are constant within a cycle of refinement, the negative log
likelihood for the acentric case is

: =(D%co; ) 2_ jpeat)’ 2_
A=Eln(80'i)+D Jc—ln E(D JCUJ) —l-exp (O", o£O'A) D_n_l[o-j Joeo'i]
hkl

2 4 2 2
eo4 =0 n! 4€°0,0;] EOXO;

and for centric reflections,

A=Y }in(ec)+ D

hid 260,
- n 2 22 2
In 2 Dzlcoj 1 exp (O'j —ZJOSO'A) o?—ZJoeoA
“ 2¢etoy | @2yt 16e20407 3| 2e0i0;

Derivations and details of implementation of MLF1 and MLF2 can be found in Pannu &
Read (submitted).

Some essential differences between least-squares and maximum likelihood refinement
can be seen in a comparison (Figure 2) of the derivatives of the target functions, which lead
to the atomic shifts in the refinement process.

Jarget
AFc| 100 200 300 abo 500 500

-0.02}

~0.04¢L

Figure 2. Comparison of the derivatives, with respect to F for one reflection, of the
refinement targets for least-squares (thin line), MLF1 (thin curve) and MLF2 (thick curve), as
a function of F-. The example (the 2-12-17 reflection of the gTIM test case, discussed
below) is chosen to illustrate the degree to which the least-squares and maximum likelihood
targets can differ. In XPLOR, the derivative contributes to a force on each atom to move in a
direction that will decrease the refinement target. At the start of refinement, F¢ is 395.6
(indicated by the dashed vertical line); according to the least-squares target, atoms should
move to decrease F - while, according to the maximum likelihood targets, atoms should move
in the opposite direction to increase F. Note that, if F~ were zero, the derivative for the
maximum likelihood target would also be zero, reflecting the fact that the true phase would
be completely uncertain and that a desired direction of shift could not be inferred.
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Calibration of structure factor probabilities

The value of the likelihood function depends on the parameters of the atomic model. It
also depends on the resolution-dependent parameters D and 0'[23 , which characterize the effect

of model error on the structure factor probability distributions. (In fact, D and 0'2 are not
independent and can each be computed from the single parameter oa (Read, 1990).) In
principle, it would be best to optimise the likelihood function by adjusting all parameters
simultaneously, including coordinates, B-factors and o5 values. Unfortunately, a problem
arises if the op values are refined using the same data against which the model is refined: the
poor parameter to observation ratio allows overfitting of the amplitudes, which results in an
overestimation of o5 and hence an underestimation of the errors in the calculated structure
factors (Lunin & Urzhumtsev, 1984; Read, 1986). This leads to a positive feedback cycle in
which the pressure to overfit becomes stronger. In our first attempt to implement maximum
likelihood refinement, this problem was ignored. As the quality of the likelihood function
depends strongly on the accuracy of oa estimates, the results were unimpressive.

The solution we have adopted is to use cross-validation data (a minority of data omitted
from the refinement target) in an active way to provide unbiased estimates of structure factor
accuracy. These data are normally used to compute Rgee, an unbiased measure of refinement
progress (Briinger, 1992). The use of cross-validation data to estimate o, is complicated,
however, by the fact that stable estimates require 500 to 1000 reflections in each resolution
shell, especially when the true value is low (Read, 1986). To overcome the problem of
instability, we exploit the fact that o varies smoothly with resolution. A simple correction,
in which a penalty is applied when a o5 value lies far from the line connecting its two
neighbours, is sufficient (R.J. Read, unpublished).

A better solution would be to refine the o values as parameters in the refinement, but to
make allowance for the fact that they are biased estimates, in using them in the likelihood
function. Lacking a theoretical basis for the correction for bias, however, this solution cannot
yet be applied. We are currently studying the effect of refinement bias on the structure factor
distributions, to lay the groundwork for such an improved treatment.

Test Refinements

‘ The two maximum likelihood targets have been implemented in the program XPLOR

(Briinger, Kuriyan & Karplus, 1987). Results from runs of the modified XPLOR on two test
systems will be discussed here. In each test, the suggested weighting factor (WA) for the
diffraction terms in the target, obtained by comparing the gradients from the diffraction and
energy terms (Briinger, Karplus & Petsko, 1989), was divided by two.

Streptomyces griseus trypsin.

The crystal structure of Streptomyces griseus trypsin (Read & James, 1988) (SGT) was
solved originally by molecular replacement, using the structure of bovine trypsin (Chambers
& Stroud, 1979) (BT) as a search model. In order to compare the power of the maximum
likelihood and least-squares targets in a case where the phase errors are known exactly, we
used data calculated from SGT as error-free amplitudes F,, and a superimposed model of BT
as a starting structure. Since these two proteins share about 33% sequence identity, BT
provides a relatively poor model that will only be capable of refining into a local minimum.

Data from infinity to 2.8A resolution (5732 reflections, of which 578 were flagged as
cross-validation data) were used for both refinements. (One often omits the low resolution
data for least-squares refinement because of the problems caused by disordered solvent, but
in this case there is no disordered solvent.) Table I shows the results obtained in the different
refinements. While none of the refinements could achieve an accurate model, owing to the
inadequacies of the starting model, the maximum likelihood targets gave more than twice as
large an improvement in the average phase error. Note that, owing probably to the small
number of reflections used in this case, Reee provides a weak indication of phase accuracy.
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Table 1. Refinement statistics for SGT test case. The starting model (BT superimposed on
SGT) was refined against calculated SGT data in two runs of XPLOR, identical except for
the target function. In total, 420 cycles of energy minimization refinement were carried out.

Start Least-squares MLF1 MLF2
R-factor 0.515 0.403 0.416 0.422
Rfree 0.542 0.511 0.525 0.528
Mean phase error 62.2° 60.0° 56.7° 56.5°
Mean cos(phase error) 0.365 0.394 0.436 0.437

Trypanosoma brucei glycosomal triosephosphate isomerase.

At an intermediate stage in the refinement of the glycosomal triosephosphate isomerase
(gTIM) from Trypanosoma brucei (Wierenga, Noble, Vriend, Nauche & Hol, 1991),datato a
resolution of 1.83A became available to replace the data to 2.4A resolution that had been
used to that point (Wierenga, Kalk & Hol, 1987). We tested the three refinement targets on
this intermediate model, using the observed diffraction data (model and data kindly supplied
by Dr. R.K. Wierenga). Of the 38812 observed amplitudes, 1014 were flagged randomly as
cross-validation data. Because this is a real data set measured from a crystal with disordered
solvent, data from infinity to 8A resolution were omitted in the least-squares refinement,
while they were used in both maximum likelihood refinements.
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Figure 3. a) R-factors through test refinements of gTIM. The runs were identical except for
the target function and the treatment of low resolution data; for the least-squares refinement,
data from infinity to 8A were omitted, while they were included for both maximum
likelihood refinements. In each case, 250 cycles of energy minimization (EM) refinement
were run, followed by 30 cycles of B-factor refinement. The solid lines indicate R-factors for
the least-squares target, the dotted lines indicate R-factors for the MLF1 target, and the
dashed lines indicate R-factors for the MLF2 target. Rpree for least-squares; downward
triangles, Rree values for the three different target functions are represented by circles, and R
values are represented by triangles. b) Phase accuracy after gTIM test refinements. The
phase accuracy is computed as the mean cosine of the phase error, which is comparable to the
mean figure of merit. Triangles correspond to the starting model, squares to the least-squares
model, diamonds to the MLF1 model, and circles to the MLF2 model.

As shown in Figure 3, both maximum likelihood target functions achieved a
substantially greater improvement in the model, measured by both Rfree and phase
differences with the final model. As one might expect from the increased precision of the
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approximation, the MLF2 target gives significantly better results than MLF1. This
improvement is achieved for a modest computational cost. Compared to an equivalent
refinement with the least-squares target, the MLF1 target requires about 1% more computer
time, while the MLF2 target requires about 10% more computer time.

Conclusions

While the current implementations of maximum likelihood refinement already provide
significant benefits, a number of improvements can be foreseen. First, the algorithm for the
computation of o4 does not take into account measurement errors. Either of the likelihood
functions derived here, MLF1 or MLF2, can be used to compute oa values that take into
account measurement errors, and these modified likelihood functions will be implemented in
the SIGMAA algorithm. As is clear from the variance term in the Gaussian approximation
MLFI1, observational error has little influence on the likelihood function unless the model is
quite accurate. Nonetheless, it will become significant at the end of refinement and a proper
treatment will be important to obtain an optimal final model.

Arbitrary relative weights between diffraction and geometry terms should not be
required, in principle, if each is introduced to maximum likelihood through the appropriate
probability distributions. However, we have found that some overweighting of the
diffraction terms, relative to the theoretical value, is needed to achieve convergence. This
may be necessary because the inevitable overfitting of the diffraction amplitudes alters the

distribution p(F; Fc)- In various tests, the comparison of gradients has led to weights that

are increased by factors between 4 and 50, with higher weights being required for less refined
models at lower resolution. Further tests will be required to decide whether these relative
‘weights are optimal.

Finally, the maximum likelihood approach allows one to include, in a sensible way, any
combination of information. We believe that considerable scope for improvement exists in
the simultaneous refinement of structures, for instance, native with liganded, or native with
heavy atom derivatives. In such a refinement, all observations would be fit simultaneously,
using models that are restrained to resemble one another to a degree required by the
relationships among the measured sets of structure factors.
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Maximum-Likelihood Refinement of Incomplete Models with BUSTER + TNT.
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0. Introduction.

The Bayesian viewpoint has long suggested that structure refinement should be carried out by
maximising the log-likelihood gain LLG rather than by minimising the conventional least-squares
residual [1,2,3] : only the maximum-likelihood (ML) method can take into account the uncertainty
of the phases associated to model incompleteness and imperfection by suitably downweighting the
corresponding amplitude constraints. It was predicted [3,4] that ML refinement would allow the
refinement of an incomplete model by using the structure factor statistics of randomly distributed
scatterers to represent the effects of the missing atoms, in such a way that the latter would not be
wiped out; and that the final LLG gradient map would then provide indications about the location of
these missing atoms. As will be shown below, these predictions have now been confirmed by actual
tests.

The section ends with a discussion of the two main concerns at the moment in the fields of
structure refinement and validation where Bayesian methods have much to offer, namely (1) getting
better reliability indicators for the final results of structure refinement, and (2) ensuring that these
indicators are effectively optimised during refinement.

1. Shortcomings of least-squares, and current remedies.

In small-molecule studies, where the data to parameter ratio is huge, the error-covariance matrix
gives a wealth of accuracy estimates, which can be cast into more readable form (e.g. TLS analysis
of thermal parameters). The Luzzati error model and plot [5] can also be used to estimate final
positional accuracy.

With macromolecules, however, the data to parameter ratio is never huge, even with restraints.
In these circumstances least-squares (LS) structure refinement can produce overfitting artefacts by
moving faster towards agreement with moduli than towards correctness of the phases, because its
shift directions assume the current model phases to be error-free constants. R-factors and Luzzati
plots then become misleading. Furthermore, when the model is very incomplete, density for the
missing part tends to disappear rather than improve during LS refinement.

The current remedies rely on cross-validation (CV) [6] as a powerful device for detecting the
onset of overfitting. It is based on the simple notion that overfitting amounts to fitting "noise" rather
than “signal” in the data, which causes a loss of predictive power towards data not used in the fit. It
must be borne in mind, however, that using CV in this way as a stopping criterion in a LS
refinement only guarantees optimality along the least-squares path: it does not guarantee that the
solution reached is optimal in a global sense. Assessing the accuracy of the results in the absence of
an error-covariance matrix is not straightforward; the safest method available at present for

estimating r.m.s. coordinate error seems to be a Luzzati plot from cross-validated 6 values .[7]
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2. Seeking a more radical cure.

Improvements on the current state of the art (least-squares refinement with cross-validation by

RF®) seem desirable in two related directions, in both of which the fundamental techniques of
structure factor statistics occupy a central position.

Firstly, since the LS path is deflected towards a premature fit to the moduli by excessive
confidence in the current phases, it is natural to think of a feed-back mechanism whereby the current
estimate of model error would be converted into a representation of the uncertainty on the phases, so
that the latter could be used with more caution. Exercising this caution, however, necessarily
involves altering weights (variances), which is not allowed within the least-squares method: the
latter must therefore be abandoned in favour of the maximum likelihood (ML) method (see a similar
argument about the treatment of non-isomorphism in §2.4.1 of [8]).

Secondly, since in the ML method the model now parametrises its own uncertainty, the question
arises of choosing an adequate error model. It will be argued that the Luzzati error model is not
suited to the heavily-restrained macromolecular setting, and that a new class of statistical models is
required. ’ N - ’

3. Maximum Likelihood vs. Least-Squares.

ML refinement offers an attractive generalisation over LS [1,2,3,4] by allowing the refinement
of parameters which modulate the variances of the model structure factors: the latter are no longer
handled as values but as probability distributions, in which variances and covariances can represent
both model imperfection and model incompleteness. According to the standard protocol outlined in
[1] the probability distributions for model structure factors are integrated over the phase to yield
predicted distributions of model amplitudes; substituting the observed values of these amplitudes

then yields the likelihood A of the model. All parameters can then be refined by maximisation of L

or of L =log A. The error covariance matrix is the final Hessian of L, if it can be calculated. It
should be recalled that ML estimation is only an approximation to Bayesian estimation, and that the
full force of the latter should be invoked whenever the maximum of L is not so pronounced as to
dominate over prior probability in the application of Bayes's theorem.

4. A prototype of ML refinement using BUSTER and TNT.

To ascertain the impact of taking phase uncertainty into account on the path followed during
structure refinement, we have used BUSTER [4] and TNT [9] on a test data set for crambin [10]
suffering from both model imperfection and model incompleteness, and compared the results of LS
and ML refinements from these data.

Model incompleteness resulted from taking only residues 1-27 (60% of the atoms) as the
fragment to be refined; the remaining 40% (residues 28-46) was modelled through a non-uniform
distribution for the missing atoms, defined by a mask for that region which had been extensively
smoothed then blurred by a B-factor of 250. The expectation values and variances for the structure
factor contributions from this pool of random atoms were calculated within BUSTER according to
the equations in §2.1.0 of [4].

Model imperfection was introduced by heating fragment 1-27 to 1000°K then regularising it,
using XPLOR [11], thereby creating positional errors with an r.m.s. value of about 1.0A. This
imperfection was treated statistically through a Luzzati model parametrised by a refinable

"imperfection B factor" B™Pf
isomorphism in heavy-atom derivatives (see §2.4.1 of [7]). This B

, similar to the quantity B8 used in the parametrisation of non-
impf . . .
intervenes in the calculation
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of expectation values (F'mpf(h)> and variance parameters o’zmpf(h) for the structure factor
contributions from the imperfect fragment according to:

(F™m)) = D) x F™m) (1)
. 2
™m) = (1-Dm)) x (|F(n) )d: @)
where D(h) = ex [ 1 gimpf (g%y2
- p T4 B (dh) (3)

The expectation values for the imperfect fragment and random atoms contributions, and the
variances or covariances caused by imperfection and incompleteness, are added and used as
arguments of elliptic Rice likelihood functions [12], in combination with any experimental phase
information which may be available.

Refinement was carried out against 1.5A synthetic data calculated from the correct whole
crambin structure, without solvent, with 3% r.m.s. noise added. The reference LS refinement was
performed using TNT in the conventional way. The ML refinement proceeded as follows. At each

cycle BUSTER refined the values of overall scale and B factors and of BimPf by maximum-
likelihood, and calculated the value, gradient and Hessian of the log-likelihood gain L with respect

to the quantities F™(h). This “osculating LS” approximation to L was passed on to TNT where
is was used to generate parameter gradients (AGARWAL command) and curvatures, and to carry
‘out one cycle of positional refinement on the fragment structure. :

In these conditions ML refinement clearly outperformed LS refinement, giving a mean-square
distance to the correct positions of 0.176 (ML) instead of 0.415 (LS). Examination of histograms of
.. positional errors showed that, apart from a small number of outliers corresponding to model atoms
* near the boundary with the missing region, the ML fit is much tighter than the LS fit.

Visualisation of the time course of the refinement showed, as anticipated, that not only the end
point but the entire path of the refinement is altered by switching from LS to ML. This may be
understood by noting that the contribution to structure factor variances from model imperfection,
given by eq. (2) above, increases sharply with resolution, so that high-resolution contributions to the
gradient maps are filtered out in the early stages then gradually switched on as refinement proceeds.
This feature leads to considerable increases in the radius of convergence of the refinement.

Furthermore the ML method produced a final LLG gradient map displaying highly significant,
correct connected features for the missing part (40%) of the molecule, while the final LS difference
map showed no such features (see Figs. 1 and 2). This enhances the possibilities of bootstrapping
from an otherwise unpromising molecular replacement starting point to a complete structure.
Essentially the same behaviour was observed at 2.0A resolution, and with experimental rather than
calculated data.

Other prototypes for ML structure refinement have been built and tested by Read [13] (using
XPLOR and an intensity-based LLG) and by Morshudov [14] (using PROLSQ [15] and the Rice
LLG). The BUSTER+TNT prototype has the advantage of being able to use external phase
information by means of the elliptic Rice function [12], as well as prior information about non-
uniformity in the distribution of the missing atoms in incomplete models. It also allows the ML
refinement of an incomplete model to be carried out in conjunction with phase permutation or phase
refinement for those strong amplitudes which are most poorly phased by that model, i.e. have the

largest renormalised ‘E"s . The latter feature establishes a seamless continuity between the middle
game of structure determination and the end game.
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5. Limits of the Luzzati model.

In the test calculations reported above, examination of partially converged models during or after
refinement at lower resolution leads to the obvious conclusion that questions of accuracy concerning
the results of macromolecular refinement at medium resolution are fundamentally different from the
same questions posed and studied for small molecules at high or very high resolution. In the latter
case it is reasonable to treat the model errors on the positions of different atoms as statistically
independent and thus to use Luzzati's treatment for the errors they induce on the structure factors.
Macromolecular refinement, on the other hand, is so heavily restrained that the model positional
errors at any stage are highly correlated. This affects such crucial quantities as the effective number
of degrees of freedom in the error statistics, and the magnitude of the uncertainty along each of these
degrees of freedom. The Luzzati model is then inappropriate as a means of relating positional error

statistics to structure factor statistics, and hence as a means of constructing a good likelihood
function for ML refinement.

6. A new class of error models for macromolecular structures.

In a macromolecular refinement, model positional errors will be correlated through “regular
perturbations” of a restrained macromolecular structure, i.e. perturbations compatible with the
restraints which propagate positional errors between atoms or groups of atoms. New error models
are required for deriving the structure factor statistics associated to random regular perturbations.

This may be illustrated by a simple physical analogy, for the physical aspects of which the reader
is referred to [16]. The assumption of statistically independent random perturbations of atomic
positions underlies not only the Luzzati model in structure factor statistics, but also the Einstein
model of thermal motion in crystals and the Debye model of thermal effects on scattering. What is
now needed in the field of structure factor statistics is the equivalent of the Born & von Kérman
lattice-dynamical model of thermal motion, and of the use of these lattice normal modes in the
parametrisation of anisotropic B factors and of thermal diffuse scattering.

An attractive possibility — if computer limitations can be ignored — would be to use the softest
lattice ‘normal modes’ with wave vector =0 from the Hessian matrix of the restraint function and
parametrise the joint positional uncertainty model in terms of the variances of normal coordinates
along these modes. This correlated positional error model could then be converted into a
parametrised joint probability distribution of complex structure factors, then of amplitudes, which
would yield the best likelihood function for refining both the structural model parameters and the
mean-square normal coordinates describing the errors. At the end of the refinement, this error model
would embody the description of the accuracy of the refinement results.

7. Maximumd-likelihood refinement for non-macromolecular problems.

The two main sources of bias in macromolecular LS refinement results, namely the low
observation-to-parameter ratio and the inadequate treatment of phase uncertainty, are also present in
other fields of crystallography, in particular in Rietveld refinements of powder structures [17] and in
multipole refinements of accurate electron densities [18-21]. In the powder case the notion of phase
can be generalised to that of a hyperphase,[2] the loss of hyperphase information comprising both
that which results from the overlap of different Bragg reflexions and from the ordinary loss of phase
for these Bragg reflexions. In this instance, hyperphase-mediated bias is even more pernicious than
the phase-mediated bias considered above and is the likely cause of numerous recently diagnosed
pathologies in test Rietveld LS refinements. The probability distributions and likelihood functions
for powder data derived in [2] will enable the incorporation of hyperphase uncertainty into the
refinement and yield a maximum-likelihood Rietveld method which can be expected to cure the
observed biases of the current LS method.

88



8. Validation and error models.

The use of cross-validation in the choice of refinable model parameters and in the validation of
refinement results [7] has so far been based on the conventional crystallographic R-factor, which is
not a particularly optimal criterion from the statistical point of view. In particular, concern has arisen
about possible dangers of its use in the presence of non-crystallographic symmetries, since data
belonging to the test set may happen to be strongly correlated to data which are being fitted, thus

creating misleadingly low values for the free R-factor. The problem is clearly that the R-factor

definition makes no reference to any predictable variability in statistical dispersion from one data
item to another, nor to expected patterns of correlation in this dispersion.

The Bayesian viewpoint gives an unequivocal answer to this dilemma. Retaining the idea of
cross-validation as a measure of the predictive power of a statistical model towards yet unseen data
(already present in the scheme proposed in §8.1 of [22]) it leads naturally to suggesting that the free

R-factor be replaced by the free log-likelihood gain Lfree calculated over the same test data set. This
viewpoint is none other than that formulated in [1] and [4] and does require that the predictions from
the fit of the actively used data be couched in terms of a conditional probability distribution for the

test data, from which the free LLG (e.g. from the model at the preceding cycle) can be calculated by
the standard procedure.

Since the strong correlations between amplitudes created by non-crystallographic symmetries
can be taken into account in the calculation of likelihoods [3], the use of Lfree should be immune to

the problems encountered by Rfree in this case. In less problematic cases Lfree can still be expected
to perform better, in view of the Neyman-Pearson optimality property [1], provided the likelihood
functions used are capable of correctly representing the state of knowledge (or uncertainty)

prevailing at each stage. In the refinement context this adds to the urgency of the developments
outlined in §7.

9. Conclusion.

It has been shown that maximum-likelihood structure refinement, long advocated by the first
author, is greatly superior to conventional least-squares refinement by virtue of its ability to deal
correctly with the phase uncertainties introduced by model imperfection and incompleteness. The
end results are more accurate, the radius of convergence is increased, and the final log-likelihood
gradient map gives useful indications as to the location of missing atoms.

The increase in radius of convergence may rapidly overturn the present reliance on simulated
annealing [11] as a means of getting out of local least-squares minima: the automatic “blurring” of
the LLG gradient maps in the early stages of the refinement will largely suppress such spurious
minima. It is thus conceivable that simulated annealing might be dispensed with altogether in the
future, any possible bifurcation being handled through phase permutation techniques.

The optimal performance of ML refinement will depend crucially on the design and
implementation of better statistical error models in real space as the basis for better likelihood
functions in structure factor space. Much remains to be done in this area, as well as in making better
use of off-diagonal interactions during the likelihood-maximisation process itself.
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Figure 1. The log-likelihood gradient map at the end of LS reﬁnfement. The missing
structure is drawn for reference. There is very little reliable information to help -
complete the refined partial structure.
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Figure 2. The log-likelihood gradient map at the end of ML refinement. There is
considerably more reliable information to help complete the partial structure after
it has been refined.
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Notations

|Fo| and |Fec| - experimental and calculated amplitudes of structure factors

|Eo| and |Ec| - experimental and calculated normalised amplitudes of structure
factors .

Fc = |F.je* = (A, B.)

s - vector of position of reciprocal space point [8| = 2sin 6/

o. - experimental uncertainties of structure factor amplitudes

Oen - experimental uncertainties of normalised amplitudes

f; - atomic scattering factor

Iy =N f?

N

Ec = j=P1"¢‘mt fJ?
Nabsent

Eq = Ej:l‘ f;

N,y - total number of atoms

Npresent - number of atoms used in the present model

Napsent - number of atoms not included in the present model

¢ - multiplicity of the scattering plane

T =¢(Z(l - D)+ X,)

Ar - average coordinate error

D =< cos Ars >

F, = Ef;;" D;Fi = |Fue|e®=e - weighted sum of partial calculated structure
factors

Op = E'E;'D

m - figure of merit

m should be equal to < cos A¢ > where A¢ is the phase error between the current
¢. and the true value of ¢
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m = 1) for acentric, tanh(X) for centric reflections
I(X)

where X = 22alBeliZel g1 5 centric
20cint+X

and 5{;@’%%51 for centric reflections
en

1 Introduction

The aim of this talk is to review the advantages of the maximum likelihood refinement
method over least-squares minimisation for macromolecules. As Read (1990,1996), and
Bricogne (1992,1996) have given a comprehensive description of the theory of maximum
likelihood we will give only a brief summary of the basic differences between the least-
squares and maximum likelihood approach.

Amplitude based least-squares (LSQF) minimises the following quantity against the
atom parameters and the overall scale.

> w(|Fo| - k|Fc|)* (1)

The assumption behind this is that the conditional distribution of amplitudes of struc-
ture factors with respect to the atom coordinates is approximately Gaussian. Although
LSQF have been applied successfully for refinement of crystal structures for many years
it has some disadvantages for macromolecules where the parameters are ill determined,
and the errors are often large. We will mention only three of them.

1) Determination of useful weights for the observations. Many programs now in
use use a unit weighted least-square residual (w=1) which implies that all reflections
have been measured with equal accuracy and the contribution of coordinate errors
to each reflection is the same. David Smith (1996) shows that choosing a two line
weighting scheme depending on resolution improves the refinement behaviour. But
this only partially solves the problem: these weights do not include any information of
the experimental uncertainty of reflections and they must be chosen by trial and error
methods.

2) Determination of the overall scale factor between Fo and Fc. This is an essential
first step before calculating the least squares derivatives. Most existing programs use
a form of Wilson scaling

k = koe~Bo% | (2)

which assumes that atoms are evenly distributed over the whole unit cell and that
therefore < Fo > falls off smoothly with resolution. But for macromolecules this is
not true, there is a clear distinction between buried and surface protein regions, and
between these and the solvent, which is reflected in the distribution of < Fo > .

3) Adding experimental phase information ( eg: MIR/MAD/NCS ) is not straight-
forward.

Following on from Luzzati’s (1952) distribution Srinavasan and Ramachandran
(1965) shows that when there is no phase information the conditional distribution
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of amplitudes of structure factors are better expressed as a Rice distribution where
each observation is weighted by function of 4. Estimates of these are deduced from
the agreement between |Fo| and |Fe¢|. If we use their result and add experimental
uncertainties of structure amplitudes to the ¥-s we obtain the following expression for
the log of the maximum likelihood (LLK},) ( A similar way of adding experimental
uncertainties has been suggested by Bricogne and Gilmore 1990):

Iﬂl;—:ngﬂﬁ — log Io(z%g%lgﬂ) +log(202 + )  for acentric reflections

LLKy = (3)
%)&ﬂ —Tlog cosh(%’l) + log(c2 + X) for centric reflections

where T = ¢(Z.(1 — D?) + Z,)
The version of this equation for normalised structure factors is:

En 2 Ec 2 o e .
202 I,‘::(ll—a-’l — log Io(%%%l%_) + 108(2 n T €(1 — a'i)) acentric
LLK, = (4)
Eo 2 2 Eg 3 » . .
2|(c,!,i:(1l-ali y log cosh(%) + 3log(cZ, +€(1 — 0%)) centric

Macromolecular crystallographers should already be familiar with these equations.
"Read’s program (1986) SIGMAA uses them to generate less biased coefficients for maps
calculated using phases from partial Fc-s. It is essential to get a reasonable estimate of
o4 as a function of resolution. SIGMAA does this by using equation (4) in reciprocal
space resolution shells. Each of these shells needs to include several hundred reflections
to give a reliable estimate. Another way of estimating o4 could be by fitting it to some
function of resolution as is done for the scale factor (see below).

2 Implementation within REFMAC

Maximum likelihood refinement (MLKF') has been implemented in the program REF-
MAC. At each cycle the program performs two steps. First it estimates the overall
parameters of likelihood ( 0 4-s). Secondly it uses these parameters to build the likeli-
hood function and refine the atomic parameters.

1) For estimation of overall parameters of likelihood REFMAC uses an idea sug-
gested by Dale Tronrud (1995) to find the overall scale between < Fo > and < Fe¢ >.
He uses a two Gaussian approximation for the scale factor which is based on the as-
sumption that the contributions of solvent and protein parts of the crystal to the
structure factors are negatively correlated and the scale could be better expressed as:

k = koe~Bo? (1 — k e~ B1*) (5)

Typically B, is large, and only modifies the scale at resolution below 6A. The same

idea can be used to estimate o4 and we can write:

o4 = a'A;oe'B“:(l —o4ne” B (6)
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(There is a high degree of correlation between the variables in these equations and to
get a satisfactory solution the program uses singular value decomposition to solve the
linear equations (Press et al, 1986). This method is very similar to that described by
Ten Eyk (1996). )

This representation of o4 means that only a few hundred reflections are enough to
estimate it and that one can use only the “free” reflections (Brunger 1993) for this. (In
one of our test cases we estimated o4 satisfactorily using only 200 reflections). Using
the “free” reflections means that this error estimate is less biased towards the existing
model. The program calculates the scale factor using all working reflections but it
should be noted that in the case of maximum likelihood refinement the scale factor
is only used for R-value calculations which allow users to follow the progress of the
refinement using this familiar statistic. The program also reports the figure of merit
m which should approximate the < cos A¢ >. I R

2) After estimation of the overall parameters the program performs one cycle of
atomic parameters refinement. To do this it calculates the gradient and the diagonal
terms of the second derivative matrix. For the gradient calculation it uses the technique
of convoluting the atomic density with the difference density as suggested by Agarwal
(1978) and Lifshcitz (Agarwal et al, 1980). In the LSQF case we calculate the difference

map with coefficients:

w(|Fo| — k|Fel)e*** (7)
In MLKF refinement we calculate the map with coefficients
[(m|Fo| — D|Fc|)e*)/%] (8)

Read (1986) shows that map with coefficients (8) is less biased towards the incorrect
parameters than a map calculated with coefficients (7).

At the end of a cycle the program also writes out map coefficients for SIGMAA
style (m|Fo| — D|Fc|) and (2m|Fo| — D|Fc|) maps taking care to restore missing data.
Tronrud (1996) and Cowtan (1996 ) show that absent reflections cause unpredictable
noise in map calculations which sometimes may lead to errors in interpretation. As-
suming that absent reflections are best approximated by setting them equal to their
calculated value (or in the case of maximum likelihood setting m|Fo| = D|Fc|) then
the difference contribution is zero, and the 2m|Fo| — D|Fc¢| contribution is D|Fc]|.

These coefficients are:

(2m|Fo| — D|Fc|)e**e if reflection was included in refinement

FWT = { D|Fc|e**- _ otherwise

(9)

DELFWT = { ngF o| - D|F Cl)¢‘¢° if reflection was included in refinement

otherwise

But one should be careful when restoring absent reflections in this way. This type
of map coefficients will reduce noise but may introduce bias. We believe the best way

of dealing with absent reflections is measuring them.
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3 Examples of application.

In each case described here the MKLF refinement was carried to convergence from an

existing model without any rebuilding. Results were compared to maps and phases

generated from the final coordinates provided by the authors. The examples discussed
are listed in the Table 1.

Table 1: Examples

BA2 Cytochrome ¢’ Insulin

Space group C222, P6522 P2,
Cell dimensions 52.5 77.7 238.2 54.5 54.5 181.0 53.9 64.8 48.9

90 90 90 90 90 120 90 109.81 90
Resolution(A) 2.2 2.0 1.9
Number of residues 483 125 318
Method of MIR MR MR
solution good model low homology high homology
Completeness 85% of protein atoms 25% homology all protein atoms anc
of the model no waters o 10 residues were misfitted 20% of waters
Final R-value/R-free 11.9/20.9 16.7/NA 18.4/25.2

3.1

ment from an excellent model.

Bacterial Chimaeric a-amylase (BA2). Beginning refine-

The structure of BA2 was solved by Brzozowski et al (1996) by the MIR method.
The initial and final coordinates and the data were provided kindly by Dr Lawson.
5% of the reflections were reserved for FreeR estimation before any refinement was
carried out. The initial model was built so carefully that any program could refine it
satisfactorily. Even in this case however maximum likelihood refinement gave a lower

phase error than the least-square methods (Table 2). Various map correlations to the
final Fc map were calculated. As can be seen from Table 2 the map with coeflicients
calculated using SIGMAA has a higher correlation with this map than the unweighted
2|Fo| — |Fc| map. After REFMAC there was more improvement of the map than after
LSQF followed by calculation of SIGMAA coefficients. The reason for this is partly
because phase errors are less than for the LSQF refined model and partly because m
and o4 are estimated using the free R reflections which gives a more realistic estimate
of the coordinate error. The overall m before and after REFMAC are very close to the
real < cos A¢ >. After LSQF refinement the m calculated by SIGMAA from all the
data is overestimated and hence the maps are more biased towards the existing model
than that generated from the REFMAC coefficients.
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Table 2: BA2 refinement results. MIR Model

R-value | R-free | < A¢d > | < cosA¢ > | m | mapcorrelation
Initial 0.49 0.47 56.4 0.44 0.46 ?
LSQF 0.29 0.41 41.3 0.63 - 0.76
SIGMAA - - - - 0.79 10.81
ML 0.30 | 0.38 | 374 - 0.67 0.66 0.83

3.2 Cytochrome c¢’. Preparing to rebuild from a Molecular

Replacement solution

This starting model was based on a molecular.replacement solution which had been
subjected to initial LSQF refinement using all reflections. The model used had only
25% homology to this form of Cytochrome c’. (Subsequently the structure has been
fully refined, and the coordinates have been deposited at Brookhaven (lcgn.pdb). All
comparisons use these coordinates as the final set. (Baker et al 1995). ) Ten residues
had out of register errors and another 10 residues were completely misfitted. In these
cases where an extensive rebuilding is necessary, the problem of map bias is very serious.
For the subsequent maximum likelihood refinement 5% of reflections were assigned as
“free”which were used for estimation of the overall parameters of likelihood. Again
after LSQF refinement the map calculated using coefficients from SIGMAA correlated
with the final Fc model map better than a 2|Fo| — |Fc| map (Table 3). REFMAC
was able to refine the LSQF model further and the phase error was reduced by 6
degrees. The map correlation coefficient is 5% higher than that for the map calculated
by SIGMAA coefficients. The “free R-value” increased towards a more realistic value
during refinement and the maps became less biased. After 30 cycles the m was close
to the real < cos A¢ > but still overestimated, showing the importance of assigning
"free” reflections at the beginning of refinement. The behaviour of m and the real
< cos A¢ > vs resolution (Figure 1) shows that during refinement the phases for the
high resolution shells were improved most. The 2Fo — F¢ map is seriously biased and
noisy and it would be possible to build an incorrect model through the density for a
water molecule, with the chain perpendicular to its true direction. The SIGMAA map
is better but still there is a break in the main chain and the electron density could be
interpreted wrongly. The map after REFMAC shows less ambiguous connectivity and
density for side chains and water molecules has appeared.

3.3 Cross-linked Insulin. End stages of refinement when LSQF
has apparently converged

The solution for this cross-linked insulin was found by molecular replacement using a
model with 95% homology. Data for this case were provided by Dr David Edwards.
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Figure 1: Cytochrome C’: Behaviour of m and < cos A¢ > where < A¢ > is the r.m.s
phase difference from the final model a) before and b) after MLKF refinement. Bold
~ lines show estimated m, thin lines show < cos A¢ >. The fluctuation in < cosA¢ >
at low resolution is probably due to the small number of reflections in these bins; it is

not a general property for the proteins studied.

Least-square refinement and rebuilding cycles had given an R-value of 24% and free
R-value 34%. Maximum likelihood refinement using REFMAC reduced the R-value
by 4% but the free R-value dropped even more - by 6% (Table 4). It is interesting to
note that geometric parameters such as r.m.s. deviation of bond lengths from ideality
also improved. The plot of R-value vs resolution (Figure 3) shows that there is more
improvement at high resolution than at low resolution. The reason for this is that the
fit of the high resolution structure factors depends on the accurate position of atoms
but the low resolution data fit depends on large movement of structure or a more
complete description of the model. To improve low resolution one needs to rebuild the
model or add new features such as waters. After rebuilding and further refinement by
REFMAC the R-value was reduced to 18% and free R-value to 25% (Edwards, Personal
communication). There are two Zn atoms in this insulin structure. It is well known
that the position of heavy atoms are more accurately determined than that of lighter
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Figure 2: Cytochrome C’ Electron densities calculated after LSQF and MLKF. Bold
lines show final coordinates, thin lines show coordinates included in refinement. This
loop was completely misplaced. a) 2|Fo|—|Fc| map b) SIGMAA map and c) REFMAC

map.
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Table 3: Cytochrome ¢’ refinement results

R-value | R-free | < A¢ > | <cosA¢ > | <m > | mapc
LSQF 34.8 NA 44 .4 0.58 - 0.66
SIGMAA - - - - 0.72 | 0.73
ML 31.2 37.1 38.0 0.66 0.70 0.79

atoms. This may cause problems during refinement owing to the assumption that all
atoms have same expected positional error and error of B-values. An approach for

dealing with this problem will be discussed in the next section.

Table 4: Cross Linked Insulin.

R-factor | R-free | rm.s.d(A) | r.m.s.a(o0)
LSQF | 243 | 338 | 0.021 41
ML 20.0 28.1 0.018 2.6

r.m.s.d - r.m.s. deviation of bond distances from ideal ones

r.m.s.a - r.m.s. deviation of bond angles from ideal

4 Implemented but untested features of REFMAC

1. Inclusion of phase information known prior to refinement. The likelihood function

can be generalised as following:

(el ;:,"ﬂ > nFc ~log 5
FolD|Fe
PoPSDURR) _jog 5 P(gr)e A5 g 1 Liog(o? + 3) centric

2(0?+Z

3|Fo|D|Fe
™ p()e s g4 L 1og(202 + 5)

acentric

LLK, = {

where X = ¢(Z(1 - Dz) + X;), ¢o and ¢ =

centric reflections

¢o mod 7 are two possible phases of

It is easy to write a version of this equation for normalised structure factors.

It means now one can use experimental phases and figure of merits where they are
available. If m = 1.0 (ie,the phases ¢ are assumed to be known exactly), then the Rice
distribution transforms to a Gaussian distribution for actual structure factors.

2. Sub-dividing the Fc contributions.

In some cases there is an advantage in breaking the Fc¢ into several components
and assigning different likelihood functions to each component. The equations then

become (for acentric reflections only.):

IFolz + Ich|2 2|Fol| Fye|
LLK) = 507 1 T g](2 TiT,, ) + log(202 + Zuc) (11)
where F,. = E;v_’f" D;Ffand By = ¢ f:l“" 2;(1—- D?). Summations are over all

possible partial structures.
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Figure 3: Insulin: Behaviour of R-value and R-free vs resolution a) before and b) after
REFMAC. Bold lines show R-value, thin lines show R-free. Note the improvement in
the R-value at high resolution.

To write the same equation when some prior distribution for phases is available is
straight forward.

The program will scale all available structure factors together and will find all
parameters of likelihood. In particular this is advantageous when some part of the Fec
is derived from a metal cluster. The error associated with such a heavy atom is much
smaller than that of the protein atoms. Another way to exploit this flexibility is to
calculate the partial contribution to F¢ from by Fourier-transforming density where it
is not possible to place atom sites accurately. For example this could done for solvent
shells or for part of the structure that cannot yet be built into a experimentally phased
map. Another way of using of this expression of likelihood could be to weight domains
with markedly different average B values independently.

Using the above features and programs available in CCP4 (1994) it is possible to
design different type of refinement or phase improvement procedures.
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3. Refinement of the cell parameters. These must be refined using the fit to the
geometric restraints. The crystallographic coordinates of the atoms are not sensitive
to small changes in cell dimensions, but such errors mean that the conversion of the
fractional coordinates to orthogonal coordinates is not reliable, and this leads to error
in the deduced geometric characteristics of the molecule. More tests of this refinement

have been done.
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X-RAY ANALYSIS OF DOMAIN MOTIONS IN
PROTEIN CRYSTALS

D. S. MOSS, 1. J.. TICKLE, O. THEIS and A. WOSTRACK
Department of Crystallography, Birkbeck College,
Malet Street, London, WC1E 7HX, England

1 Introduction

The resolution of most X-ray structure analyses of macromolecules precludes the de-
tailed anisotropic analysis of individual atomic displacements such as are routinely
carried out in the structure determinations of small molecules. However, macro-
molecules contain groups of atoms which move approximately as rigid bodies and
by using this prior knowledge the anisotropic displacements of these groups can be
determined. The domains and folding motifs of proteins are obvious candidates for
rigid-body treatment. The main-chain atoms of a-helices in proteins and the bases,
ribose and phosphate moieties in nucleic acids may also be regarded as rigid to a
ﬁfst approximation. The planar groups of protein side chains such as phenyl or
imidazole rings are examples of putative rigid bodies if data of sufficient resolution
are available.

The use of rigid groups in the analysis of atomic mean-square displacements was
pioneered by Schomaker and Trueblood (1968) who used mean-square translation
(T), libration (L) and screw-rotation (S) tensors to describe the rigid body motions
of groups of atoms in small molecules. This TLS model has been used in a number
of macromolecular refinements to produce estimates of mean-square rigid body dis-
placements. Holbrook and co-workers have applied the TLS model to a dodecamer
of DNA (Holbrook and Kim, 1984; Holbrook et al., 1985). Applications of the TLS
model to the proteins ribonuclease A and papain have been made by Howlin et al.
(1989) and Harris et al. (1992), respectively.

Errors in a TLS analysis may arise from two distinct causes. Firstly the groups of

atoms to which the model is applied never constitute a strictly rigid unit. This will
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generally cause a systematic error in the TLS parameters although some non-rigid-
body motions are also compatible with the model. Such cases imply that the tensor
components cannot be interpreted solely in terms of rigid body displacements. The
second, and more important cause in practice, is the paucity of data. This causes
random errors in the tensor components which are larger in the case of smaller rigid
bodies whose displacements have a smaller effect on the diffraction pattern.

The derivation of error estimates for individual parameters from least-squares
analysis of X-ray data is notoriously difficult in the case of macromolecules. The
difficulties arise primarily from the fact that the usual structure factor model poorly
represents the less well ordered parts of the macromolecule. Further problems arise
from the restraints or energy terms which have to be used in the refinement of such
structures. These cause difficulties in estimating the number of degrees of freedom
which should be used in scaling the standard deviations obtained from the inverse
of a least-squares normal matrix. Errors in TLS analyses are discussed by Butler
et al. (1994).

This paper considers the estimation of TLS parameters from least-squares refine-
ment and illustrates the method by reference to TLS refinement of the rigid body

displacements of the two domains of the eye-lens protein yB-crystallin.

2 Method

The structure of vB-crystallin (previously called y1I-crystallin) had been determined
from X-ray diffraction data collected at the Daresbury synchrotron using photo-
graphic film (Wistow et al., 1983). The refined co-ordinates resulting from this work
(Najmudin et al., 1993) were the starting point of the work of the TLS refinement.
The crystal data for the protein is given in table 1.

vB-crystallin is composed of two globular domains related by a pseudo dyad.
For each of these domains, twenty TLS parameters were obtained by lea.st-sduares
refinement using the program RESTRAIN (Driessen et al., 1989). Initial values
of the TLS parameters were set to zero except for the diagonal elements of the T
tensor which were set to 0.1 A? and the diagonal elements of the L tensor which
were set to 1 deg?. Atoms which were not part of the rigid groups (all side groups
and main-chain atoms which are in external loops) were given isotropic temperature
factors as determined by conventional refinement. Eight cycles of refinement were

carried out at which point the shifts in the TLS parameters became small compared
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Table 1: Crystal data of yB-crystallin

Data resolution (A) 1.47
Space group P4,2,2
Molecules per asymmetric unit 1
Number of residues 175

Number of non-hydrogen protein atoms 1474
Number of solvent molecules 234
PDB code* lgcs

*Code associated with the co-ordinates deposited in the Protein Data Bank

with their standard deviations. The final conventional R-factor was 19.5 %. A full
account of the TLS refinement will be published elsewhere.

Tensor components for each of the domains were then transformed to a co-
ordinate system with the origin on the centre of reaction (Schomaker and Trueblood,
1968) and axes parallel to the eigenvectors of the L tensor. These transformations
were carried out using the program TLSANL (Howlin et al., 1993).

It is very important to obtain estimates of the precision of TLS parameters. The
estimated standard deviations (esd) were calculated for the TLS parameters of the
vB-crystallin from the inverses of the 20 x 20 normal matrices constructed for each
rigid body. The values were scaled by the ratio of the least-squares residual to the
number of degrees of freedom. The latter was taken as the number of squared terms

minus the number of parameters.

3 Results

The values of the TLS tensors and their esd’s are shown in table 2. All the T
parameters are highly significant and show that that the translational motion of the
domains is approximately isotropic.

The libration tensors of the domains show much greater anisotropy and a greater
range of values than the translation tensors. Analysing the principal axes of the
tensors shows that both the N and C terminal domains possess a dominant axis
of libration. Each axis passes through the hydrophobic interface between the two
domains. Figure 1 shows these axes.

The precision of the screw-rotation S tensor is much less than either T and L.

In this refinement most components of the screw rotation tensor were significant.
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Table 2:

7B crystallin (values in brackets are standard deviations)

N-terminal domain
Number of atoms: 300

Rigid-body displacements of N-terminal and C-terminal domains of

Segment Start End Atoms
1 5 199 MNCH
2 245 685 MNCH
Mean centre (A) 5430 17.127 36.739
Centre of reaction (A) 6.146 19.199 35.613
T A2 0.1061 | 0.1200 0.1065 | —0.0101 | —0.0006 | —0.0014
(0.0023) | (0.0021) | (0.0019) | (0.0015) | (0.0016) | (0.0017)
L deg® | 0.63 1.91 3.91 —-0.11 —0.29 0.11
(0.08) (0.10) (0.13) (0.08) (0.08) (0.07)
S | Axdeg | —0.018 0.007 | -0.071 | —0.006 0.034 | —0.061 0.134 | —0.068
(0.008) | (0.010) | (0.007) | (0.009) | (0.008) | (0.008) | (0.013) | (0.013)
C-terminal domain
Number of atoms: 276
Segment Start End Atoms
1 723 942 MNCH
2 1016 1341 MNCH
3 1388 1434 MNCH
Mean centre (A) 13.852 16.605 14.885
Centre of reaction (A) 13.249 16.963 17.619
T A2 | 0.1292 | 0.0992 0.1161 0.0001 | 0.0151 0.0155
(0.0024) | (0.0022) | (0.0019) | (0.0015) | (0.0016) | (0.0017)
L deg? | 0.73 0.74 3.10 —-0.26 0.39 0.44 !
0.09) | (0.09) | (0.12) | (0.08) |(0.07) | (0.07) 1
S | Axdeg | 0.008 0.027 | —0.002 0.112 0.008 | —0.015 0.013 | —0.040
(0.008) | (0.010) | (0.008) | (0.009) | (0.007) | (0.008) | (0.013) | (0.013)
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However, at poorer resolutions or in smaller rigid groups the components of the S

tensor may not be significant.

4 Conclusions

Looking at the L33 values in table 2 shows that there is one major direction of
libration through each of the two domains and this is approximately parallel to the
z axis. Figure 1 shows the principa.l'a.xes of libration of each domain as determined
from TLSANL. The midpoint of each axis in figure 1 is the centre of reaction, which
to a first approximation can be thought of as the point about which each domain is
librating.

These axes pass through the interdomain interface and suggest that this interface
is a strong determinant of domain association. This model of torsional motion about
this interface is in contrast to a hinge-bending model where the connecting peptide

would play a role in holding the domain together.

¥

Figure 1: Principal axes of libration of each of the domains of yB-crystallin. The

centres of each line are at the centre of reaction of the displacements.
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Appendix: Excerpts from the RESTRAIN manual

Physical background:

In this option the atomic displacementé of atomic groups are
refined using the approximation that the groups have, either
partly or wholly ’rigid body’ displacements. The atomic groups
(TLS groups) may be whole molecules, units of secondary
structure (e.g. alpha helices) or they may be pseudo-rigid side
groups such as phenyl rings, imidazole, carboxylate, guanidinium
or amide groups. When units of secondary structure are chosen,
there is an option to include main-chain atoms-only. - For -small
groups (i.e. < 20 atoms) data at high resolution (e.g. 1.5A) may
be required for success. It should also be remembered that the
TLS model assumes harmonic displacements and this may not be
valid for side groups on the surface of a macromolecule.

The TLS option allows refinement of only 20 parameters for each
TLS group instead of six for each anisotropic atom (see section
2.3.7). The rigid groups in proteins which may be suitable are
the aromatic rings of PHE, TYR and TRP, the propellors of
ASP/ASN, GLU/GLN and ARG, ligands, the secondary structure
elements, the domains or the entire molecule.

Usage:

All information for the TLS refinement is contained in the
Brookhaven atom file. The steering file does not contain any
information. Isotropic refinement can be selected concurrently
with TLS refinement (ISO=.T.). The ADDISO option (default is .T.)
allows the group TLS and individual isotropic parameters to be
refined simultaneously, taking account of their correlation.

Each TLS group is defined in one TLS record in the atom file.
One TLS record spans several physical lines. The record starts
with the TLS identifier, ’TLS’, followed by an integer number
of contiguous segments, NSEGM. These segments contain the atoms
of the TLS group. The following NSEGM lines contain the
specification of atoms in each segment of the associated TLS

group.

Every line contains two atom identifiers indicating the start

and finish of the segment followed by the identifiers of atoms to
be selected from this segment for inclusion in the TLS group. An
atom identifier is interpreted as a character string, not as an
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integer. Atom names have to conform to the Brookhaven
convention. All atom codes found in the Brookhaven atom files
can be used. Additionally, four group codes can also be
specified: ’SDCH’, ’MNCH’, ’ALL’ and ’NOT’. ’MNCH’ will select
all mainchain atoms (* N ’, >CA°’, >C ’ and > 0 ’), ’SDCH’
selects all non-mainchain atoms, ’ALL’ selects all atoms and
’NOT’ negates the selection of atom types on the line. The order
of atom specifiers is not important. If no atom specifier is
given, the default is ’ALL’. The next four lines of the TLS
record contain: centre of originm for calculations with this TLS
group, T tensor, L tensor-and S tensor. The centre of origin for
a ring is usually a C-beta atom; for larger groups such as
domains it is usually the centre of gravity. The S tensor line
ends the TLS record. The position and order of TLS records in
the Brookhaven atom file are not important, but it is convenient
to have them collected together at the top of the atom file.

The layout of the TLS record is:

RECORD UNIT
TLS NSEGM
SEGMENT
ORIGIN A
T11 T22 T33 T23 Ti3 Ti2 A"2
L11 L22 L33 L23 L13 L12 degr~2
S23 S31 S12 S32 S13 S21 S22 Si1 Axdegr

The format is free, that is items separated by one or more spaces.
If items are left blank they default to zero values. Note that
this is different from the remainder of the coordinate file, which
is in fixed format.

Here the Tij means an element (i,j) of temsor T. Since X-ray data
allow the calculation of only eight of nine S tensor elements, the
usual constraint of setting the trace of S to zero is adopted in
RESTRAIN. This means that the elements S1i1 and S22 of RESTRAIN are
in fact (S11 - S33) and (S33 - S22) of the S tensor as defined by
the equation U =T+ AL A’ + A S + S’A” (Johnson and Levy, 1974).
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An example of the TLS record specifying a TLS group consisting of
two mainchain segments, atoms 1 to 68 and 129 to 300, respectively,
is:

TLS 2
1 68 MNCH
129 30 MNCH
2.572 33.400 3.315

112 .165 131 -.052 -.003 -.003
1.877 2.165 3.471 4.562 6.152 7.313
.366 -.382 . .147 -.981 .185 .118 .132 .140

Alternatively, the atoms may be specified by their residue and ‘atom
labels; for details see section 3.1.1 below under "XTRDIS".

Warning and error messages:

Where TLS tensors result in U tensor that is not positive-definite,
a warning message is printed out stating the atom name, number and
U tensor.

If the L tensor elements are large (>20 degr~2) and an atom is

far away from the centre of origin for the calculation of the TLS
tensors (>20 A), then the observed and calculated structure factor
amplitudes can be different by several orders of magnitude. This
is a consequence of the numerical instability in calculation of
derivatives of the TLS tensors with respect to positional
coordinates (on some machines it may also result in an over-flow
floating point error). These problems usually appear at the
beginning of the TLS refinement of large groups if the user does
not set the initial L small enough and origin of the rigid group
sufficiently close to the centre of gravity. RESTRAIN checks for
such an error in two ways. First, it prints a warning message if
the selected origin is more than 10A away from the gravity centre.
Second, it prints a warning message if more than 30% of elements
of U tensors for individual atoms had to be reset to an arbitrary
interval [0, ULIMH].

Please note that since the TLS records are not according to the
Brookhaven specifications, there may be problems with other
programs reading these coordinates.

Note that TLS calculatiomns, like all anisotropic calculations,

cannot take advantage of space-group specific subroutines. The
general space-group subroutine must be used.
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Introduction

There are several reasons why it may be preferable to generalise thermal parameter refinement
to include anisotropic thermal motions. Some of these reasons are technical ones that aim to
achieve the best possible refinement of all parameters by removing the bias introduced into
refinement by thermal decay, sometimes anisotropic, of the structure amplitudes. Another
reason, often overlooked, is the effect that dymamic processes have on the way that a structure
performs its biological role. Isotropic thermal parameters are often examined for clues to the
regions with greatest conformational flexibility. For example, this kind of information can give
some insight into which atomic groups are most mobile within an enzyme's active site.
Anisotropic thermal parameters can add richness to this information: not only can they give
magnitudes to co-ordinate displacements, but also the directions in which these groups are
moving. Thermal energy is important in facilitating biological action because it allows large
movements of substrates, products and protein groups, and because intermediate reaction states
can be driven through a potential barrier by specific thermal vibrations. The slightly different
structures, so called conformational substrates'* , formed by motions which occur on the pico-
and subpico-second timescales have an important role in the functioning of macromolecules, since
the reactions from different conformational substrates may have very different rates.

Photosynthetic complexes of purple bacteria are striking examples of biological systems which
are strongly influenced by thermal motions. Excited states have been found to be strongly
coupled into vibronic or phonon states. These states play an important role in the relaxation of
energy between excited energy states, the transfer of energy within an excitonic band of closely
interacting pigments and the transfer of energy over relatively long distances, 20 to 40 A. Most of
our understanding of electronic properties of molecules rests on the Born-Oppenheimer
approximation, the assumption that slow nuclear motions do not effect fast electron motions
within electronic excited states. Coherent nuclear motions have been observed that are on the
pico-second timescale, this is comparable to the timescale of energy transfer within and between
these complexes®*. Within such systems atomic motions can not be ignored; the energies that
couple excited states between pairs of pigments are in the range 10 cm™ to 400 cm™ , well within
the energy interval for phonon modes observed in protein structures.

Thermal motions between neighbouring atoms are well known to be correlated. Groups as
small as 2 or 3 atoms or domains of tens of kD can have correlated motions of some kind. It
seems therefore that parameterizing a full atomic anisotropic thermal parameter refinement may
greatly overdetermine the problem. That this is so, is very fortunate as few protein
crystallographic datasets attain those resolutions (ca. 1.2 - 0.8 A) that are needed to achieve the
required data to parameter ratio for atomic anisotropic thermal parameter refinement. The
overdeterminancy has been demonstrated by the use of a small number of normal modes of
vibration to obtain isotropic and anisotropic thermal parameters. A striking result of this work is
that molecular motions described by 892 isotropic thermal parameters, refined in the conventional
way, could be largely reproduced by only 19 thermal parameters’. This work shows that it is
important to realise that a large part of anisotropic motion may not arise from local molecular
motion.
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The TLS model

The TLS method® is more suited for the refinement of anisotropic thermal parameters of
protein structures. It is more in tune with the philosophy that motions are correlated, and because
any number of atoms can be defined by the same set of thermal parameters the number of
additional parameters to be refined is not large. The method can be used in the refinement of
nearly all structures as the observation to parameter ratio is sufficiently small to allow data in the
range of 2.5 to 1.5 A to be used. The factor which determines the actual amount of data
required, as will be the case for any thermal parameter refinement, is the size of the thermal
effect that is being extracted from the data. For example the motions of domains, helices or large
co-factors can be determined with less data than those of small rigid groups such as planar
carboxylates, amides and guanidinium moieties of side chains such as Asp, Glu, Asn, Gln and
Arg.

The TLS method, as originally described by Shomaker and Trueblood®, has been implemented
within the program RESTRAIN for the refinement of thermal parameters of protein structures™.
The atomic form factor may be written as:

f(x,h) = f;, exp @b Tx + 222 W TUN) 1

The atomic co-ordinate x gives the mean position of the atom and the tensor U describes the
mean-square displacements from that mean. U can be written as the usual anisotropic temperature
factor elements u,, or if the atom is part of a rigid group of moving atoms then it can be
expressed as;

U=T+ALAT + 45 + sT4T 2

T is the symmetric franslation tensor that applies a translation to the whole group of atoms, L
is the symmetric libration tensor that rotates the group about some centre of action (usually the
centre of mass) and S is the asymmetric screw tensor which accounts for the correlation between
the T and L tensors. The diagonal elements of the S tensor represent a screw like motion, the off
diagonal elements represent rotations about axes which need not pass through the centre of mass.
The A matrix is a function of the atomic co-ordinates r relative to the centre of libration. As can
be seen from equation 2 the contribution of 7 to mean-square displacement is the same for all
atoms in the group, but the contribution of L and S depends on the atomic distance from the
centre of libration. Once the TLS tensors have been refined they can be decomposed into
individual atomic anisotropic thermal tensor elements u, by the program 7LSANL. In this form
the structural implication of thermal parameters can be more readily visualised and quantified. In
total for each rigid group of atoms only 20 additional parameters need be refined. If there are
more than 3 atoms in the group there will be fewer parameters to refine than in an individual
anisotropic thermal parameter refinement. The implementation of TLS refinement in RESTRAIN
optionally allows the refinement of rigid group and isotropic thermal. parameters for the same
atoms. The isotropic thermal parameters can be thought of as taking into account of additional
local thermal motions. This is important if the rigid group is large and has many contacts which
may locally modify the overall group TLS motion. For those atoms not part of a rigid group only
individual isotropic u factors were refined. This approach resulted in only a small increase in the
total number of refined parameters.

The use of non-crystallographic symmetry (NCS)

The structure of light-harvesting complex, from purple bacteria Rhodopseudomonas
acidophild® |, is nonameric oligomer comprising 18 peptides, 27 bacteriochlorophyll a (Bchl a)
molecules and 18 carotenoids molecules: although only 9 carotenoids are well ordered in the
crystal structure. The crystal space group is R32, a=120.4 A and ¢ = 296.3 A with a ninefold
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rotational axis superimposed on the crystallographic threefold axis. The consequence of this is
that the asymmetric unit comprises only of a third of the complex and the NCS molecular copies
are related by exact rotations of 40°and 80° about the ¢ axis. RESTRAIN can not apply NCS
restraints while refining TLS parameters. There are therefore, three independent sets of
parameters which are refined for each molecule. The refinement, at a resolution of 2.5 A, may be
cross-checked using this redundancy. Generally, it is only at this resolution and better that we
would start to trust thermal parameters. It would seem sensible to be wary of anisotropic
refinement at this intermediate resolution and to build in checks on the accuracy of the
refinement.

The TLS tensors can be decomposed into individual atomic anisotropic thermal tensors, u;
that define ellipsoids of vibration. These are best understood by looking at the principal axes of
their ellipsoids. These can be written as;

A

ﬁ1=7\,1e1, i=1,3 3

Where A; are the eigenvalues and &; the eigenvectors of the tensor u. The first is a magnitude
assigned to the principal axis vector and the second its direction. The angular error when

superimposing equivalent principal axis vectors on related NCS rigid groups, can be written as:
Xbibj
J
{cos(e)) = 4
A

and the R-factor arising from superimposing these vectors as;

. .22
_| Z -5
B 2
(W
The summations are carried out between pairs of vectors on different NCS molecules and over

all principal vectors and atoms within the rigid group of atoms. Both will be sensitive to angular
errors but Rp should also be effected by errors in magnitude.

Rp

Finally a measure of the degree of anisotropy can be obtained by calculating a quantity called
ellipticity. The usual definition of this is the ratio of the largest and smallest A's. However here we
are using a slightly different expression, namely :

AT+ A |2

E =
22

; 7\,127\,m27\.n 6

The quantity £ has the property that for isotropic vibrations it is equal to one and for
anisotropic vibrations it is greater than one. £ will tend to be larger for oblate vibrations than for
prolate vibrations.

Choice of TLS groups

One of the pronounced features of the data is a rapid decay of the diffraction pattern, in the
crystallographic ab plane, to around 2.5 A, while diffraction along the c axis is observed to hold
up to at least 2.1 A. The ab plane corresponds the membrane plane and is where in the crystal the
detergent micelle surrounds the complex. Although this anisotropy does not greatly effect the

117



refinement it nevertheless is probably largely responsible for the higher than expected

crystallographic R-factor of 21 %. Large anisotropy has the effect of apparently foreshortening
bond lengths.

The groups were chosen initially on size as it was considered likely that the resolution of the
data would probably prevent sensible TLS refinement of the smaller rigid groups of side chains.
The largest rigid groups are the backbone atoms of the transmembrane helices of the o and
chains. The o chain has sufficiently large surface lying regions to define the chain in three pieces,
segment 1-11, transmembrane helix 12-36 and segment 37-46. The B chain has shorter surface
regions and so was given one rigid group comprising the helix running from position 7 to 36.
Bchl a molecules have conjugated regions within the bacteriochlorin macrocycle. Although there
are some torsion angles within this region it can be mostly considered as rigid group; the
substitutions of phytyl, ethyl and acetyl groups were not included in the group. The carotenoid
(rhodopin glucoside) molecules comprise a glucoside moiety that lies at the membrane surface
and which is partially disordered with at least.two conformers, and a rhodopin moiety that is
highly conjugated. Only the rhodopin part was included in the rigid group. The remaining atoms
were refined with individual isotropic thermal parameters.

Refinement models

Three models were considered: model 1, the control, the thermal parameters were refined
isotropically; model 2 defined each NCS repeating unit as a rigid group, in this model every atom
was TLS refined; model 3 defined TLS tensors for, 6 transmembrane helices and 9 surface
segment chains, 9 Bchl a molecules and 3 carotenoids molecules. All models were refined with
atomic and overall isotropic thermal parameters. For those atoms for which TLS thermal
parameters were also refined the calculation did take into account the correlation between the
isotropic and TLS thermal parameters. The aim of model 2 was to estimate the effect of lattice
vibrations and static disorder on the refinement. Model 3 is also looking at some of the internal
modes of vibration, although it is impossible to entirely separate these from the lattice modes.

Model #1 #2 #3 Xplor”
R.. 20.9 20.1 18.4 22.7
R, 27.0 26.1 25.5 25.3
N, 11,845 11,905 12,301 3,953
Ar 0.45 0.41 0.28 0.40
At 0.16 0.15 0.12 0.07

Table 1. R, is the crystallographic r-factor; Rg,, the free R-factor; N, is the number of
refined parameters; Ar and Ar*are the coordinate errors derived by Read” and
Cruickshank" respectively. The refinement was to a target bond length geometry of 0.02
A. The data were measured to have an Rsym of 5 % with 25,877 reflections; 98%
complete at a resolution of 2.5 A #: for comparison isotropic refinement with Xplor't.
This was refined with constrained NCS applied, hence the lower R, and using fewer
parameters leading to a lower Ar*: an overall anisotropic thermal parameter correction
was applied during refinement (u,=-0.0550, u,,=-0.0550, u,;=0.1099, u,=-0.1718,
u,,=0.0000, u,,=0.0000).
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A significant improvement in refinement was obtained in model 2 relative to model 1.This was
obtained with just 3 TLS tensors (60 additional parameters). Model 3 which included 24 TLS
tensors produced a further improvement with an increase in the number of refined parameters of

only 3.5 %.

Agreement on NCS

Molecular redundancy was used to check the consistency of TLS refinement for model 3, as
outlined in an earlier section. 7LSANL was used to transform TLS tensors into u tensors and
their eigenvalues and eigenvectors. These were used to calculate the information summarised in
table 2. The statistics were calculated from the principal axes data before and after applying NCS

transformations to the principal axes vectors. These numbers should be compared for signs of
correlation between thermal parameters of different NCS related molecules.

B850a B850b B800 RGlu alpha beta
Ellipticity 1.72 1.46 1.67 2.61 1.65 1.79
Ueu 1A 0.46 0.49 0.55 0.69 0.49 0.66
e+/deg 234 313 299 254 24.5 13.1
€ /deg 394 45.1 442 50.7 371.7 351
.R;;/% 17.0 24.0 22.0 19.0 17.0 9.0
Rp;/% 29.0 33.0 32.0 36.0 25.0 26.0

Table 2. U,, is the equivalent isotropic displacement factor, € is angular error and Rp the
‘R-factor due vector error , €, Rp are before and E+,R; after transforming with NCS operators.
B850a, B850b are Bchl a's liganded to the Ot and B chains respectively, B800 the Bchl a's

absorbing at 800 nm, RGlu is rhodopin glucoside.

The statistics seem to indicate that the parameters arising from TLS refinement correlate
reasonably well, even at the resolution of 2.5 A. There is one warning concerning the
meaningfulness of these statistics. When an atom has some of its principal axes equal in
magnitude then their directions are ill defined; in other words for an isotropic atom the principal
axes of an ellipsoid can be defined to point in any direction. This would tend to reduce the
correlation between axes and it fits in with the observation that there is better correlation for
those parts of the structure with larger ellipticity.

Thermal motion analysis

There are large voids within the unit cell (73 % of the volume) containing water, detergent.and
possibly lipid. Each complex can be imagined to be a cylinder of diameter 70 A and height 45 A,
the cylindrical belt representing the transmembrane part of the structure. Extensive contacts,
mediated by solvent molecules, are made in the ¢ axis direction at the cytoplasmic surfaces. In the
ab plane there are only tenuous contacts at the edges of the periplasmic surfaces. It maybe that a
large part of the anisotropy, observed in the ab plane, originates from static disorder although the
detergent belt maybe sufficiently rigid to transmit vibrations between complexes. What ever their
origins these lattice effects are only of crystallographic interest and tell us nothing of the internal
modes of motion.
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Figure 1 : (a) Light—harvesting complex viewed down the crystallographic c axis which is the
crystallographic threefold and NCS ninefold axes; (b) The NCS building unit, viewed along the
membrane direction (ab plane), comprising two peptides, 3 bacteriochlorophylls and one carotenoid
molecule, there are three of these in the asymmetric unit; (c) The chromaphores of the NCS unit and
(d) the equivalent ORTEPlOdisplay showing thermal ellipsoids for the TLS refined chromaphore atoms
(a)—(c) were produced by the program SETOR!!

The thermal ellipsoids (Fig 1d) and the improvements observed in the refinement of models 2 and 3
indicate that there are local molecular anisotropic motions superimposed on crystallographically related
lattice motions. These two effects are difficult to separate, however it is clear that the lattice motions are
almost entirely in the membrane plane and that the anisotropic thermal motions in the ¢ direction are
mostly detemined by local molecular motions. It is therefore interesting to look at the angular
displacement, from the c axis, of the principal axes that are approximately in the direction of the ¢
axis. This is also generally the direction of the smallest thermal motion and gives some indication of the
systematic trends in thermal motion arising from mainly internal anisotropic displacements.

120



In Fig 2b-2g are displayed the angular displacements ¢ of the minor principal axes from the
crystallographic ¢ axis. Because there are three copies of each TLS group it is possible to
calculate the standard deviations of these angles: it should be noted that because the ¢ axis is also
the NCS axis the application of this symmetry leaves the angle unchanged.

Protein anisotropy

The mean isotropic thermal displacement parameter U, as a function of residue number (Fig
2a), indicates a featureless flat distribution of thermal parameters with a slight hint of an increase
at the ends of the transmembrane helices. The ellipticity E however shows some interesting
trends: the surface helices of the o chain have the least anisotropy while the transmembrane
helices are significantly higher in anisotropy. The distribution of E is different for the two chains,
whereas the o chain transmembrane helices have only slight increases of anisotropy at the helix
ends, the B chain transmembrane helices start with high ellipticities of around 2.3, at the N
terminus of the helix, and pass through a minimum of around 1.6 near residue 28 then rise slightly
to 1.7 at the C terminus of the helix. The minimum is found near to the Bchl a-liganding residues
o-His31 and B-His30 and shifted a little towards the intertwined Bchl a phytyl chains. The
distribution of angles with residue number also show significant differences (Fig 2b,2c), whereas
for the o chain transmembrane helix the minor axis remains close to the c axis, starting at 14° at
the N terminus and finishing at 4° at the C terminus, the B chain transmembrane helix remains at
around 25° for a large length of the helix then rapidly drops down to 7° near to the C terminus.
For both helices the minimum angle is on the liganding His residues o-His31 and B-His 30.
Another interesting feature can be seen for the B chain helix which shows a 5° variation of this
angle on the outside compared to the inside surface of the helix. This can be seen as a periodic
variation every 3 to 4 residues. An interesting observation is that when isotropic thermal
parameters, refined conventionally, are plotted against residue number they resemble the
ellipticity curve in figure 2a rather than U_, which illustrates the poor modelling of these
parameters by conventional isotropic B refinement.

Rhodopin Glucoside

The carotenoid molecule exhibits the same variation as the transmembrane helices. Beginning
at an angle of 40° near the cytoplasmic membrane surface and then half way along its length
rapidly falling off to 10° at the B850 pigments. The anisotropy of the atoms close to the
cytoplasmic surface is the largest of all the atoms in the structure as judged from the ellipticity.
This is due as much to the minor principal axes being smaller than average as it is to the
maximum principal axes being larger. Large anisotropy is also observed as a disorder of the
glucoside head groups. For this reason they were not included in the TLS refinement. The spikes
in the angular distribution (Fig 2g) correspond to the positions of the methyl groups decorating
the carotenoid chain. This perhaps indicates the kind of small detail that is observed.

Bacteriochlorophylls

The size of ¢ for the bacteriochlorophylls liganded to the o chain (B850-ct) is on average less
than 20° and is similar in magnitude to that observed for the o chain helix. The standard
deviations for the three kinds of Bchl a are around 7° and for the B850-a¢ ¢ angles are only
twice the . The ¢angles of B850-P are around 30° and again have similar angular magnitude
to the B chain that the chromaphore is liganded to. The B800 molecules have the largest
variations of 10° to 48°. The large angles are clustered amongst groups of atoms. The first cluster
corresponds to the acetyl and methyl groups on the same cycle that point into the detergent
micelle, the second to the cycle connecting to the phytyl chain and the third to part of the double
cycle including the carbonyl. All of the Bchl a molecules have puckered conformations with
torsional angles deviating by 5° to 8° from planarity. It maybe that there is a greater degree of
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flexibility in the B800 than in the two B850's. It is possible to see why this maybe so as the
B850's are in close van der Waals contact with one another, forming a rigid ring structure
whereas B800's are situated between B chains and partially within the micelle.

Summary

The refinement of LH2 improved when TLS parameters were included as judged by R.o Reeor
co-ordinate errors'>" and the relative noise levels observed in the 2Fo-Fc maps. The
improvement in refinement did not result in any major reassignment of electron density: the
structure at the final stage of isotropic thermal parameter refinement was well defined and

molecular redundancy produced a map with electron density resembling that of one at a higher
resolution.

The benefit of TLS refinement is to provide additional information about the motion of
various parts of the structure. This refinement has intrinsically more detail about motion than
conventional B factor refinement. The quality of anisotropic parameters is good, even at 2.5 A
resolution, although higher resolution would be required to refine smaller TLS groups, such as
planar side chains of His, Phe and Trp. This kind of analysis throws up interesting questions
concerning the role that modes of vibration have in facilitating biological function. In the case of
LH2 it is interesting that the largest principal axes of the transmembrane helix backbone atoms
seem to be optimally arranged to apply the biggest modes of vibration into the B850 rings.

Anisotropic information is available even at lower resolutions providing the anisotropy is large
enough and the groups being refined have sufficient numbers of atoms. At the kind of resolution
to which most structures are refined (ca. 1.8 A) it would be expected that smaller rigid groups
such as those of side chains could be refined and that it need not be the case that anisotropic
refinement should only be considered at atomic resolution.
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Is Refinement from a Random Start Possible?
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Introduction

The last step in a protein crystal-structure determination is refinement of the structure, where
the x,y,z-coordinates and typically an isotropic B-factor of the atoms are optimized. The target
function used in these optimizations relies both on the measured diffraction data and on
geometrical data of protein structures, like observed bond lengths, bond angles, dihedral angles,
etc. (see e.g. Hendrickson, 1985). The geometrical restraints are needed, because the diffraction
data alone (when the resolution is less than atomic, d > 1.2 A) doesn't overdetermine the system
sufficiently. Unfortunately this target function, that combines structural restraints and diffraction-
amplitude restraints, is complex and has an immense number of local minima. The best search
methods developed so far still have a limited convergence radius (e.g. 1.7 A rms for backbone
atoms as reported by Rice & Briinger, 1994). Thus, a reasonably good starting model must be
obtained based on phase information from experimental methods, such as isomorphous
replacement, molecular replacement or multiple-anomalous dispersion. In our research we address
the question whether (and how) the refinement methodology can be applied to a random starting
model. Here, we discuss some of the general aspects of such a method of phasing by ab initio
modelling.

Ab initio phasing by Direct Methods (rev. Woolfson, 1987) is done routinely nowadays to
solve crystal structures of less than ca. 300 atoms. For ab initio structure determination of
proteins various approaches are being developed. Probabilistic theories and optimization
techniques from Direct Methods are extended and applied to phasing of protein data sets.
(Bricogne, 1993, DeTitta et al. 1994; Sheldrick & Gould, 1995). However, these methods rely
on diffraction data to atomic resolution (d s 1.2 A), which is rarely the case when a structure
needs to be solved. Other approaches, more related to the method presented here, start from a
real-space model consisting of a limited number of spheres (Subbiah, 1992; Lunin et al., 1995).
These methods so far have yielded very low-resolution phases. Thus, reliable phasing in an ab
initio manner (i.e. from a single diffraction data set) of protein data to ca. 2 to 3 A resolution has
remained an elusive goal so far.

A fundamental question arises in the application of structure optimization to ab initio structure
determination, as we propose. Is the desired protein-crystal structure fully defined by the
geometrical protein-structure restraints and the diffraction data to medium (2 to 3 A) resolution;
or, reformulated, does the crystal structure correspond to the global minimum of the target
function used? If this is indeed the case, the phase problem is reduced to finding the minimum
minimorum of the target function. We assume this to be true, and attempt to solve the given
search problem.
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In principle, one can start an ab initio structure optimization with a polypeptide chain of the
correct sequence placed in the cell with a random conformation (or any other conformation
unrelated to the answer). Given our hypothesis the answer is fully defined by the geometrical and
the diffraction (with d < 3 A) information. However, the answer will be extremely hard to find.
For example, wrong (e.g. reverse) tracing of the model through electron density cannot be
corrected by gradient-driven procedures, that are used commonly in refinements like energy
minimization or simulated annealing. Perhaps, new methods from artificial intelligence may be
designed to deal with these manifold diverse and complex situations. The other extreme in
structure optimization from a random start is using a model consisting of loose atoms. In this case
the search may be expected to be very efficient. However, the geometrical restraints are not
defined anymore. Thus, the desired protein-crystal structure cannot be found, because it is not
sufficiently defined.

Our approach of ab initio modelling (called AIM") is to use loose and.equal atoms,-thus
facilitating efficient searching, and to redefine geometrical information. In (conventional) structure
refinement the geometrical information is defined for a given topology of a protein molecule. This
implies that each atom in a protein structure is uniquely identified. In our model all atoms are of
identical type, and thus the conventional restraints cannot be applied. Therefore, the geometrical
information must be redefined, such that it becomes applicable to loose and equal atoms. We
attempt to redefine as much information as possible, since this will be required to define the
desired answer (i.e. the true crystal structure) sufficiently. However, the information must be
defined in such a way to minimize potential search barriers in the optimization process.

In practice, a number of problems appear in this ab initio structure optimization, that are not
present or not critical when refining a near-correct protein crystal structure. At low (infinite to
ca. 8 A) resolution the contribution of the bulk-solvent region is large. Since, optimization starting
from a random model implies starting at infinitely low resolution, the bulk-solvent contribution
must be properly taken into account. A related problem is data completeness at low resolution.
To model a structure at low resolution, the data at low resolution must be present. A third
problem in our optimization process concems scaling of the structure amplitudes. (The structure-
amplitude restraint used in our optimization is the commonly used restraint: £ = Z (F,,, - k
F,....)% which requires scaling by a linear scale factor k of the model derived amplitudes F,_,,
with respect to the observed amplitudes F,,.) The observed amplitudes are measured from a
crystal diffracting to high resolution, at least beyond 3 A resolution. The fall-off with resolution
of the observed data corresponds to an overall B-factor that is (much) lower than the B-factors
obtained for the low-resolution models in the optimization process. A straightforward linear
scaling is not appropriate in this case. Thus, even though sufficient geometrical information may
be defined, the optimization of a random starting model will only succeed when all (or most)
general aspects of the diffraction data are taken into account.

The Model

The model used in the AIM optimization process consists of all expected non-hydrogen
scatterers in the asymmetric unit without the atoms filling the bulk-solvent region, which is
modelled by a continuum model. The use of all expected atoms is in contrast to the procedures

I A full account of the method and the force field used will be given elsewhere (Gros,
Briinger, van Gunsteren & Kroon, in preparation).
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described by Subbiah (1992) and Lunin ez al. (1995). In these methods only a few spheres are
used to model a protein, thus the low-resolution aspects can be modelled by only a few
parameters. However, phase extension from the few initially phased reflections has not yet been
demonstrated for these approaches. We use all atoms, thus no limitation in resolution exists a
priori. Furthermore, the use of an atomic model allows direct usage of the observed atomic
distributions in known protein structures. The disadvantage is primarily two-fold: i. the high
parameter-to-observation ratio; and, ii. the large amount of cpu cost. The very high parameter-to-
observation ratio may lead to overfitting of the data. Therefore, precaution must be taken not to
overinterpret the resulting atomic configuration or "structure". This means, that given an
(intermediate) solution with phases that are only valid at low resolution, we must not interpret
atoms individually, but must interpret the globular features of the distribution corresponding to
the appropriate resolution of this solution. This approach of using all atoms allows in principle for
a gradual shaping of the atomic configuration from low to high resolution.

Since all atoms in our model are of equal type, all atoms have identical scattering; we choose
carbon form factors. The atomic temperature factors are estimated from the atomic configuration
obtained in the optimization (see section "Atomic B-factors"). Therefore, the parameters of the
atomic model, which are being optimized, are the x,y,z-coordinates of the individual atoms.

Besides the atomic model, a bulk-solvent model is used for the bulk-solvent contribution. In
between structure optimization cycles a limited number of cycles of solvent flattening are
performed (Wang, 1985). We use the implementation as developed by Roberts & Briinger (1995).
The resulting estimate of the solvent contribution F, ., is added to F,,, yielding the complete
model F ...

Geometrical Information

In our procedure we consider a protein structure to consist of equal and loose atoms, thus the
molecule is modelled by a fluid of atoms. In analogy to simulations of simple fluids, global
features of atomic configurations are described by two aspects: the atomic density and the radial
distribution of atoms.

The atomic density of a protein is easily calculated from the average number of atoms per
volume; the average volume for a (non-hydrogen) protein atom is ca. 16 A Thus, the simplest
of models might consist of hard spheres with ca. 1.4 A radii. However, this assumes a closest
packing of spheres, which is obviously incorrect.

Radial distribution histograms of non-hydrogen atoms are calculated for a few proteins, see
Figure 1. The average profile is shown in Figure 1a. Two individual cases are given in Figures 1b
and lc. Clearly, the bond distance (i to i+1) and bond-angle distance (i to i+2) are the most
prominent features in this distribution. Beyond 3 A the various contributions (i to i+3, i to i+4,
etc.) yield overlapping peaks in the histogram. These contributions are separable by considering
radial distributions of atoms connected by a fixed number of bonds. From the information in these
histograms we have derived interatomic distance restraints. Furthermore, additional restraints are
required to restrain atomic density. For example, the number of atoms within bonding distance
of any given atom must be restrained to maximally 3. The restraints derived in this way are
applicable to identical atoms, because the structure analysis was performed for all (non-hydrogen)
atoms in protein structures irrespective of the atom types. The derivation of these restraints, or
interaction potential functions, will be described elsewhere (Gros, Briinger, van Gunsteren &
Kroon, in preparation).
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Figure 1, Radial distribution histograms for non-hydrogen atoms in protein structures: a) summed
histogram for nine structures from the Protein Data Bank (Bernstein et al., 1977): IMBO, 1REI,
2ACT, 2AZA, 2PAB, 2PRK, 2PTN, 3TLN and 5CPA; b) an example of an individual structure,
3TEC, displaying a similar pattern as the summed histogram; and c) an observed deviation, 3DFR,
from the average pattern: the features in the radial distribution histogram are less resolved. This
observation is in agreement with the large number of distorted geometries as listed by
PROCHECK (Laskowski et al., 1993).
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Atomic B-factors

For a reliable optimization of atomic B-factors a near-correct model at ca. 2.5 A must be
available. Clearly, this is not the case in our application. Moreover, an overall B-factor suffices
for a near-correct model at low resolution (ca. 3 A); at intermediate resolutions (2.5 to 3 A) B-
factor restraints should be applied. In our optimization, we estimate the atomic B-factors. Figure
2 shows that a correlation exists between the number of neighbouring atoms in a structure and
the refined atomic B-factors. Based on this observation, we calculate atomic B-factors using an
exponential function from the number of neighbouring atoms as observed in the atomic
configuration. These approximate B-factors serve two goals: i. B-factors are estimated, and thus
the number of parameters can be reduced from 4 to 3 per atom; and, ii. the estimated B-factors
reflect the local atomic density, and thus atoms in dense regions (likely "protein” regions) result
in relatively sharp peaks in the electron density, whereas atoms residing in sparse regions (likely
“solvent" regions) are given very broad peaks. : o

00

‘4 0 l 1.0 12
number of neighbours

Figure 2, Atomic B-factors as a function of the number of neighbouring atoms; lines shown are
obtained from IMBO, 1REI, 2ACT, 2AZA, 2PRK, 2PTN, 3TLN and 5CPA. The radius used for
counting the number of neighbouring atoms was 2.65 A.

Scaling of Amplitudes

Our initial model consists of atoms distributed randomly in the unit cell (or asymmetric unit).
A constraint of 2 A minimal interatomic distance is applied during the random positioning. This
model is correct only at infinitely, to very low, resolution. The resulting amplitudes displays a
strong fall-off with resolution, because large B-factors are assigned to the dispersed atoms. These
model-derived amplitudes have to be scaled linearly with respect to the observed amplitudes. To
account for the difference in overall B-factor between the two amplitude sets, the data is first
scaled non-linearly.This yields a linear scale factor k and a resolution-dependent scale factor B.
Subsequently, only the linear scale factor k is applied. This procedures avoids over-estimation of
the linear scale factor k.
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Results

In the previous sections we described some of the general aspects of ab initio structure
optimization. Based on the considerations given above we have implemented a method for
phasing by ab initio modelling (AIM) in the program X-PLOR (Briinger, 1993). In this section,
results are given of the AIM-optimization starting from a random model.

The test case shown concerns a hexadecapeptide zervamicin IIA analog (Karle et al., 1987).
The space group of the crystal is P1 witha=9.09 A, b=10.41 A, c=28.19 A, « = 86.13°, B
= 87.90° and y = 89.27°. The structure optimization was performed with measured data up to
2.5 A resolution; data were kindly provided by Dr Isabella Karle. 126 atoms were included in the
model; no bulk-solvent model was included. The initial model was obtained by placing the atoms
randomly in the unit cell with minimal interatomic distance of 2 A. AIM-optimization was
performed for 250 cycles, each cycle consisting of scaling (scale factor k),-1000.steps Molecular
Dynamics and 50 steps of Energy Minimization. The AIM-parameter set "wp72" was used (Gros,
Briinger, van Gunsteren & Kroon, in preparation). The Molecular Dynamics calculations were
performed at constant temperature (T = 300K).
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Figure 3, Comparison of the refined crystal structure of a 16-residue zervamicin IIA analog
peptide with the structure obtained from the ab initio structure optimization procedure AIM: a)
bonded structure obtained after 250 cycles AIM optimization; and, b) refined crystal structure
(Karle et al., 1987). 2 by 2 cells are shown for clarity. c) Phase differences between the refined
structure and the structure obtained after AIM-optimization: unweighted phase differences
(dashed lines) and weighted phase differences (solid lines). The weigthed phase differences were
computed from the "vector R-factor" (4¢p= 2 sin™'(R/2) with Ry =X IF - k F, A /2 kF 115
where F |, consists of the observed structure factor amplitudes and the phases from the refined
crystal structure and F,,,, are the structure factors obtained in AIM.) Prior to comparison the
common enantiomer and origin of the two structures was determined. The translation vector for
common origin selection was computed using the phased translation function (Read &
Schierbeek, 1988).

The data displayed in Figure 3, shows that the model obtained after AIM-optimization
correlates at low resolution with the refined crystal structure. Starting from a random collection
of atoms the correct overall shape of the molecule is obtained. However, the structure obtained
from AIM is clearly not correct in detail. Phase analysis (Figure 3c) shows that phase information
up to ca. 4.5 A resolution is contained in the AIM model. Similar results have been obtained for
other oligopeptide data sets.

Concluding Remarks

Starting from a random model the ab initio optimization procedure AIM yields correct but
largely inaccurate models. Phase analysis shows that the model is correct to approx. 4.5 A
resolution. This indicates that at low resolution the correct (desired) minimum is found. Thus, our
starting hypothesis "the true crystal structure corresponds to the global minimum of the target
function” is validated. However, the models are inaccurate, corresponding to large phase errors
for reflections beyond ca. 4.5 A resolution. So, it appears we have not yet introduced sufficient
restraints to define the answer to the desired resolution of d < 3 A.
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What can we Learn from Anisotropic
Temperature Factors ?

Thomas R. Schneider
European Molecular Biology Laboratory (EMBL) c/o DESY, Notkestr. 85, 22603 Hamburg

Introduction !

Brighter X-ray sources, sensitive area detectors and the use of cryogenic techniques enable
the collection of atomic resolution (i.e. dmin < 1.2 A [1]) data on an increasing number
of protein crystals [2]. Such data provide a sound basis for the refinement of models with
more parameters than previously acceptable. One possible approach is to replace the
individual isotropic B-factor model by an anisotropic approximation. Besides resulting in
much clearer electron density maps and frequently giving crystallographic R-values below
10 %, refined anisotropic temperature factors provide an interesting new piece of infor-
mation: the direction dependence of the atomic mean square displacements. Some basic
concepts to access this information and their application to models of protein molecules
in the crystalline state will be described in this article. More comprehensive introductions
can be found in the articles by Dunitz et al. [3, 4] and Trueblood [5] and in the book by
Willis & Pryor [6).

Basics

The subject of an X-ray diffraction experiment and the subsequent analysis is not a sin-
gle molecule at an instantaneous point in time. Instead the data collected on a crystal
correspond to an ensemble of zillions of molecules observed for a time which is very long
compared to typical time-scales of molecular motions. Therefore the result of the exper-
iment, the so-called ’crystal-structure’ of a molecule, does not provide a sharp position
for each atom but, due to the time and space averages, a three dimensional probability
density that is characterized by a mean position and some quantity that is related to the
mean displacement of the particular atom from this mean position.

In many cases the atomic PD is approximated by a spherical Gaussian centered at the
mean position of the atom. The width of this Gaussian corresponds to the MSD (u?) of
the respective atom, which in turn is related to the isotropic B- or temperature factor by
B = 872 (u?). Atomic positions and B-factors are adjusted by optimizing the agreement
between observed structure factors (F,;s) and structure factors calculated on an actual
model (F,,;.). In the isotropic B-factor approximation the calculated structure factor is
of the form:

1 Abbreviations: 'PD’ probability density; 'ESD’ estimated standard deviation; "MSD’ mean square
displacement; ’ADP’ anisotropic displacement parameter; "TPP’ Triphenylphosphine oxide
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Foue(R) = > fiexp (—%thtﬁ) exp (271'2'1?1'}) , (1)
J

i.e. three coordinates z; = (z;,y;,2;) and one isotropic B-Factor B; are refined for each

atom j (f; is the respective scattering factor, ha reciprocal lattice vector). The overall
mean displacement of an atom originates from several sources:

e different conformations in different unit cells (’internal static disorder’)
e vibration or dynamic transitions within molecules (’internal dynamic disorder’)
o lattice defects

e lattice vibrations (acoustical phonons)

From the variety of these contributions it is clear that an isotropic description of mean
atomic displacements is only a very crude approximation. In contrast to small molecules
the refinement of more detailed models by introducing more parameters into the refine-
ment process is unfortunately not supported by the number and quality of the X-ray
data for most macromolecules. The situation is different if atomic resolution data are
available. Due to the large number of observables (typically on the order of 30 to 50
reflections per non-hydrogen atom) the isotropic model for the shape of the PD (1 param-
eter corresponding to the radius) can be upgraded to an anisotropic model (6 parameters
to describe the orientation and the elongation of an ellipsoid (Fig. 1)). The 6 parameters

Ch o ﬂ%

Figure 1: In the anisotropic case the PD for an atom is approximated by an ellipsoidal instead
of a spherical distribution.

for the anisotropic description of the PD of an atom can be written as a symmetric ma-
trix U; which enters the structure factor equation in a way very similar to the isotropic
B-factor:

Fcalc(ﬁ) =) _ fiexp (—2#25tUjﬁ) erp (271'2’5%'}) , (2)
J

resulting in 6+3=9 instead of 1+3=4 (eq. 1) parameters to be refined per atom. The
elements of the matrix U are referred to as anisotropic displacement parameters (ADP’s).

In order to obtain meaningful results from a refinement of ADP’s for a macromolecule
in most cases restraints have to be employed to supplement the experimental data. The
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Figure 2: Restraints for ADP’s available in SHELXL93. The DELU ('A-U’) restraint is based
on the fact that a covalent bond between two atoms is fairly rigid so that if the atoms
move they will move in phase and therefore have the same MSDA along the bond. The
SIMU ('SIMilar U’) restraint is based on the assumption that displacements of atoms that are
spatially close will have similar amplitudes and similar directions. This restraint is an extension
of the restraints commonly used in isotropic B-factor refinement [9]. The ISOR ('ISOtropy
Restraint’) is mainly intended to prevent water molecules from diverging by keeping them more
or less isotropic.

restraints on ADP’s that are available in the program SHELXL93 [7, 8] are described in
Fig. 2.

It is difficult to give a general rule as to when restrained refinement of anisotropic dis-
placement parameters is justified by the experimental data. Caution should be exercised
and it is advisable to apply the Rj,..-test [10] or the recently proposed extended Hamil-
ton test [11] to establish the validity of ADP refinement for each case. In our experience
R.ork drops by about 5 % at any limiting resolution between 2.0 and 1.0 A. Corresponding
drops in Ry, at 2.0, 1.5 and 1.0 A resolution are 0.0, 2.5 and 5.0 % respectively. Hence,
depending on the quality of the data, restrained ADP refinement becomes a reasonable
option for data extending to a resolution somewhere between 1.5 and 1.0 A.

B. Analysis of Anisotropic Displacement Parameters

The raw result of a refinement in the first place is nothing but a huge list of numbers (3
coordinates, 1 occupancy and 6 ADP’s plus the same number of ESD’s per atom). In
the same way that atomic coordinates only come to life by visualizing them graphically
and by calculating bond lengths and angles, ADP’s also need to be translated into a
more comprehensible format. A number of programs is available to represent ADP’s on
a computer screen (e.g. [12, 13, 14]) as well as to derive numbers that are more intuitive
than the straight U-matrices. Although all of these programs are intended to be used for
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small molecules, most of them can, after some massaging of the input files and selecting
only parts of the respective structure, be used for macromolecules as well. A typical
example of the graphical representation of ADP’s as 'vibrational ellipsoids’ is given in
Fig. 3.

Figure 3: Representation of the ADP’s of the atoms in a loop-region in a serine protease
refined at atomic resolution. For each atom the U-matrix is translated into an ellipsoid, which
gives an impression of the amplitude and the direction of the mean displacement. Hydrogen
bonds are drawn as dashed lines. Fig. prepared with PLATON [14].

The sidechain of Asn-60 is exposed to solvent and exhibits pronounced anisotropic dis-
order. In contrast both carboxylate oxygens of Asp-61 are tied down by well defined
intramolecular hydrogen bonds. The phenyl ring and most of the atoms in the peptide
chain also show relatively small isotropic mean displacements. The non-hydrogen bonded
carbonyl oxygens of Phe-57 and Gly-59 display pronounced disorder at right angles to the
carbonyl planes, whereas the carbonyl oxygens of Pro-58 and Asn-60 are tied down by
hydrogen bonds.

Based on the matrix of ADP’s, U, the mean square displacement (%), of an atom A in
an arbitrary direction characterised by a unit vector 7 can be calculated via a quadratic
form:

<uf,>ﬁ = U0 (3)

Based on the MSD’s of two atoms along their interatomic vector, a condition for the
envolvement of these two atoms in a common rigid body can be defined: if two atoms
belong to a rigid body their distance will be constant and they will move in phase. This
behaviour will be reflected in the ADP’s by a similar displacement along the interatomic
vector (Fig. 4 and Eq. 4). It must be noted, however, that eq. 4 is only a necessary and
not a sufficient condition for two atoms belonging to a rigid body. Asp may be zero for
example for a planar or linear model with modest ’perpendicular’ vibrations [3].

Disorder of a rigid molecule or a rigid group of atoms can be described in full generality
by three matrices T, L and S ("TLS-model’ [16, 17]). T and L are symmetric matri-
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Figure 4: Rigid-body criterion: if two, not necessarily covalently bonded, atoms A and B
belong to a rigid body the displacements along the interatomic vector (dashed line), (u?),
and (u}). should be the same, i.e. the difference A p should be zero within experimental
error [15].

ces and describe translational and librational disorder, correlations between the two are
represented by the non-symmetric S (’screw’)-matrix. The elements of the T, L and S-
matrices are adjusted by minimizing the difference between the ADP’s calculated from an
actual TLS-model (UT[) and the ADP’s resulting from the crystallographic refinement

( ;?,bk’,) by a least-squares procedure:

2 .
>3 (U?,bksl - UjT,/fzs) — Min, (5)
Y

with index j running over all atoms and indices &, running over all matrix elements.

A classical example of a thorough analysis of ADP’s is the study on Triphenylphosphine
oxide by Brock et al. [18]. TPP is a small molecule consisting of three phenyl rings
and an oxygen bound to a central phoshor in an approximately tetrahedral conformation
(Fig. 5). The first step of the analysis was the calculation of A 4p-values for all possible

Figure 5: Stereo drawing of TPP. Fig. reproduced from [18] with permission.

combinations of atoms A and B. The resulting values were arranged in a so-called A-
matrix (Fig. 6). The triangles labeled A,B and C contain A-values for the three phenyl
rings (’intra-ring’). The three rectangular blocks AB, AC and BC contain A-values for
pairs of atoms belonging to different rings ("inter-ring’). The intraring A values are close
to zero and significantly smaller compared to the interring A-values. In other words: the
rings themselves fullfill the rigid-body criterion but they move relative to one another.
The rigid-body displacements of the individual phenyl-rings were then analysed by fitting
TLS-models to the ADP’s of the respective atoms giving the result that for all three rings
the dominant contribution to the displacements is a libration around the bond connecting
the ring and the central phosphorus atom.
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Figure 6: A-matrix for TPP as given in [3]. For atom numbering see Fig. 5. Positive A's
mean that the MSDA along the interatomic vector between A; and A, is larger for A, than
for A;, negative A's mean the reverse. The estimated standard deviation of the A 4g-values
is about 7 pm?. Fig. reproduced from [18] with permission.

C. Analysis of ADP’s in a protein

In cases where data of very high quality are available the above concepts can be applied
to protein structures. One example is the crystal structure of SP445 (Fig. 7), a serine
protease from Nocardiopsis, for which data to 0.97 A resolution were collected at 120 K
on beamline X11 at EMBL Hamburg. The overall Rpye.qe for the 97 % complete data set
is 3.3 %. The structure was refined using SHELXL93 employing restrained anisotropic
displacement parameters for all non-hydrogen atoms. The current model has an R0k
of 8.0 and an Ry,.. of 10.3 %. It is hopeless to calculate and analyse the A-matrix for
the more than 1400 non-hydrogen atoms of this molecule, but subsets can be selected for
analysis. For example atoms of tyrosine rings are in some sense in a situation similar to the
atoms forming the phenyl rings in TPP, the difference being that the phosphorus atom
is replaced by the polypeptide backbone. Including hydroxyl oxygens the five ordered
tyrosine rings in SP445 result in a 35x35 A-matrix (Fig. 9). Inspection of this A-matrix
reveals that the intraring A-values marked by the grey boxes along the diagonal are
relatively small: the rings themselves fulfil the rigid-body criterion. Apart from the A-
values between Tyr-9 and Tyr-80, which are spatially close and both hydrogen bonded to
the backbone via their hydroxyl oxygens, the inter-residue A-values are generally much
larger indicating that different rings move independently. It should be kept in mind
that the rigidity of the individual rings might be imposed by the restraints used in the
refinement. Refinements using weak or no restraints on APD’s in stable regions of the
protein are under way.

Another interesting object to study is the polypeptide-backbone. The systematic increase
of B-factors from the interior towards the surface of SP445 (Fig. 8) has been observed for a
number of macromolecular structures and a librational rigid-body displacement of entire
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Figure 7: Schematic view of SP445. The
molecule consists of 188 amino acids and
exhibits a trypsin-like fold. The catalytic tri-
ade is located at the interface between the
two [B-barrel domains (shown in dark and
light grey). The Figure was prepared using
MOLSCRIPT [19].

9

80 85 123 172

Figure 9: A-matrix for tyrosine ring atoms
in SP445. Instead of numbers colours are
used to represent the A-values : white cor-
responds to A < loa and black to A >
3o,a, values with loa < A < 30, are
shown in different shades of grey. ESD’s for
the A-values were derived from the ESD’s
of the ADP’s obtained from block-matrix
refinement by an approach suggested by
Irmer [20].
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Figure 8: Isotropic B/(u?)-values averaged
for N-C,-C atoms versus residue number
(full line). The squared distance of the re-
spective C, atom from the centre of mass
of the molecule is represented by the dashed
fine. Secondary structure elements are indi-
cated by black (3-sheet) and grey (a-helix)
rectangles.
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Figure 10: Reduced A-matrix for backbone
atoms in SP445. The 564 x564 matrix cor-
responding to all 564 N-C,-C atoms has
been reduced by averaging over the 9 inter-
actions for each residue pair resulting in a
188x 188 matrix. Average A-values smaller
than 3o are shown in white, greater than 3o
are shown in black.



molecules has been suggested as a possible source (e.g. [21, 22, 23]). The information
about directions contained in the ADP’s can be used to test this hypothesis.

First the rigid-body test can be applied to distinguish between potentially rigid and
flexible parts of the protein. The corresponding A-matrix is shown in Fig. 10. The black
streaks correspond to non-rigid parts of the polypeptide backbone, namely surface loops
and the C-terminal a-helix.

If librational disorder of entire molecules is the origin of the observed distance dependence
of the equivalent isotropic B-values, the radial and tangential displacements of atoms
should exhibit qualitatively different distance dependencies: radial displacements should
stay constant and tangential displacements should increase from the centre towards the
surface of the molecule (see Fig. 11 for illustration). These distance dependencies can
be regarded as a necessary condition for a librational disorder of entire molecules in the
crystal. After excluding all backbone atoms that failed in the rigid-body test radial and
tangential displacements relative to the centre of mass of the protein were calculated for
the remaining 402 N-C,-C atoms. The results are shown in Fig. 12: radial displacements
are constant and tangential dispacements show a parabolic behaviour with increasing
distance from the centre of mass. The offsets for tangential and radial displacements
(0.027 and 0.031 A?) are due to overall translational disorder. The mean libration angle

[=d
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o

0.05

<u®>_rad,tang [A?]

g

0 5 10 15 20 25

Distance to CM [A]

Figure 11: Effect of an overall librational
disorder on the mean square displacements
of an atom A in different directions. If a
molecule is librating around its centre of
mass with an average libration angle w, the
mean square displacement of an atom A in
the radial direction vanishes for all distances
r from the centre of mass. The tangential
displacement can be calculated as u = wr
giving rise to a quadratic distance depen-
dence of the mean square displacement.

Figure 12: Radial (black) and tangential
(grey) displacements relative to the centre
of mass of the protein. Displacements were
calculated for all 402 N-C,-C atoms fulfilling
the rigid-body criterion. To suppress con-
taminations by contributions due to effects
other than libration only the minimum dis-
placements in 1 A shells around the centre of
mass were plotted against the distance from
the centre of mass of the molecule. Lines
correspond to fits of a function a+br? to the
radial (black) and tangential (grey) displace-
ments (fr.a(r) = 0.026605 + 0.00001 r?,
fran(r) = 0.031051 + 0.000088 r?).
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Figure 13: Mean square displacements (u?) averaged for N-C,-Catoms of each residue (white
curve) and mean square displacements derived from the TLS model described in the text.
Secondary structure elements are indicated as in Fig. 8.

corresponding to the function fitted to the tangential displacements is 0.54°.

To fully characterise a rigid-body disorder of the molecule as a whole, a TLS-model was
fitted to the refined ADP’s of the 402 previously selected atoms. Such a simple least-
squares fit of a TLS-model will always overestimate the rigid-body contributions. This
problem can be partly alleviated by scaling the initial T and L such that no TLS derived
displacement is larger than the respective observed displacement (otherwise negative dis-
placements would be obtained after correcting the observed displacements for rigid-body
disorder). However even after this correction the derived rigid-body displacements should
merely be considered as an upper limit for this contribution, since the TLS model will
to some extent 'mop up’ contributions that are due to the internal normal modes which
are not present in this simple model [24]. After performing the above mentioned scaling
of the initially obtained T and L tensors the TLS-model gives a mean translational dis-
placement of 0.034 A? and an average libration angle of 0.49°, values which are in good
agreement with the results derived from the analysis of radial and tangential displace-
ments. In Fig. 13 the deconvolution of equivalent isotropic displacements into external
and internal contributions based on the TLS model determined above is shown. The
curve corresponding to the TLS-model has a high correlation (correlation coefficient 0.79)
with the curve for observed displacements and takes up a fairly large part of the latter.
Again it must be emphasized that the TLS-contribution only represents an upper limit
for external effects. Correction of the atomic displacement for these consequently only
leads only to lower limits for the internal contributions.

Conclusions and Perspectives

Provided atomic resolution data are available, restrained anisotropic displacement param-
eters can be refined for protein molecules. Visual inspection and numerical analysis of
ADP’s can lead to new ideas about the different contributions to the overall mean displace-
ments of atoms in a crystal structure. In particular rigid-body disorder of entire molecules
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or parts of molecules can be detected and characterised by adjusting TLS-models to best
fit the observed ADP’s. The interpretation of results requires great caution, since the TLS
approach in its simple implementation overestimates external contributions: only upper
limits for external and consequently only lower limits for internal disorder can be derived.
In addition it must be kept in mind that based on Bragg reflections it is not posible to
derive rigorous conclusions about crystal or molecular vibrations [24]. In principle the
information on such correlated displacement is available in the thermal diffuse scattering
signal ("TDS’) but currently difficult to access [25, 26]. Nevertheless dynamic and static
effects can be distinguished by multiple temperature experiments and models obtained
on small proteins refined at atomic resolution might help in defining models of disorder
for larger proteins where atomic resolution data are generally not accessible.
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Abstract

Refinement of the model structure obtained from an X-ray diffraction experiment improves its fit
to the data in reciprocal space. and to the electron density in real space. Real space
modifications can be carried out manually, with the aid of graphical simulation, or automatically,
using computer programs. The quality of the electron density maps used is crucial for the
success of refinement.

Due to the falloft of scattering intensity with increasing sin®, high resolution data are generally
weak. Structure factors can be normalised to remove their resolution dependence, so the high
resolution terms make a more significant contribution to maps, giving sharper atomic peaks.
Since the high resolution intensities are weak, they have large associated errors. Their
upweighting leads to a concurrent magnification of the associated errors and the appearance of
spunous peaks in the density map.

An optimal degree of sharpening of the data leads to maps in which atomic peaks are sharp
and well defined, while the noise contribution is minimal. The desirable degree of sharpening
varies with the characteristics of the structure, the resolution of the data and overall B factors.
Various methods can be employed in the determination of the most informative level of
sharpening for maps, including inspection of electron density distributions and trial-and-error
refinement runs.

E’s, F's and electron density maps

A structure factor is the result of the summation of the scattering of all the atoms in the unit cell
in a given direction. It possesses phase and amplitude. The amplitude is proportional to the
atomic scattering factor. The phase is determined by the position of the atom in the unit cell
with respect to the origin. As only amplitudes are available by experiment, estimated phases
must be obtained through the application of one or more structure solution methods. From the
combination of the model phases and observed structure factors electron density maps are
computed.

An atomic scattering factor is composed of the atomic form factor for a spherical atom, which
decreases with increasing sin® due to interference between waves scattered from different
parts of the electron density within the atom and, in-addition, a term accounting for the static
and dynamic disorder of the atom, also resolution dependent. If the atom is considered to be a
point scatterer, the expression for the scattering factor can be divided by all the resolution
dependent terms, producing a resolution independent normalised structure factor, E-value (1).

|Epkil2 = IFpi?/ Z fiz (1)

f = atomic form factor, j = 1 to N, N = atoms per unit cell
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A normalisation factor may be determined, assuming randomly distributed atoms, from the
gradient of the Wilson plot (Wilson,1942): In ( Z f2(s) / IFpki2 ) against s2 (s= sin6/A).
Normalised structure factors can also be calculated by the K curve method (Karle & Hauptman,
1953). The data are divided into resolution bins, then E2 = F2/ <F2>. The CCP4 (1994)
program ECALC utilises the K curve approach. The data are sorted into overiapping resolution
bins and smoothing is applied to the intensities, before calculation of the average values.

Models
This work utilised 4 structures, Table 1. The data were collected using synchrotron radiation at
the EMBL outstation at DESY, Hamburg. The models were refined using similar protocols,
details of which are described elsewhere. The resolution of the data covers the range in which
the sharpening of maps would be expected to be beneficial, from atomic to 2 A.
Table 1. Crystal structures

Structure  Space group  Resolution (A) Wilson Plot B factor (A2)  Reference

Rubredoxin P24 20.0-0.92 15 Dauter et al., 1992
Protein G P212424 10.0- 1.1 20 Derrick & Wigley, 1994
Eglin P43 10.0-2.0 37 Betzel et al., 1993
Transthyretin P212412 10.0-1.9 44 Damas et al., 1996
Maps

(Fo-Fc,a¢) and (3F4-2F¢,ac) maps with varying sharpness and resolution limits were
computed using FFT (Ten Eyck, 1973), ECALC and other programs from the CCP4 suite.
Following the application of artificial resolution cuts to data, 20 cycles of restrained least-
squares refinement were run with the CCP4 version of PROLSQ (Konnert & Hendrickson,
1980), to minimise the memory of the high resolution data in the model. A scale factor of (Z F2/
I E2)172 was applied to the E-values, so that maps calculated with different degrees of
sharpness would be comparable.

The shape of electron density

Effective placing of atoms and improvement of their position in the electron density, particularly
by automatic means, is possible if atoms are resolved in the density map. The visibility of
atoms in the density for maps at different resolutions and with different degrees of sharpening
was investigated by examining the shape of the density between neighbouring atomic
centres. The maps analysed were of the form (FoX Eq'-%,a¢) with 0 < x < 1. All pairs of atoms
separated by distances of 1.9 A or less were selected. The electron density at the two atomic
centres and at nine equally spaced points along the line connecting them was calculated. Pairs
of points equidistant from the midpoint were then averaged. The resuiting values for the
density between each pair of atoms were normalised to give a value of unity at the atomic
centre. These values give a representation of the average shape of the density between
neighbouring atoms, Figure 1.

if ratom is the averaged, normalised density at the atom centre, rmidpoint is the density at the
midpoint between two atoms and pditterence iS the difference between patom and pmidpoints
then the atoms can be said to be 100 % resolved if:

Patom = 1 and pmidpoint =0  therefore Pdifference = 1

The atoms are 40 % better resolved on the E-map than on the F-map if:
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Pdifference (E-Map) - pditterence(F-map) = 0.4

The plot of pditterence against resolution cutoff, Figure 2, shows that the atoms in the E-map
are 40 % better defined at atomic resolution. The resolvability of atoms in maps of all degrees
of sharpness declines as the high angle data are cut. The extra interpretability of E-maps over.
F-maps is also reduced. At 1.5 A the difference in resolvability of atoms is 8 % and at 2.0 A,
4 %, but E-maps retain an advantage until a threshold resolution around 2.25 A to 2.5 A.

The shape of the density between atoms, Figure 1, is principally determined by the resolution
of the data. At atomic resolution there is a pronounced minimum at the midpoint. This minimum is
lower in the E-map. The depth of the minimum decreases for all maps as the resolution is cut.
At around 2.5 A the shape of the density undergoes qualitative changes and there is a
maximum at the midpoint, Figure 3. Between 2 A and 2.5 A it may be possible to resolve
atoms in the E-map as there is still minimum aithough there is not in the F-map.

Figure 1. Averaged shape of Figure 2. Resolution dependence of
Interatomic Density: Rubredoxin Paitterence : RUbredoxin
. 20A nonnkiéed
1.5A P '
0.8
0.6
0.4
- 0.2 "\, E-map 092 0.2
.0 » 0
01 02 03 04 05 1 12 14 16 18 2
fractiona!l distance from atomic centre resolution (A)
: . Figure 3. Averaged Shape of Interatomic Density
n%rmalused A Comparison Between Protein G and Eglin
1o+ ; Protein G

00 0.1 02 03 04 0.0 0.l 02 03 04 00 el 02 03 04 0
fractional distance from atom centre
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The shape of the density in the F-map is influenced by the thermal parameters of the structure.
For a structure with high B factors the atoms are less resolved. A map in which the resolution
had been artificially cut can be distinguished from one for which data are present up to the
diffraction limit, thus there is a substantial difference between the shape of the density in the F-
map for protein G at 2.0 A, and that for eglin at 2.0 A, Figure 3. Since thermal effects should be

removed during the calculation of E-values, there is a greater similarity between the shape of
the density in the E-maps.

Figure 4. Averaged density between
solvent sites: Rubredoxin

The density around solvent atoms was
analysed, as described above for the
protein atoms, by selecting each solvent
atom and its nearest neighbour and
calculating the density along the line
joining the atomic centres, Figure 4. The
change in shape of the density with
resolution cutoff was much more gradual
in this case. This demonstrates that the el 0.922
. high resolution data contain little e, '
information about the solvent. The 0.2 "map
separation between solvent sites is

greater than that between adjacent 0
atoms in the protein, so solvent 01 02 03 04 05
molecules are still resolved at a lower fractional distance from atomic centre
resolution.

Electron Density Histograms

The electron density in the unit cell may be assumed to be composed of Gaussian atoms on a
fairly flat background (Main, 1990). Thus, the histogram of electron density is comprised of two
components, a low density background, with an approximately random distribution, which can
be described by a Gaussian function and a high density contribution from the atomic peaks.
The convolution of these two distributions is a function with a characteristic shape. At atomic
resolution, the distribution is highly skewed with a sharp maximum lying close to p =0, a long
tail in the p > O region and a short tail in the p < 0 region. As the resolution is cut, the peak
becomes lower and broader and the distribution less skewed.

Examination of the electron density histogram allows assessment of the characteristics of the
entire map. The density histogram of a map, generated using correct phases, will be highly
skewed. Increasing the phase error results in a more Gaussian distribution. Thus, skewness
of the distribution and phase quality are related. It has been proposed that for a given
structure the distribution generated from the best set of phases will possess maximum
skewness (Cochran, 1952; Podjarny & Yonath, 1977; Lunin, 1993).

Maps of the form (FoX Eq'-%,ac), 0 < x < 1, were calculated, with the application of varying
resolution cutoffs to the four datasets. It was suggested that the most informative map should
be that for which skewness is maximum. The skewness of the density distribution was
calculated for each map. For each set of maps, for a single dataset at a specific resolution,
skewness was plotted againts x, where x is the power of Fo, Figure 5. The value of x at
which skewness is maximum is defined as xmax , S0 Fxmax E1-xmax jg the map possessing
the degree of sharpness which yields the maximum skewness distribution. xmax against
resolution cutoff is shown in Figure 6 for each dataset.
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Figure 5. Variation of Skewness with X Figure 6. Resolution dependence of Xmax
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At atomic resolution the highly sharpened map,- (F0-2 E®-8), is found to-contain the most
interpretable features. As the resolution is decreased, the optimal degree of sharpening is
reduced. This can be explained by the fact that as more of the high resolution data are
removed, termination errors increase the noise level. Thus, a greater 'F’ contribution to the
structure factors is necessary to dampen the noise and the F/E balance swings towards F.

Refinement using Sharpened Maps

Models derived from an atomic resolution structure of Rubredoxin from Desulfovibrio vulgaris
were subject to a refinement procedure, involving the use of maps of varying degrees of
sharpness. The improvement brought about by refinement was assessed.

Models for Refinement

k An aimost fully refined model, with 82 water molecules and R and Rfree values of 8.3 % and
11.2 %. The SHELXL-93 diffuse solvent correction, which is based on Babinet's principle
(Langridge et al., 1960) but differs from that described by Tronrud (1996), had been applied
during the previous cycles of refinement. The resolution range of the data was 2010 0.92 A. 5
% of the reflections had been isolated from the working dataset for calculation of Rfree.

Ik Solvent atoms with B factor > 30 A2 were removed from /, leaving 32 waters. R and Rfree
values were 10.4 % and 12.2 % respectively.

Ik A random deviation with rms 0.3 A was introduced into model / and, in addition, the co-
ordinates were shifted by 0.5 A along the a axis. This mimics inaccuracies which could be
present in a model obtained by molecular replacement. R and Rfree were 44.8 % and 45.9 %.

1V: Molecular replacement was carried out using AMORE (Navaza, 1994). The search model
was the 1.4 A structure of Rubredoxin from Desulfovibrio gigas (Frey et al., 1988), which has
an rms displacement of 0.65 A from /for CA atoms. There are 14 differences between the two
sequences. Side chain shortening mutations were carried out where this was appropriate. 7
residues in the molecular replacement model were mutated to Ala and 2 to Ser, leaving 9
sequence differences between the starting model and /. R and Rfree were 39.2 % and 41.0
%.

V: A loop region in / comprising residues Pro 20 to Val 24 was removed. R and Rfree were
20.9 % and 24.3 %.
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Refinement

Restrained least-squares refinement of atomic positions and thermal parameters was
performed, using PROLSQ and aiso SHELXL-93 (Sheldrick,1993). Standard geometric
restraints were applied to bonding distances and thermal parameters during both types of
refinement. Hydrogen atom positions were not refined but calculated using a riding model.

The Automated Refinement Procedure (Lamzin & Wilson, 1993) was employed for modification
of the structures in real space. ARP identifies atoms for removal by inspection of the (3F,-
2F¢,0c) map, together with the application of distance constraints. Atoms which approach each
other within a given distance are merged, leaving a new atom at the midpoint. Sites for addition
of new atoms are found from the difference map, (Fo-Fc,0c), with distance constraints applied.
Real space refinement matches the expected and actual shape of density around an atom in
the (3Fo-2F¢,0c) map and moves the atom to improve its sphericity. The refinements were
repeated with variation of the sharpness of the (3F,-2F, ) map_input to ARP; unsharpened
(F), fully sharpened (E) and half-sharpened (F12E12 = H) structure factors were used in tum.

For 1& ll, five cycles of SHELXL-93 anisotropic refinement were run, followed by a cycle of
ARP. This was iterated ten times. ARP was used for modification of solvent only. The distance
range for addition of new atoms was set to 2.2-3.3 A and the merging distance to 0.6 A.
Refinement was run with and without the application of the SHELXL-93 diffuse solvent
correction, and with and without real space refinement. The number of atoms to be added and
removed in each cycle was set to 0 or 5 for fand 10 or 15 for /I.

For Hil, IV & V, PROLSQ refinement was performed until convergence. Following each cycle,
ARP was run. Real space refinement was carried out on all atoms, but only those designated
as solvent were cut and added. Atoms were added at distances of 1.0-3.3 A from existing
ones, and merged if they lay within 0.6 A. These limits were set to allow for the fact that some
of the ‘solvent’ may represent protein atom sites. Observation of the change in R factors was
useful in determining the convergence point of a refinement, while the refinement parameters
were being tuned. However, a comparison of R factors does not give a good assessment of
how well the refinement process corrects the deliberate mistake introduced since R factors refer
to the whole model.

Results of Refinement

in the final stages of refinement the well defined part of the mode! remains virtually unchanged,
while improvements are made in the fitting in the disordered regions and solvent. Such was the
case for the refinements of /and /l. The effect of sharpening is to upweight the high resolution
terms. Since scattering from the regions which were modified by these refinements does not
contribute greatly to the high resolution data, the effect of sharpening was not dramatic. The
use of fully sharpened maps was ineffective, causing the maximum number of atoms to be
removed and added on each cycle, arguing that the noise level in these maps was too high.
The semi-sharpened maps were more useful than plain F-maps. Real space refinement
assisted in the equilibration of the solvent building during the reconstruction of the solvent
network of model JI. This can be explained by the observation that diffuse atoms tend to drift
towards the edges of the density, a problem corrected for by real space fitting.

The effect of the application of the SHELXL-93 diffuse solvent correction was much more
noticeable, since this correction is specific to the low resolution data. When the solvent
correction was implemented during the building of a very incomplete solvent network, the
addition of solvent was slowed down. When the virtually complete model / was refined, with
the solvent correction tumed on, the resuiting model had fewer solvent molecules and a lower
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value of Ryree. This can be ascribed to the removal of peaks which were present due to
incorrect scaling of low resolution terms.

Models /I, 1V and V roughly approximate to structures at earlier stages in refinement with
significant errors in the well defined part of the density. The degree to which refinement has
corrected the inaccuracies which were introduced can be assessed by observing change in
the rms displacement of the main chain atoms from those of model /, Table 2. IV, the molecular
replacement model, possesses 3 regions in which the position of the chain is seriously in error
and requires interactive graphical rebuilding. When these regions are not used in the calculation
of rms displacement of CA atoms from those in /, the values obtained closely mirror those
found for model /lI. Ryee values reflect the success in correcting the mistake in the main chain,
while R values are insensitive. In all three cases, refinement using E-maps produced the best
final model. The results from using H-maps were similar to those obtained with E-maps, while
the F-map based models were considerably worse.

Table 2. The refinement.of models Il IV& V

in R (%) Rfree (%) msd (A)
starting model 44.8 45.9 0.269 i
using E 15.6 18.0 0.041
using H 15.5 18.5 0.044
using F 15.5 19.0 0.057 i
v -
starting model 39.2 41.0 0.398 ii
using E 17.3 19.6 0.043 ii
using H 16.9 19.8 0.046 ii
using F 16.9 20.9 0.058 ii
v
starting model 20.9 24.3 -
using € 16.1 18.5 0.054 jii
using H 15.8 18.8 0.054 jii
using F 15.6 19.4 0.081 iii
i rms deviation of CA atoms from those in /
i rms deviation of CA atoms from those in [ calculated for residues
excluding; Met(1), Pro(34), Ala(35), Lys(46) & Ser(47)
i ms deviation of closest peaks in the model obtained from vV
from main chain atoms in the loop region of /

Conclusions

The first part of this investigation examined density between adjacent atoms; the variation of
peak shape with sharpness and resolution. Fully sharpened maps possess the best
resolved peaks. From the analysis of density histograms, which reflect the character of the
whole map, it was concluded that the optimal level of sharpness increases with resolution, and
is around EO0-8 F0-2 at atomic resolution. The test refinements demonstrate the effectiveness of
sharpening during the early stages, while showing that this approach confers a lower
advantage towards the end of refinement. For an atomic resolution structure, the optimal degree
of sharpening appears to lie between fully (E) and half-sharpened (E/2 F1/2 ) maps, in
agreement with the value obtained from the density histogram study.

Use of sharpening during automated improvement of the model in real space enhances the

accuracy with which atoms can be placed within the density. Where significant errors are there
in well-defined regions, improvement in the model is accelerated and enhanced. In the closing
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stages of refinement, sharpening becomes less important, as most of the atoms are aiready
well positioned and modifications are made to peripheral, weakly scattering parts. The level of
sharpness which produces the most informative map is strongly resolution dependent.
Sharpening should be advantageous for any refinement at a resolution higher than 2.5 A, a

resolution range which encompasses more than half the structures at present in the Protein
Data Bank (Lamzin et al., 1995).
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Introduction

As the major enzyme target for anti-AIDS therapies, the reverse transcriptase (RT) of HIV
has been the focus of intensive study. The enzyme has at least three functions: it is an RNA-
directed DNA polymerase, a DNA-directed DNA polymerase and it also has RNase H activity.
It functions as a heterodimer: the first chain (p66; 560 residues) contains the key catalytic
residues for all three functions, the second chain (p51; 440 residues) is an N-terminal portion
of the p66 resulting from proteolysis and is not known to be associated with any function.

Structural studies of RT have been directed mainly at HIV-1 RT and different groups have
obtained a wide variety of crystal forms (for examples from our group see Jones et al., 1993).
However, few of these crystal forms showed useful diffraction. The first detailed structure
report for RT was based on crystals diffracting to 3.4A resolution (Kohlstaedt ef al., 1992)
which were grown in the presence of a non-nucleoside RT mhibitor (NNRTI), nevirapine
(Merluzz et al., 1990). The resolution of this structure determination has since been extended
to 2.9A (Smerdon et al, 1994). A second medium-resolution structure (data to 3.0A
resolution) was also reported for RT in complex with DNA and an Fab (Jacobo-Molina ef al.,
1993). Both structures showed an open, asymmetrical arrangement of five domains for the
p66 subunit ‘sitting’ on the more compact base of the p51. The p51 subunit comprised the first
four domains of the p66, but in a very different relative arrangement. The p66 structure was
likened to a right hand, able to grip the DNA/RNA and the domains were named accordingly
(domain names are shown in Figure 4). A comparison of these two structures showed that the
molecule was very flexible and that large domain shifts were possible.

A crystal form of HIV-1 RT which reorders on dehydration

We had also obtained a crystal form for HIV-1 RT in complex with NNRTISs, in particular
with the nevirapine analogue 1051U91 (Hargrave et al., 1991). These crystals were of space
group P2,2,2, with one heterodimer in the asymmetric unit and showed diffraction to a high-
resolution limit of 3.4A (Stammers et al., 1994). We had observed that the crystals exhibited
substantial non-isomorphism, apparently clustering into two groups with either a~147A or a~
143A and b~112A, c=79A (designated cell forms A and B, respectively). Crude molecular
replacement structures for these cell forms had been elucidated based on the Kohlstaedt ef al.
(1992) model (Esnouf, submitted) and showed electron density for all domains except the
thumb domain of the p66 subunit. This crystal form promised to yield little new structural
information until a chance observation was made whilst screening for heavy atom derivatives.
During a series of exposures overnight on an in-house detector, repeated disordering and re-
ordering of the diffraction pattern was observed from a single crystal. Initially well-ordered
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Figure 1: Diffraction ifnages from an RT crystal changing cell form due to dehydration
(a) image 27: during transition between forms C and D, (b) image 40: cell form D

diffraction had changed to show distinct evidence of a second lattice by the 4th image and by
image 27 (Figure 1(a)) the diffraction was very disordered. However, diffraction recorded on
images between these two and after image 27 was much better (see image 40, Figure 1(b)).
On checking the crystal it was immediately apparent that the capillary tube containing it was
imperfectly sealed and the mother liquor had evaporated.

Data frames for this crystal were processed individually and showed that the loss of
mother liquor had led to changes in the unit cell dimensions of the crystal without changing the
space group. Initially the cell form was as above with a~147A (form A), but over the first 8
images a conversion to the form with a~143A (form B) had occurred. The disorder in the
diffraction during this conversion showed that they were, indeed, two distinct cell forms.
However, this was only the tip of an iceberg and by image 40 (Figure 1(b)) the cell dimensions
were a~142A, b~116A, c~66A, a contraction of 13A in the c-axis. The last image from which
a reasonably reliable unit cell could be measured (image 67) showed even greater dehydration:
a=137A, b~113A, c~63A. Estimates for the mosaicity of the crystal at each image also varied
as dehydration occurred showing maxima with disordered images (Figure 2). A fuller analysis

2.0

1.0

Mosaic spread (*)

0.0

Image number

Figure 2: Variation in mosaic spread of the RT crystal during dehydration
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of the changes occurring on dehydration will be presented elsewhere (Esnouf ef al., in
preparation). That report shows that for images from the well-ordered dehydrated crystal
states the fall-off of diffraction intensity with increasing resolution appears to be slower than
for the less dehydrated cell forms, suggesting that dehydrated crystals might be capable of
diffraction to higher resolution (especially using a synchrotron source). This observation
prompted a search for ways of inducing crystal dehydration in a more controlled manner.

Data from deliberately dehydrated crystals

A dehydration protocol was developed based on transferring crystals between wells
containing PEG 3400 solutions of increasing concentration (Stammers ef al., 1994). Although
a significant fraction of crystals are damaged by the dehydration process, the loss is acceptable
and those that survive are stable in a solution containing 46% w/v PEG 3400 for some
months. Data collected from these crystals show that they are dehydrated to one of two end-
points: either ax~141A, b~1114, cx73A (cell form C) or a~142A, b=116A, cx66A (cell form
D). Both crystal forms are capable of diffraction to a high resolution limit of at least 2.2A at a
suitable synchrotron source (Stammers ef al., 1994). When these crystals are used for cryo-
crystallography a further cell reduction is observed yielding two further crystal forms, E and F
(Esnouf et al., 1995; Ren ef al., 1995b).

Crystal form Form A Form B Form C Form D
Diffraction limit 3.7A 3.4A 22A 32A
Number of reflections 13149 15872 43009 16158
Riperge 5% 13% 9% 1%
a-axis 147A 143A 141A 1424
b-axis 112A 112A 111A 116A
c-axis 79A 79A 73A 66A
Solvent content 56% 54% 50% 48%

Table 1: Datasets from the four different RT crystal forms

For the original structure determination, four datasets were available (summarised in Table
1). The original molecular replacement model was fitted to the data for cell form C by rigid-
body refinement of the individual domains using X-PLOR (Briinger, 1992). Using sequence
information from Jacobo-Molina ef al. (1993), the structure was carefully refined against the
high-resolution dataset (cell form C). Cycles of manual rebuilding and simulated annealing
eventually produced a model with an R factor of 0.285 for all data from 10-2.3A resolution.
Whilst the model clearly contained errors, there was little evidence for how to correct these
errors in electron density maps phased from it. Although our R factor was worse than for the
published RT structures, this was indicative of the more extensive data providing more
stringent constraints, rather than the model being worse. Indeed, when the R factor was
calculated for data in the resolution shell 10-3.0A after applying a 3 cut-off on intensity to
the data (c.f Jacobo-Molina ef al. (1993)) the R factor was only 0.181.

Real-space electron density averaging between cell forms

In the continued absence of useful experimental phasing information, partly because of the
non-isomorphism of the crystals, an alternative refinement strategy was required: real-space
electron density averaging between the cell forms relying on the troublesome non-isomorphism
to supply phase restraints. That the datasets for different cell forms have phases largely
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Figure 3: Phase independence of data from the four different RT crystal forms

independent of each other is demonstrated in Figure 3. The mean phase differences from the
cell form D data were calculated as a function of resolution based on our current best models
for each cell form. For comparison, we also show the mean phase difference between two cell
form D datasets (RT in complex with two different NNRTIs). Since completely uncorrelated
phases would have a mean phase difference of 90°, it can be seen that even at moderate
resolutions these datasets are largely independent.

As well as averaging between cell forms, the domain structure of the RT heterodimer
(Figure 4) also has a degree of internal non-crystallographic symmetry (NCS) which can be
used for intra cell form averaging. The five domains at the top of the figure are from the p66
subunit and the first four of these are repeated in the p51 subunit below. Although the
different domain arrangement of the subunits causes some change in the internal structure of
equivalent domains, ‘core’ regions of each domain can be defined where the structures are
similar (using the program SHP (Stuart ef al., 1979)). Since we had no model for the p66
thumb domain at this stage we were left with three pairs of domain cores for internal NCS
averaging.

Averaging was performed using the program GAP (Grimes and Stuart, unpublished) in
conjunction with the CCP4 suite for FFTs (CCP4, 1994). Our first protocol was based solely

Figure 4: Domain structure of the RT heterodimer
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Figure 5: Protocol using solvent ﬂattemng and approx1mate NCS between domains
(a) solvent flattening (b) fingers- (c) palm- and (d) connection-domain averaging

on cell form C using data to a high resolution limit of 3A (Figure 5): a starting 2F g, ~Fie)c
map was solvent flattened using the Wang method (Wang, 1985), the NCS operators were
refined and then two-fold averaging of the core regions of the fingers, palm and connection
domains was performed. The averaged map was back-transformed, scaled to the F, and
used to calculate a 2F g ~F ;. map using the new structure factor amplitudes and phases. This
cycle was repeated until the statistics used to monitor progress showed it had converged
(correlation coefficients and R factors both in real and reciprocal space). This internal
averaging required the definition of 8 envelopes for the molecule and for individual domains
and the use of 6 NCS operators relating the pairs of domains. Not unexpectedly, the averaged
maps from this procedure showed little improvement on the starting maps. However, the work
was useful for ironing out difficulties in the protocol before extending it to more complex
cases including inter crystal form averaging.

When extending the protocol to include averaging between crystal forms the difference in
the quality of the datasets has to be considered. Firstly, the diffraction for crystal form C was
much stronger than that from the other crystal forms. We chose to compensate for this as
simply as possible by sharpening the data for each of the other crystal forms to match the form
C data using an isotropic B factor. Secondly, the other datasets did net extend to as high a
resolution as the crystal form C data (not even as far as the 3A cut-off used in the averaging
protocol). As a means of increasing the effectiveness of the cross-averaging for the higher
resolution data, synthetic structure factors were used in the map calculations. For the first few
cycles no synthetic data were used and then they were gradually introduced in thin shells of
increasing resolution up to the 3A limit.

For cross-averaging we took our current ‘best’ form C model and fitted it to the other
datasets by rigid-body refinement of individual domains. This fitting procedure gave us
starting ‘NCS’ operators relating the position of each domain in one cell form to its
counterparts in the other cell forms. We assumed that the internal structure of domains was
very similar in all cell forms and so defined envelopes enclosing virtually the whole of each
domain. As the refinement proceeded our envelope definition became more sophisticated, but
essentially confirmed this initial assumption. The averaging cycle was modified to include
synthetic data in the map calculation, to refine the infer cell form ‘NCS’ operators and to
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perform inter cell form electron density averaging. Other refinements included monitoring
phase shifts and a ‘free R’ calculation. When including cross averaging we were careful to -
keep the process equivalent for each cell form. Internal Wang solvent flattening and two-fold
averaging for each cell form was performed first in the manner described above: These
internally averaged maps were copied and the duplicate map for each cell form was then »-fold
averaged (n = 2, 3, or 4) with the original (intemally averaged) maps for the other cell forms.
- Averaged maps for each cell form were then back-transformed, scaled to the appropriate
datasets and used to calculate new maps for the next cycle.

Averaging this way between cell forms B and C required the definition of 28 ‘NCS’
operators and 32 envelopes, but again the result was disappointing. Including data for cell
form D took the number of operators up to 66 and the number of envelopes to 48. This
increase in complexity proved worth the effort, however, and the averaged maps provided
clear guidance for manual rebuilding. Amongst the improvements in the averaged maps were
evidence for several errors in sequence alignment and the appearance of electron density
allowing the positioning of the p66 thumb domain (see below). This rebuilt model was refined
by simulated annealing (using X-PLOR (Briinger, 1992)) and then used to provide a better
starting point for further averaging. One final data set (for cell form A) was also ‘stirred into
the pot’ along with the newly-found p66 thumb domain. This required a total of 140 ‘NCS’
operators to be defined in order to average density in 76 envelopes.

Results of the averaging protocol

Monitoring the progress of such a complex protocol is no easy task. Each averaging step
on each domain of maps in each cell form produces a real-space R factor and correlation
coefficient. The scaling of each set of averaged structure factors to the relevant dataset
produces statistics for the reciprocal space part of the cycle. With so many operators and
envelopes, individual errors were easy to make and such errors did not necessarily have
catastrophic effects on the averaging as a whole. While setting up the protocol each indicator
was followed separately and the number of pixels being averaged was cross checked as far as
possible. Space does not permit a full analysis here, but a few representative numbers illustrate
the success of the procedure.

The improvement in the real-space correlation coefficients for the internal NCS averaging
(Figure 6) was quite dramatic. Not only were the correlation coefficients higher, but also an

Figure 6: Mean correlation coefficients of domains for internal NCS averaging
() at start of NCS-only averaging, (b) at end of 4-fold cross-averaging
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Figure 7: Final mean correlation coefficients of domains for 4-fold cross-averaging

increasing percentage of each domain could be included in the definition of the ‘core’
envelopes after each rebuild. Whilst some very significant differences in the internal structures
of the p66 and equivalent p51 domains remained, many of the previously reported smaller
differences turned out to be artifactual. The two fingers domains showed the greatest degree
of convergence: the root-mean-square difference in the Ca positions of our ‘core’ region for
these domains dropping from 1.74A to 1.09A by the end of the refinement against the four cell
forms.

The cross-averaging statistics are even more numerous and we just give the final mean
values (over all four cell forms) of the real-space correlation coefficients for each domain
(Figure 7). The values for the fingers, palm and connection domains are all very good (>90%).
The correlation for the RNase H domain is somewhat lower (83%) and this appears to reflect
differing degrees of disorder as well as conformational differences for this domain amongst the
cell forms. Lower still are the correlation coefficients for the thumb domains, especially the
p51 thumb. This may be due to the definition of the envelopes for this domain being rather
sub-optimal since the conformation of the p51 thumb domain is affected by the neighbouring
RNase H domain. The internal averaging can then account for the ‘knock-on’ effect of a lower
correlation for the p66 thumb domains.

For the final cycle of four cell form averaging the mean correlation coefficient in reciprocal
space was 92% and the mean R factor was 17%. However, the relevant measure of success of
the protocol was how well the averaged maps had escaped the original model bias and showed
how our model should be rebuilt. From this perspective, it was the maps resulting from the
three crystal form protocol that were the most valuable, and over two rounds of manual
rebuilding the R factor for our model dropped substantially. One of the major factors in this
improvement was the emergence of connected density for the p66 thumb domain in the
averaged maps (Figure 8). The model for the p5S1 thumb domain was found to superpose well
on this density and so the completeness of our model was improved dramatically. As a result
of the averaging / rebuilding / simulated annealing cycle the R factor for our model of the RT
heterodimer in cell form C was reduced from 0.285 for data from 10-2.3A resolution to 0.214
for all data from 25-2.2A resolution (Ren et al., 1995a).

Conclusions

Real-space averaging is a powerful tool for exploiting the phase restraints that result from
non-crystallographic symmetry — in ideal cases with many-fold NCS the results can be
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Figure 8: Density for part of the p66 thumb domain and the final chain trace
(a) at the start of 3-crystal form averaging, (b) after 14 cycles of averaging

dramatic. However, even in cases where the symmetry is only approximate the benefit can be
crucial in allowing a structure to be refined successfully. For the refinement of HIV-1 RT the
method was extended to include averaging between maps obtained from different datasets. To
allow this required further development and testing of the real-space averaging program GAP,
as well as devising a protocol to cope with the differing (and mdifferent!) quality of some of
the data. The setting up of such a protocol was a very time-consuming exercise.

The averaging / rebuilding / annealing cycles were also time-consuming, keeping three
workstations almost fully occupied for two months. However, computer time is relatively
cheap and there was no other way of reliably improving the phases. Thus, the non-
isomorphism of the RT crystals which had bedevilled efforts to determine the structure for so
long, was, in the end, turned to our advantage and allowed us to produce a well-refined
structure. Work on RT has not stopped and our current best model (refined against cell form
D data in the resolution range 25-2.2A) has an R factor of 0.186 (Ren ez al., 1995a).

Whilst cross crystal form averaging could hardly be recommended as a refinement strategy
of choice, it has been used (albeit in somewhat simpler situations) for a number of other
studies. These studies range from the early incomplete example of influenza neuraminidase
(Varghese et al., 1983) and include the more recent example of HLA class I (Brown et al.,
1993). It is likely that there will be other cases where no other avenue is open. It is worth
noting that the unit celis for two crystal forms do not have to be very different for (at least
higher resolution) data to have substantial phase independence: a difference in one axis of
2-5A may well be sufficient. Such changes in unit cell dimensions are not uncommon when
crystals are flash-cooled and hence averaging between data collected at room temperature and
data collected at cryogenic temperatures may well be a relatively general and useful method of
phase improvement (as, for instance, in the application to SIV matrix antigen (Rao ef al,
1995)).
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Introduction

Given the choice one would always prefer to have crystals which diffract
strongly and isotropically to high resolution. Howéw)ér, there may be rare
occasions when protein crystallographers are forced to work with less ideal
diffraction data. This paper will discuss two particular shortcomings of
diffraction data and procedures which can be used to minimise their effects;
significant overall anisotropy and high Wilson B-factors. Several other papers
in these proceedings deal with the determination of improved weighting
schemes for crystallographic refinement protocols. This paper will be
concerned with the modification of observed structure amplitudes for
calculation of 'improved' electron density maps. These two approaches are
closely related but have different immediate objectives. The examples used to
illustrate these approaches will be based mainly on our experience with the
crystallographic structure determination of HIV-1 RT and SV40 virus; these
examples have 4 and 5-fold non-crystallographic symmetry respectively.
Non-crystallographic symmetry is not necessary for the corrections described
but does not detract from their effectiveness.

Anisotropic Diffraction

Sometimes it is evident from simply looking at raw data images that a
crystal diffracts more strongly in one direction than another. Even if this
property is not immediately evident from visual inspection, a given crystal
may well be better ordered in one or two directions than the others. Indeed, in
the absence of an overwhelming argument (such as a cubic space group), it is
always safest to assume that diffraction is anisotropic.

Given that the diffraction behaviour of crystals often displays some
overall anisotropy, what are the consequences of this and what action should
be taken? Viewed at its simplest, anisotropic diffraction is a consequence of
anisotropy in the packing of the crystal. This anisotropy arises from the way
in which the molecules pack in the crystal lattice, not because of any innate
asymmetry in the order of the molecule itself. It is evident then, that an
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overall anisotropic correction (described by 6 parameters) of the observed
amplitudes will often be required to optimise the information that can be
extracted from it. Of course, the asymmetry in the order of the crystal has a
cost; there is a lack of detailed information about the molecule in a certain
direction.

In practice, the treatment of anisotropy corrections depends on whether
the principle axes describing the anisotropy are aligned with the reciprocal
space axes of the crystal. If these axes are aligned then the correction will not
materially affect the reduction of the observed diffraction measurements
subsequent to the data scaling. In other words, symmetry related reflexions
will be equally affected by the anisotropy correction. In these cases it is quite
legitimate to calculate and apply the correction after scaling and reduction of
the observed diffraction data to the unique segment of reciprocal space. In the
case where the axes of the anisotropy of the crystal are not aligned with the
reciprocal space axes, then the correction must be calculated and applied prior
to the averaging of symmetry equivalent reflexions.

The calculation of the anisotropy correction can either be done based on
the distribution of observed intensities within the dataset itself or with respect
to some external reference (such as a set of calculated amplitudes from atomic
coordinates). Many programs deal with the latter situation but the former
case has often been dealt with in a rather ad hoc fashion. Brenda Temple at
UNC-Chapel Hill has modified versions of CCP4 programs in order to calculate
scale factors and anisotropic B-factors for data merging. These modified
programs have been shown to work well and are available from her on request.

The potential advantage to be gained from applying even a relatively
modest anisotropic correction prior to carrying out a molecular replacement
calculation is illustrated by the example below. This example is taken from a
molecular replacement calculation carried out by T. Barrett at NIMR on the
lectin protein TCA. The correlation coefficients shown represent the values
obtained from first fitting a single molecule and then both of the molecules
present in the asymmetric unit. The anisotropy correction was such that the
B-factor difference between the strongest and weakest direction was
approximately 30A2.

Correlation Coefficient
uncorrected corrected data
Molecule 1 0.251 0.294
Molecule 1 & 2 0.549 0.595
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Sharpening Weak Data

As the technology of protein crystallography advances, increasing
numbers of important biological problems become amenable to
crystallographic analysis. Enormous developments have occurred in the
intensity and brilliance of synchrotron sources, X-ray detectors and cryogenic
procedures. This means that crystals which just a few years ago would have
been; too small, too poorly ordered, or the unit cell just too large, are now
tractable. What this often means with difficult crystals is that diffraction data
is measured which falls off rather quickly as a function of resolution. It is quite
feasible to collect reasonable quality, high resolution, diffraction data which has

a Wilson B-factor in the rather alarming range of 50-80 A2. Three questions
arise; firstly, what causes this kind of behaviour, secondly, what is the effect on
electron density maps and finally, what can be done to ameliorate the effect.

High Wilson B-factors reflect poor order in the packing of the crystal.

The disorder in the crystal can arise in many ways but the fact is that the
crystal may still produce diffraction to high Bragg angles. In other words the
molecule in question (or at least certain parts of it) are still giving rise to
‘relatively high resolution information. As before, the relatively high disorder in
the crystal (be it static or dynamic) is a consequence of the crystal lattice and
" not just the characteristics of a single molecule.

Electron density maps calculated from this kind of uncorrected data will
be dominated by low resolution reflexions. Higher resolution detail will
generally be missing from the electron density maps simply because all of the
terms which represent these details in the Fourier calculation have small
amplitudes. These weak data may or may not be accurately measured.
Whilst it is easier to make reliable measurements of strong amplitudes, there
is no absolute reason why weaker reflexions should not be measured to good
accuracy. Given suitable multiplicity of observations, even reflexions that are
measured at just 1 to 2 sigma on a given data image may nonetheless be
determined with some certainty. Ultimately, the quality of electron density
maps are limited by the resolution, reliability and quantity of measurements.
The point that we will illustrate here is that the interpretability of electron
density maps may well be enhanced considerably by increasing the relative
contribution of high resolution Fourier terms. The sharpening procedure we
have used is to apply a negative B-factor to the observed data amplitudes.

The use of a simple exponential sharpening factor is an intuitive, rather
than rigorously derived, correction factor but it does meet the requirement of
producing better electron density maps. The size of the B-factor applied to the
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dataset depends on; the Wilson plot of the data, how reliable the
measurements are, how complete the data is and the amount of non-
crystallographic symmetry and solvent present. The examples below deal with
crystals with 4 and 5-fold non-crystallographic symmetry and so the innate
value of the weak high resolution data is approximately twice what it would be
in the absence of this symmetry. The correction factors used in the examples
were determined by inspection of various electron density maps.
HIV-1 Reverse Transcriptase

The size and flexibility of the HIV-1 RT molecule caused problems for
many years in producing diffraction quality crystals. Indeed the molecule was
eventually crystallised either by the addition of non-nucleoside inhibitors (1) or
antibodies and DNA duplex (2). To date, no strongly diffracting crystals of apo-
RT have ever been produced. In response to this we decided to pursue the
structure determination from relatively small (150 x 50 x 30 microns) crystals
with high (70%) solvent content and a largish asymmetric unit (~500K/au) (3).
These crystals were only modestly well ordered (diffraction limit ~3A) but the
presence of 4-fold ncs suggested that the project was worth pursuing. The real
problem was that the diffraction beyond 6A was extremely weak. We
developed cryogenic procedures which enabled us to transport a library of pre-
screened crystals to CHESS. This was necessary because the exposure times
required (even using the very brilliant F1 beamline) was of the order of 20-30
minutes for each 0.5° oscillation. The consequence of this was that even at
100K, single crystals deteriorated rapidly after collecting 5-8° of data. Finally,
a dataset was produced with observations from 34 crystals. The data
statistics are summarised below as a plot of I/of (figure 1a). Clearly, these
data are somewhat underwhelming. Nevertheless, with a sharpening B-factor
of 50 and non-crystallographic symmetry averaging, the final electron density
map was extremely informative for many parts of the molecule. There were
some parts of the density map which were not well defined but they represent
parts of the molecule which are highly mobile. This structure remains the only
true unliganded crystal form of RT and provides a wealth of information with
regard to domain mobility and drug binding and function. The figures 1b and 1c
show samples of electron density maps at various stages of the structure
determination. The dramatic improvement afforded by data sharpening stems
not only from the enhancement of the high resolution terms directly but also
from the concomitant improvement in the averaging transformations.
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SV40 was originally solved to 3.8A resolution (4) and the problem of
extendingit to higher resolution was essentially one of crystal longevity in the
beam. Before we knew how to successfully handle virus crystals at 100K
there was no alternative but to collect and merge data from many crystals.
The crystals belong to space group 123 with a=558A and contain two complete
virions in the unit cell. The crystals of SV40 used for data collection were 500-
800 microns in thickness and single 0.2° oscillations were recorded from each
unique volume of the crystal. In total, 45 crystals were used to collect a 3.1A
dataset (5). The Wilson plot of this dataset is shown both before and after
application of a sharpening factor (B=40A2) in figure 2a. The final electron
density map was produced by 5-fold ncs averaging and phase extension
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starting from initial phases from 12.0-5.0A. The accuracy of this phase

extension process for the sharpened and unsharpened data is illustrated in

figure 2b. By monitoring both the free correlation coefficient at each phase

extension step and by inspections of the electron density maps it was evident

that the phase extension was much more powerful using the sharpened

dataset. Indeed in the absence of sharpening, the phase extension procedure
would not proceed beyond 3.8A. The final averaged electron density map was
of exceptional clarity showing most side chains and the orientation of many
main-chain peptide bonds. This is illustrated in Figures 2c and 2d, which show
a segment of the average electron density map before and after data

sharpening.
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Pseudo Symmetry

David Watkin
Chemical Crystallography Laboratory
9 Parks Road
OXFORD OX1 3PD, England

Abstract: This paper reminds readers that the conventional least-squares
technique will inevitably fail if used to refine a model in a low symmetry space
group generated from a model in a space group of higher symmetry related to the
real one by a centre of symmetry or transition to a supercell. It describes some
techniques which can be used to improve the conditioning of the matrix, and
speculates on methods which might be suitable for determining whether the result
of a refinement is meaningful.

Background: When a crystal structure contains motifs which are repeated
such that there is a simple spatial relationship between their orientation and
displacement, the motifs are said to be related by symmetry. The space group
symmetry elements constitute well-characterised groups of symmetry
relationships. If the matrix relating one motif to another is not a space group
symmetry operator, then the symmetry is said to be 'non-crystallographic’.

There are two broad classes of pseudo-symmetry which occur in crystal
structure analysis. One class is generally beneficial, the other aggressively
disruptive. In the first class, the pseudo-symmetry does not degrade the least
squares normal matrix. This non-crystallographic symmetry has been widely
exploited in protein crystallography during structure development. It has also been
widely exploited in small molecule analyses during least squares refinement.

The second class is concerned with the analysis of structures which are
nearly centro-symmetric, or have a near perfect superlattice. The problem has
been perceived for a long time (J.S. Rollett, (1970), Crystallographic Computing,
ed Ahmed, Munksgaard, Copenhagen, O. Ermer & J. Dunitz, (1970), Acta Cryst
A26, 163, V. Schomaker & R.E. Marsh, (1979), Acta Cryst B35, 1933-1934). No
exact mathematical tool exists for the treatment of this problem.

Least squares: The principal procedures for refinement not dependent upon
direct modification of a computed electron density map are based upon least-
squares minimisation. Because the structure factor expression is non-linear in the
parameters to be evaluated, the equation must first be linearised, usually through
a truncated Taylor series.

Equation 1 shows how, in the linear case, an observation y is related to
some known quantities a by n unknown but sought after quantities x.

When there are exactly n independent observations, the simultaneous
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equations can be solved for the unknowns. The operations in equations 2-6 show
one way the problem can be solved when there are more observations than
unknowns - this solution is the least squares solution to the problem.

Equation 7 gives the form of the structure factor equation, where the
unknowns are x and terms in the temperature factor (adp), the observations are
the structure factors, and the ’knowns’ are the reflection indices. This equation is
non-linear in the unknowns, but with a first order Taylor expansion and
rearrangement, gives equation 8 & 9, which are analogous to 1, and so can be
solved by the least squares method. Equation 10 shows some of the elements of
the normal equations in detail. This derivation is in terms if the structure
magnitudes |[Fo|[, but it may easily be modified to use the squared magnitudes.
Several authors (J.S. Rollett, T.G. McKinlay & N.P.H. Haigh, (1976),
Crystallographic Computing, ed. F.R. Ahmed, Munksgaard, E. Prince (1994),
Springer-Verlag, Berlin) have shown that both procedures should yield the same
parameter values if appropriate weighting schemes are used.

Observations of restraint: In equation 10, the observations are the structure
magnitudes, and the unknowns are the atomic and other parameters. Other
observational equations can be written in terms of ‘observable’ quantities and the
atomic parameters, and if these equations are also expanded (so that the
unknowns appear as parameter shifts) and are properly weighted, they can be
added into the summations in equation 10. Some useful observations of restraint
are:

1. Geometric features. Accumulated experience gives crystallographers good
ideas about the expected values of geometrical features, such as interatomic
distances, inter-bond angles, and torsion angles, and other features such as
planarity or chirality. These features can generally be expressed as a
function of the atomic coordinates, a target value assigned, together with
an estimate of the reliability of the target value.

e.g. for a distance restraint (Ax)' G (Ax) = D?

(Watkin, (1988) Crystallographic Computing 4, ed N.W. Isaacs &
M.R. Taylor, Oxford University Press, Oxford)

2 Molecular similarity. When molecular fragments repeat in a structure, it
may be appropriate to propose that molecular parameters are similar,
without actually pre-assigning a value to the parameters. These restraints
can be used impose symmetry (2 or 6 fold) on phenyl groups, to impose non-
crystallographic symmetry on peptide residues if 1-2, 1-3 and 1-4 distances
are all restrained, or to impose local symmetry on peptide chains if only 1-2
and 1-3 distances are restrained to be similar.

3 Shift limiting restraints. These are mathematically related to the
Marquardt-Lavenberg method for improving the convergence of least

squares refinement, but without numerical optimisation. The equation of
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restraint is trivial, and states that the value of the parameter should be the
same after the refinement as it was before. This equation must be weighted,
and is added in with all the other equations which have some effect on the
parameter, so that the parameter may in fact move, but the movement will
be restrained. This restraint is particularly useful when the normal matrix
contains little or no information about one or more parameters being
refined, for example when reducing the space group symmetry.

1'0 . xnew = xold

(Watkin, (1988) Crystallographic Computing 4, ed N.W. Isaacs &
M.R. Taylor, Oxford University Press, Oxford)

Non-crystallographic symmetry. If some quite large part of the structure
appears to be related to another part of the structure by some non-
crystallographic operator, this information can be encoded into the
refinement as a matrix of constraint (in which case the non-crystallographic
symmetry will be obeyed exactly), or as observations of restraint. Since
equations of restraint are not binding upon the refinement, they permit
some deviations from exact pseudo-symmetry. Equations of constraint
reduce the number of variables being adjusted, and so might be a useful
way to start the refinement, but it seems physically unlikely that they will
be appropriate in the final stages of the analysis. Imagine two molecular
fragments approximately related by the operator

X, .5-y, z+.25

This is a kind of glide plane. Similar operators are often found relating
’independent’ molecules in an asymmetric unit. If the molecules are chiral,

then of course the glide plane cannot hold exactly. The matrix of constraint
is

100
y= 0-1 0y+5
0 01 +.25 which can be differentiated to give the shift

constraining matrix.

Contributions from the atom at x’ are simply added into the summations for
the base atoms at x.

The three equations of restraint are
X=X
05-y=y
z - .25 = 2/, which can be differentiated to give the contributions to be

added into the normal equations.

Uses of restraints: Restraints are used to ’tell’ the mathematics something

DJW
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which the analyst knows about the real world. It is not uncommon in mathematics
for a set of equations to have more than one solution. In some situations, all
solutions are interesting, in others only a subset or perhaps even only one. Due to -
the finite precision of computers, it may happen that even more solutions are
approximately equivalent. Restraints permit us to indicate, in advance, the kind
of solution we would like to see and so eliminate some of the extraneous solutions.

The situation is even more complicated in non-linear least squares, since in
this case there is not a single computation which leads us from the observations
to the unknowns. Instead, we are required to postulate trial values for the
unknowns (the initial-model), and then refine these. Unfortunately, many of the
terms in the normal equations can only be obtained from the model, and for a poor
model, they will inevitably be in error. Therefor, it should not be surprising that
there will exist many occasions where a -refinement -will not lead to. an
improvement in the model, and may even lead to a deterioration. Under these
conditions, the equations of restraint try to ensure that the refined model remains
physically viable.

Pseudo-symmetry: One of the essential requirements for a satisfactory
refinement by least squares is that there is no degeneracy in the normal
equations, that is, no row is a linear combination of other rows. When this occurs,
it indicates that the model has been over-parameterised, and that some
parameters are simply related to other parameters. In linear least squares,
singular value decomposition or eigen value (principal component) filtering will
identify these redundant parameters. In non-linear least squares these techniques
are much less successful, because the terms in the Design and Normal matrices
are not independent of each other, but are computed from the model (see equation
10). When the symmetry of a model is reduced, for example by removing a
potential centre of symmetry, new atoms have to be added to the model to replace
those formerly generated by the centre. Clearly these atoms will be exactly (to
machine precision) related to the ones generating them, so that the matrix will be
singular, and not yield a proper solution. If, for reasons of machine precision, the
matrix is not exactly singular, it will be enormously ill-conditioned, and so yield
meaningless parameter shifts. Use of shift limiting or pseudo-symmetry restrains
should hold the model together, so that it does not 'blow up’, but even though the
shifts have been contained, they are probably meaningless. Eigen value filtering
should hold the structure exactly symmetrical. The reason for this is that the
normal matrix, being computed from a symmetrical model, contains no information
to lead to a valid less symmetrical model.

Figures 1 & 2 illustrates the minimisation function (vertical axis) as a
function of a pair of symmetrically related parameters, all other parameters being
held constant. When the space group of higher symmetry is used, the values of the
two parameters are constrained to lie along the diagonal between their axes, and
a minimum is reached. Once the symmetry is permitted to fall, the solution can
move from this diagonal. In general we know nothing of the topology of this
minimisation space, and we cannot know if there is a local minimum near at hand
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(Figure 1), or if the parameters can slide away to non-sensical values (figure 2).
The problem is almost impossible to visualise.

If there are p atoms, then the minimisation space is in 3p dimensions. The
figures are a two dimensional slice through this space, at fixed value for all other
parameters. Should any of the other parameters be altered, then we need to look
at a different slice, in which the minimisation function for the parameters we are
examining may be quite different. This is why the refinement of a low symmetry
model derived from a higher symmetry one almost always falls into chaos. There
is no information in the first cycle of refinement to justify any parameter
shifts at all! Shifts may be generated, but these only come from rounding errors.
By chance, some may be in the right direction, but their magnitude will be
worthless, and their effect may be concealed by false shifts to other parameters.
Many, many cycles of refinement with restraints to hold the structure together
may eventually reveal a valid structure, but this procedure is only a very low-
efficiency Monte Carlo method. I do not believe that there is an exact
mathematical method for breaking symmetry.

Breaking symmetry: Two broad classes of procedures exist for breaking
pseudo-symmetry.

1 Using external information. When such information exists, this is much the
most successful method. The external information may be chemical, physical
or historical. Familiarity with a class of compounds may enable the analyst

to postulate deviations from symmetry, or theoretical considerations may
give clues.

2 Monte Carlo methods. Small perturbations to the structure are generated,
and their effect on the minimisation function is evaluated. I suspect that
there is a lot of research mileage here in designing perturbation regimes,
and figures of merit for assessing their value. Several workers have devised
simulated annealing protocols to assist in the solution and refinement of
structures (A.T. Brunger, (1988) Crystallographic Computing 4, ed N.W.
Isaacs & M.R. Taylor, Oxford University Press)
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A synthetic example: Appended to this brief article is an extract from the
Lead Article 'The Control of Difficult Refinements’ (D.J. Watkin (1994) 'The
Control of Difficult Refinements’, Acta Cryst A50, 411-437.). In this example,
contrived to provide a manageable and analysable problem, a variety of techniques
are examined. At the point where the centre of symmetry is removed and
additional atoms are introduced, the model becomes critically unstable. In effect,
three models are potentially viable - a centrosymmetric structure with either large
adps or disorder, or an ordered non-centrosymmetric solution. These solutions are
not mathematically distinguishable at the moment of reducing symmetry. Even
a Fourier synthesis will only reveal an elogngated region of density in the region
of the problematic atoms. Since the 'non-centrosymmetric’ structure is in reality
still centro-symmetric, so also will be phases computed from it, and thus so also
the map. In this case, the canny analyst may be able to predict a valid non-
centrosymmetric model, but in most real cases this will not be the case. In the
event that the analyst postulates an invalid structure, this will almost certainly
be recovered from any Fourier syntheses, since the centro-symmetric components
of the model will dominate the phases.

Evaluating the result: If the true structure eventually turns out to be far
from pseudo symmetric, then the normal equations will eventually become well
conditioned, and a conventional refinement will lead to a minimisation function
(or R factor etc) which clearly indicates that the new structure is better than the
original. In more marginal cases, other tools may be required.

1 Molecular geometry. If geometry restraints are not being used, the
molecular parameters must refine to reasonable values. If restraints are
used, they must be obeyed (ie, the restraint R factor should be very low).

2 R factor. In general, the Hamilton R-factor ratio test is insensitive to this
kind of problem. R-free changes may be more informative, but may be
influenced by the weighting scheme, and dominated by reflections not
sensitive to the changes being tested.

3 Demonstration of the stability of a structure. If a minimisation is to gain
our confidence, it must be shown to be stable to small perturbations in the
parameters. If a parameter is deliberately perturbed, the refinement should
return to the original values. To some extent, the stability is shown by the
parameter e.s.d, but these only reflect the steepness of the walls of the

minimisation well, not their height nor the presence of other minima near
by.

Other ideas: Perhaps people concerned with refinement strategies could
learn something from the work on Direct Methods for structure solution. For small
and medium size structures, these procedures have become enormously successful,
yet the underlying calculations are much as they were 20 years ago. The high
success rate is due to several things.
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Not being afraid to burn computer time when there is a good probability
that a computation will eventually yield a structure.

2 Optimisation of the code which is executed very many times.

3 The design of figures of merit which enable low probability results to be
weeded out efficiently.

4 Selection of subsets of the data to be used during the initial stages.

Crystallographers have traditionally completed their refinements using all
the available good data, where ’good’ used to imply above a certain signal to noise
ratio. Dunitz and others showed that for certain kinds of problems, the key was
held amongst the weak reflections (Figures 3 & 4), so that-thereis now a growing
movement to use all data, including the negative observations (J.D. Dunitz (1979).
X-ray Analysis and the Structure of Organic Compounds, Cornel University Press).

Small devianons from being centro symmetric have little effect or. .
the of strong li Small devianons trom being cengo symmemc may have 4
i effect on the de ot small sructure amplitudes

The tumbling price of area detector machines will soon make it possible for
almost all crystallographers to collect as many 'unobserved’ reflections as they feel
they need, in order to get some pre-determined observation to parameter ratio. It
doesn’t take much thought to realise that uncontrolled dumping of hundreds of
unobserved reflections into a refinement will not improve it. The data used need
to be relevant. Rollett (J.S. Rollett, T.G. McKinlay & N.P.H. Haigh, (1976),
Crystallographic Computing, ed. F.R. Ahmed, Munksgaard,) described selective
use of derivatives, and Milledge (H.J. Milledge, M.J. Mendelssohn, C.M. O’Bien &
Webb, G.I. (1985), Structure & Statistics in Crystallography, ed. A.J.C. Wilson,
Adenine Press New York) suggested strategies for selecting reflections to measure
with especial care. Atkinson (A.C. Akinson, 1985, Plots, Transformations and
Regression, Oxford Science Publications) gives a wide range of techniques for
assessing the impact of individual data items on an analysis. Prince (1994) shows
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how to compute the leverage of reflections, but to compute this for a full data set
might be difficult.

Our current interest is centred on the Wilson Plot. On of the problems with
pre-screening X-ray data for bad measurements (outliers) is that unlike many
other experiments, it is difficult to predict in advance the expected magnitude of
individual observations, and so gauge if an observation is in gross error. The
Wilson statistics enable us to make some predictions about average properties.

Figure 5 is a typical plot (from SIR92). The straight line traces the expected
local average for a random arrangement of atoms. The wavy line traces the local
average for the observed data. A molecular structure clearly cannot be a random
collection of atoms, and the deviations from the straight line reflect recurrent
motifs in the structure (inter atomic distances, relationships between residues-etc).
Most of the observed data will lie astride these plots. For a reflection to lie far
from the local average, there must be something special about the contributions

to the structure factor equation - that is, reflections lying far from the Wilson Plot
are information rich.

#3128) « Ememajisssies swseise aelesse 01.82

------
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It is immediately evident that weak reflections at high angles are nothing
special, but they are very important at lower resolution since they indicate atomic
arrangements which lead to cancellation in the diffracted wave front. Strong
reflections at high angles are likely to be dominated by contributions from heavy
atoms, or repeated aligned motifs. Princes projection matrix may be a tool for
analyzing the information content of these anomalous reflections. If reflections
sensitive to some structural feature (pseudo symmetry, chirality, partial
isomorphous replacement) can be identified, then these reflections can be used to

devise figures of merit to asses the progress of Monte Carlo methods of structure
development.
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Conclusion: Pseudo-symmetry continues to pose serious difficulties for the
analyst. Symmetry breaking remains an art, and will probably use substantial
computational reserves. Future advances will probably lie in devising suitable
figures of merit for choosing between multiple solutions. It is likely that these will
rely heavily on weak reflections, and so will require data of a very high standard.
Particular care will be needed to avoid over estimation of these weak reflections
when learning algorithms are used to extract structure intensities. When area
detectors (image plate or CCD) are used, the lack of good energy discrimination
by the detection system may lead to harmonic degradation of the data.

Reprinted with permission from Acta Crystallographica:
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LEAD ARTICLE

Acta Cryst. (1994). AS0, 411-437

The Control of Difficult Refinements

By DAVID WATKIN
Chemical Crystallography Laboratory, 9 Parks Road, Oxford OX\ 3PD, England

(Received 12 September 1989; accepted |7 November 1993)

A synthetic example

Raising the symmetry of a refinement rarely poses any
serious computational problems (there are sometimes
practical ones, e.g. origin shifts as well as parameter
averaging) but lowering the symmetry is usually much
more problematic. Once the symmetry has been reduced,
a number of refinement strategies are available. Some
of the strategies have catastrophic outcomes and so
should be avoided at all costs. Others lead with differing
degrees of success to acceptable solutions. The analyst
is of course restrained by the programs he has available.
However, most modern programs contain some features
that can, more or less simply and with more or less
ingenuity, lead to satisfactory refinements.

The following example was devised (Watkin, 1986)
to demonstrate some features of the different procedures
described above. The known structure of trans-1.4-
dimethylcyclohexane (P2,/c, half a molecule in the
asymmetric unit) was reinodelled into the cis-1,4 isomer
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in P2, with a whole molecule in the asymmetric unit and
structure factors computed to be used as ‘observations’
in the subsequent analysis. We now have to pretend not
to know what the structure is, to doubt the systematic
absences and erroneously to take the space group as
P2,/c. hOl reflections with [ odd were eliminated.

This pseudostructure was solved with SHELXS86
(Sheldrick, 1985) for half a molecule in the asymmetric
unit. Isotropic refinement converged at 36%, at which
point the methyl group, which had a large U, was
refined anisotropically. This refinement converged at
19%. Apart from the large R factor, other symptoms of
a poor refinement were the short C-methyl bond length
(1.41 A) and the very aspherical methyl temperature
factor (Fig. 2).

In accordance with the above suggestions, the methyl
carbon was replaced by two half-methyl-carbon atoms,
one at each end of the themmal-ellipsoid long axis, and
this disordered model was refined isotropically. The final



428

R was 11%. To complete the example, the converged
isotropic model (R + 36%) was recovered and a second
half-molecule generated. with all atoms isotropic, using
the centre of symmietry, and the space group was reduced
10 P2,. Several strategies were used 10 refine this highly
symmetric starting model. Table 4 records the R tactors
and minimum and mnaximum C-C bond lengths for each
refinement.

(1) Full matrix with Choleski inversion

Rollett remarked, 20 years ago, that some analysts
were surprised that such a strategy often led 10 uncon-
trolled shifts in parameters or singular matrices (Rollett,
1970). Though the reason was described again in detail
by Dunitiz almost ten years later (Dunitz, 1979), the
problem continues to surprise beginners.

The actual behaviour depends upon details of the
least-squares program. Commonly, the matrix inversion
proceeds via the Choleski method. If rounding errors
are large, then the inversion may seem to have been
successful in that it executes to completion. However,
the shifts of parameters that were initially equivalent are
likely to be large and are in any case valueless. The old
strategy of using partial shift factors to try to contain the
disruption is sometimes successful but not necessarily
so. 10% of a calculated shift of 100 A is still a big shift!
[Shift factors could have a place in structure refinement
in the hands of sensitive operators (Rollett, McKinlay
& Haigh, 1976). These authors show that careful use
of factors greater than unity can be used to accelerate a
well behaved refinement. There seems to be no evidence
from the literature that this strategy is in common use.]
If the computation is to greater precision, smaller shifts
may be computed for some parameters but eventually
related parameters become pivots of the method and
the latent singularities are discovered, and usually the
corresponding shifts are set to zero. Thus, of a pair of
originally related parameters, one is modified and the
other is not. If the analyst is forunate and the random
shifts thus applied are sufficiently small and more or less
in the right.direction, further cycles of refinement of the

Fig. 2. Structure of pseudo-dimethylcyclohexane at a false minimum.

THE CONTROL OF DIFFICULT REFINEMENTS

now nonsymmetric structure may proceed satisfactorily.
This is rarely so and the refined structures usually show
all sorts of curious anomalous geometries. In fact, the
refinement generally ‘Blows up'. In this example, the
R factor rises continuously and bond lengths become: .
worthless.

(i) Blocked matrix

The analyst, dismayed at discovering singularities in
his full-matrix refinement, either refines the related frag-
ments each in its own matrix block or refines altemate
fragments in altemate cycles. These techniques differ
slightly in detail but suffer from the same problems.
In the first method, the structure factors and derivatives
are all calculated from the same model and the matrix
blocks are accumulated at the same time. Used with
care in well behaved refinements, this is probably the
most . cost-effective method of . refining, "‘medium-sized’
structures (the definition of ‘medium" depends of course
upon the size and speed of the available computer). In the
second method, the model is updated after each block of
atoms has been refined and so different structure factors
are available for subsequent blocks. For structures not
showing pseudosymmetry, this latter technique is used
as the basis for cascade refinement and has been shown
10 be very cost effective on computers with limited
memory. If there are discrete molecular fragments and
the analyst is not too concemed with intermolecular
distances, the method can even be used as a crude
procedure for fixing origins in polar directions. However,
in the current situation, both techniques suffer from the
same catastrophic disadvantage.

As discussed above, the failure of the full-matrix
method (normally the safest method of refinement) is
caused by the latent singularities arising out of 100%
correlations (except for rounding errors) between the
original model and the fragment generated by symmetry.
Partitioning the matrix and discarding the off-diagonal
elements that relate the two fragments does not cure
the problem but only blinds the mathematics to it. As a
result, the refinement seems to proceed satisfactorily and
no singularities are observed. In fact, in some cases the
refinement may appear to be chemically satisfactory, par-
ticularly when the two fragments are whole unconnected
entities. :

However, in the majority of cases, the refinement is
unacceptable, with the fragments showing anomalous
geometries but with average values close to the accepted
ones. This often becomes particularly evident when the
two fragments are part of the same molecule and are
joined across the former symmetry operator. In blocking
the matrix, the analyst has actually thrown out the infor-
mation that will eventually, once the model has settled
down, ensure correct geometries. The serious danger in
this procedure is that the program cannot give the user
any waming that all is not well so there is real risk of
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Table 4. Course of refinements of a svuthetic data ser by different techniques, showing minimuem and maximum C-C
hond lengths

C-C distgnees

Process used (sece texi) R factor Minimum Taximum
Full matrix (Choleski) 58 499 9% 493 488 484 474 474 474 070 1.78
Two blacks RN 59 59 R R{R) 36.3 613 613 163 139 153
Full matrix tlimited shifis) 35S 3§ 4 RN RER] 266 149 1.6 V7 1.582 1582
Ornhogonal coordinates A8 S k1! 163 49 1.7 1.52 1.582
Antinding constraints 158 RN 156 19 17 1.52 1.52
Rigid-body constraims 158 352 62 119 29 21 1.52 1.53
Distance restraints R 58 259 134 71 1.8 1.52 1.52
Eigenvalue tillenng 55 iss R RN 355 s 55 isS 58 1.41 182
Common sense 91 1.7 1.52 152

improperly refined structures being published. with little
readers can do to recognize the situation. In the synthetic
example, minor anomalies appeared in bond lengths but
the structure remained approximately pseudosymmetric.
It is only the high R factor, still over 30%, which
makes us suspicious. If the pseudosymmetric structure
had refined to, say, 12%, we might have accepted the
model and assumed that there was something wrong with
the data. Blocking the matrix can never be recommended
as a cure for singularities unless their source is well
undersiood.

(i11) Full matrix with shift-limiting restraints

In the case we are concemed with here, in which
the original model has higher symmetry than the ‘true’
structure, the small (but otherwise uncontrolled) shifts
permitted by shift-limiting restraints may mean that
eventually the model drifts towards a correct one. The
matrix then begins to contain terms computed from more
or less correct derivatives, the shift-limiting restraints are
over-ridden and the refinement proceeds to an acceptable
solution. In this case, convergence occurs after eight
cycles, at R =2%, with a model very close to that used
to produce the pseudo-observations (Fig. 3).

The data do contain enough evidence for the original
structure to be recovered and it is merely the unsat-
isfactory nature of the normal matrix (because of the
over-symmetric model) that prevents proper refinement.
However, this process, though semi-automatic, may be
rather slow to start converging and, since it depends on
fortuitous random shifts, cannot really be recommended

5

PEARN

% '

2

=k

c2 C103

cio?

Cl101 cip2 c3

Fig. 3. Structure of pseudo-dimethylcyciohexane at a true minimum.

except us a method of last resort. As outlined below,
there are generally better methods. If the program being
used permits shift-limiting restraints to be expressed
explicitly in the same units as the parameter concerned,
restrictions of about 0.1 A seem to be workable values.

(iv) Reparameterization to orthogonal coordinates

Pairs of new coordinates are defined for refinement
by least squares, one being the sum and the other the
difference of the corresponding positional parameters
of the symmetrically related atoms. The matrix for a
structure that is exactly pseudosymmetric is still singular
but, once the structure is perturbed, the refinement
quickly settles down. Shift-limiting restraints are still
necessary for the initial computations but they can be
fairly slack and limiting the shift to be not more than
one unit cell seems to work well. This means that, once
the crystallographic derivatives become meaningful, they
are not unduly damped by the restraint. Convergence is
achieved in five cycles.

(v) Anti-riding constraints

When a structure is refined in a high-symmetry space
group, the analyst may be applying all sorts of con-
straints to the solution. These are implicit in the space-
group symmetry operators, which the model for the total
contents of the cell must obey. If the analyst believes
that the bulk of his structure conforms (at the resolution
of his data) to the higher symmetry and only some
atoms are in more general positions, he is at liberty
to refine the structure in the lower-symmetry space
group and then re-impose selectively the relationships
previously defined by the space-group operators. These
relationships can be set up as constraints. In this case,
we might believe that atoms C(1) to C(3) are very close
to being centrosymmetrically related to atoms C(101) to
C(103) and we could impose this belief as anti-riding
constraints by setting the shift in C(1, r) to be of the
same size but opposite sign as that in C(101, z) and so on
for all the pairs of positional parameters of the atoms in
the central ring. Thus, only one least-squares parameter
is computed for the shift in C(l, ) and C(101, z),
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Table 5. Eigenvalues and selected eigenvectors of the normal matrix for the centrosvmmetric starting model

(@) The 12 largest cigenvalues. The remaining 12 have values close o zero

2.68 28 [y 248 1.582 1.57

.72

218 2.01 1.93 1.97 202

(hy Components of the cigenvector corresponding 1o the first eigenvalue. Paramieters are ardered £, y. = for cach atom. Entries in
the second row are centrosymmetrically related to the corresponding entries in the first row

02
-0.32

-0.02
0.02

023
-023

017 002
-0.17 -0.02

0.16
-0.16

() Compuonents of the cigenvector corresponding to the 13th eigenvalue

0.20
0.20

0.63
0.6}

004
004

0.15
0.15

0.03
0.03

0.02
0.02

another for C(1, y) and C(101. y) and so on for all the
other pairs of parameters.

Because these are constraints, only three least-squares
parameters are refined for each atom pair and after the
matrix work appropriate shifts are applied to the related
atoms. Formally, this is the same as working in the
higher-symmetry space group, with the exception that
the structure factors and derivatives have to be computed
for all six atoms. The other atoms, the methyl C atoms,
which through their temperature factors or anomalous
bond lengths made us suspect lower symmetry, will
of course be refined without this sort of constraint but
may be the subject of reparameterization or shift-limiting
restraints.

Once the refinement shows signs of stabilizing, the
anti-riding constraints can be removed and, with mild
shift-limiting restraints, full-matrix refinement can be
used to finish off the task in a total of five cycles.

(vi) Rigid-body constraints

The centrosymmetric refinement yielded a core struc-
ture, the cyclohexyl ring, that made chemical sense.
Another way to proceed to the lower-symmetry structure
would be to refine the cyclohexyl ring as a rigid body
with its current geometry and only the methyl groups
as independent atoms. Replacing the 18 degrees of
freedom of the core by only six rigid-body parameters
reduces the number of ways in which the refinement
can fall into ruin and ensures that the solution makes
some chemical sense. As with the constrained refinement
above, the rigid-body constraint should eventually be
relaxed. Convergence was achieved in six cycles.

(vii) Distance restraints

The major problems with the centrosymmetric re-
finement were the anomalous temperature factor of the
methyl group and its bond length from the ring C atom.
The full-matrix refinement revealed its failure by both
the R factor rising and the quite unacceptable C-C bond
lengths. This suggests that another approach to a stable
refinement might be to use bond-length restraints, both

038 001 Q.35 -010 003 -0Mm
-0 -001 -035 0w -003 003
003 -.006 -006 g1a 0N -003
004 -006 -006 014 011 -003

for the C-methyl bond and also for the bonds in the ring.
In this example, we can make a well informed guess
at suitable values. In more general cases, theoretical
arguments may not provide actual bond lengths but may
indicate that, by symmetry, bonds should have similar
lengths. This similarity may be applied as a restraint.
Convergence was achieved in six cycles.

(viii) Eigenvalue filtering

This method provides excellent diagnostics as to
why the full-matrix refinement failed. Table 5 lists the
eigenvalues of the scaled normal equations and the
eigenvectors corresponding to eigenvalues 1 and 13. If
one remembers that the first four atoms are centrosym-
metrically related to the second four, it is instructive
to note that the signs of the second 12 components of
eigenvector 1 are the opposite of the first 12, while they
are the same for eigenvector 13. This reveals straight
away that, while the sums of corresponding parameters
are well defined, the differences are not, and explains
why the standard refinement is unstable. It also explains
why the re-parameterization described above is a useful
technique. In that case, a rotation was applied in which
the components of the relevant eigenvectors were exactly
zero or 2'72[2,

Fig. 4 (ad hoc plotting program) represents the vari-
ation of the minimization function, M = (wA?), as a
function of the value of C(1, z) and C(101, z). (Note
that this is a two-dimensional section through a 24-
dimensional space. Changing any other parameter in
the model requires us to look at the section parallel
to the given section but displaced in the direction of
the perturbed parameter.) The dotted line lies in the
plane C(1, x) = —C(101, z), so that the minimum for the
centrosymmetric structure must lie on this line. In this
case, this minimum is also the local absolute minimum
in the C(1, £)C(101, z) plane and lies at the bottom
of a shallow bowl. Movement away from the dotted
line causes the minimization function to rise, so that
a centrosymmetric solution for these two parameters
is best, even when noncentrosymmetric positions are
available.
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Fig. 5 is the corresponding contour map and
shows that the minimum is well defined in the
C(1, r) + C(101, r) = O direction (centrosymmetric)
but not at right angles. Small perturbations along this
direction will not affect the minimization function
greatly and so are more or less equally acceptable.

Fig. 6 is a similar representation for C(7, r) and
C(107, r). Again, the dotted line contains the minimum
for the centrosymmetric structure. However, this is at
a saddle point if the two coordinates are not required
to vary synchronously; lower minima lie to either side
of the line. The gradient of the surface perpendicular to
the symmetry line should be zero for points immediately
adjacent to the line, so there is no information in the nor-
mal matrix to tell the calculation to move the parameters
off one way or the other. In the presence of rounding
errors, a small gradient may be seen, indicating some
distant minima, and large spurious shifts are computed.
Eigenvalue filtering eliminates these spurious shifts. It
differs from Choleski inversion, which can also trap large
shifts, in that it recognizes special relationships between
parameters and preserves these relationships.

In this example, the normal matrix contains no infor-
mation at all about what shifts should be applied and the
structure remains essentially unchanged after ten cycles
of refinement. This is mathematically correct, though

Fig. 4. Representation of a section of the minimization function for well
resolved parameters in pseudo-dimethylcyclohexane.
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Fig. 5. Contour map corresponding to Fig. 4.
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naturally disappointing for the hard-pressed analyst hop-
ing for miracles. The standard Taylor expansion of the
structure-factor equation and subsequent building of the
normal matrix involves only the first-orderderivatives.
This helps to increase the range of convergence of the
method, avoids saddle points and saves the expense of
computing second derivatives, at the cost of a possibly
nonquadratic convergence. However, we believe that
inclusion of second derivatives would give eigenvalue
fillering the information it needs to. determine which
parameters need 10 be perturbed and the correlation
between these perturbations. '

Once the model has been perturbed, the minimization
surface (which is computed from the model) ceases to
be symmetric and, if the perturbations are in the correct
directions, the true minimum appears in the surface and
the refinement proceeds correctly. We have not seen an
example of the use of second derivatives in structure
refinement.

(ix) Common sense

The split-atom refinement (R = 11%) couid have given
us a clue about a possible model for the noncentrosym-
metric space group. As with the ordered model, a second
half-molecule could be generated using the pseudocentre,
giving four half-methyl-carbon atoins (two at each end
of the molecule). Taking a nonequivalent one from each
pair and restoring it to full occupancy gives a model with
asymmetric methyl groups. The R factor for this structure
produced by trivial modelling techniques has a value of
9% and refines by any valid method in two cycles. The
game, therefore, in all cases of near pseudosymmetry,
is to provide the mathematics with as much evidence
as possible drawn from sources external to the X-ray
experiment and bearing upon noncontroversial issues
in the analysis, and so permit concentration of the
information contained in the X-ray data onto the real
issues under investigation. The risk, of course, is of
feeding in erroneous or prejudiced opinions.
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Likelihood-weighted real space restraints for
refinement at low resolution

].P. Abrahams,
MRC Laboratory of Molecular Biology,
Hills Road, Cambridge, UK

INTRODUCTION |

A correct electron density map agrees with all measured diffraction data and all
prior knowledge.

The fundamental problem of crystallography, the inability to measure
phases of structure factors, requires the introduction of additional knowledge to
arrive at a solution. Many types of such information are currently incorporated
in programs used for the refinement of protein crystal structures and we can say
that this refinement currently hinges on knowledge of the following constraints
and/or restraints:

- atomicity and positivity, atomic shapes defined as form factors

- topology, the chemical and electro-chemical connectivity of the structure

- stereochemistry, defined in terms of bond lengths, bond angles and chirality,
steric, electrostatic and hydrophobic interactions as defined by torsion angles
and force fields, planarity and temperature factor restraints

- non-crystallographic symmetry.

The apparent gap between the first three structurally local chemical
restraints and the structurally global assumption of the preservation of macro-
molecular shape (ie. non-crystallographic symmetry), raises the question why
current programs do not employ sub-global or supra-local restraints. Some sub-
global restraints are in fact present in all current refinement programs, albeit in a
hidden form. For example, most programs will conserve the folding pattern of a
molecule because the sub-global restraint of the conservation of fold is inherent
to the minimising algorithms. This paper discusses another type of supra-local
restraint which can be introduced with relative ease in current refinement pro-
grams and has a wide range of applications.

The more you can measure, the less you need to know.
If data to a sufficiently high resolution are available, atomicity and positiv-

ity restraints are usually adequate to solve a structure. Because these essentially
one-dimensional restraints are comparatively easy to formulate, the process of
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structure determination has now been automated to a large extent for such well-
ordered crystals, providing the structure is not too large. On the other hand, if
the resolution of the data does not allow the separation of individual atoms, the
solution of the structure requires more knowledge in the form of heavy-atom
derivative data, anomalous data, or a molecular replacement model. Successful
refinement of these solutions depends on the proper use of restraints on connec-
tivity and stereochemistry; in their absence the refinement will not converge to
the correct solution. Even when data to true atomic resolution are available, the
need for such restraints quite often still exists, because not all of the molecule
needs to be equally well ordered for a crystal to diffract to such a high resolution.

When the resolution of the diffraction data is lower still, refinement pro-
grams are prone to diverge from the proper solution even when all conven-
tional stereochemical restraints are being used. It has been argued that this hap-
pens around a resolution of about 2.5 A in the absence of non-crystallographic
symmetry, because at a lower resolution the number of parameters of the model
(the three coordinates and the temperature factor of each of the ordered non-
hydrogen atoms) is greater than the number of observed reflections. It should be
realised that this is a simplification. Refinement is not an exhaustive search for a
global minimum in an N-dimensional space (where N is the number of
parameters), but a minimisation of an N-dimensional function. The difference
between these two procedures is dramatic: inclusion of additional parameters in
the former case increases the difficulty of the problem exponentially, in the latter
case additively. Other considerations are that atomic coordinates and tempera-
ture factors are not independent parameters because of the introduction of
restraints and that not all diffraction data are equally restrictive, since weak data
can, and low resolution data will contribute less information to the atomic detail
of a structure. If a refinement diverges from the true solution (as measured by
the free R-factor, for example), this is a reflection of the inadequacy of the model
and its restraints, given correct data. In the end, it is the sequence of a protein
which determines the structure, not the diffraction pattern.

The main reason for the breakdown of refinement algorithms at lower
resolution is that none of the currently employed procedures is capable of descri-
bing poorly-ordered parts of the crystal with sufficiently few degrees of freedom.
The tendency exists to model these poorly ordered parts by single conformations
with sub-optimal stereochemistry, whilst in reality these parts are present in
multiple conformations, almost certainly with good stereochemistry. This ten-
dency is illustrated most clearly by the correlation between the stereochemical
quality of a model and the resolution of the data. The program “PROCHECK”, for
example, is more tolerant of poor stereochemistry when the resolution of the
data is low.

Since it not so much the number of parameters which renders refinement
at low resolution a perilous task, but rather the degree of freedom each of these
parameters has independent of the other ones, one way forward is to introduce
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additional restraints, thus coupling the parameters more strongly. These
restraints provide the boundaries within which the refinement routine is
allowed to search for the solution and the tighter the boundaries, the smaller the
chances of the routine losing its way. If this coupling of parameters works, refine-
ment of crystals diffracting to a higher resolution might benefit too, if parts of
these crystals are poorly ordered or are present in multiple conformations.

In absence of proof to the contrary, assume things stay the same.

As pointed out above, non-crystallographic symmetry (NCS) is one of the
sources of additional restraints. If one is confident that NCS is exact, the weight
of these restraints can be increased to infinity, turning the restraints into con-
straints. On the other hand, if one has evidence for the breakdown of NCS, the
weight of the associated restraints should be decreased, thereby unfortunately
compromising the refinement process. Determining the appropriate weight is
complicated by the fact that the strictness of the NCS will vary locally: although
the structures of two molecules can be identical in their cores, they might differ
at lattice contacts.

These considerations prompted the development of a procedure which
automatically determines a local weight of the NCS restraint for each of the
atoms, rather than a global one. If the data suggest that the NCS breaks down loc-
ally, the associated restraints are weighted down too. The described procedure
was implemented in the “NCS”-module of the TNT-suite.

After determining the NCS operator, the vector shift of each atom is deter-
mined by comparing the individual NCS related structures to the averaged struc-
ture. In conventional averaging, this vector is combined with the shift induced
by the X-ray terms and the shift suggested by stereochemical and energetic terms,
after globally weighting each of the vectors. In locally weighted averaging, the
shift suggested by the NCS restraint is weighted first by the statistical significance
of the differences between the positions of the individual NCS related atoms and
their averaged position. The likelihood that an atom should in fact be at the
averaged position can be calculated from its distance to that position and from
prior knowledge of the coordinate error:

o 2
P=2/V(2n) fd e? 124, )
where:
P = likelihood, assuming Gaussian statistics
d = distance of the atom under consideration from the averaged position
z=d/o
o= V2 times the positional standard deviation
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Shifts resulting from unweighted Shifts resulting from likelihood-
averaging weighted averaging

Fig.1 Unweighted vector shifts vs. likelihood-weighted vector shifts.
Non-crystallographic symmetry restraints introduce vector shifts towards the averaged atomic
positions as indicated in the figure. If the NCS restraint is unweighted, the length of the vector
shift is proportional to the distance between the actual atomic position and the averaged one.
However, if the NCS restraint is weighted by likelihood, the length-of the shift-vector is propor-
tional to the chance that the atom really does occupy the averaged position, and therefore gets
shorter the larger the distance between the actual and averaged atomic positions is.

It follows from the formula that the larger the distance between an atom
and the averaged position, the smaller the weighted NCS shift towards this posi-
tion becomes, because of the increased likelihood that the atom really does
occupy a position different from the average. The difference between likelihood-
weighted and unweighted averaging is illustrated in figure 1.

Various simplifications were made in the implementation because of my
unfamiliarity with “FLEX”, the computer language in which the TNT-suite is
written, and because of the desire to test the merits of likelihood-weighted avera-
ging quickly without getting bogged down in elaborate coding. Neither the deter-
mination of the NCS-operators, nor the determination of the averaged position
towards which the atoms gravitate is weighted by likelihood, for example. The
standard deviations of the atomic positions can be calculated from their tempera-
ture factors, but this finesse was omitted, and an overall standard deviation was
assumed instead. However, these shortcuts did not prevent the procedure from
proving its worth.

RESULTS

The procedure as outlined above initially was devised for the refinement
of an inhibited form of F1 ATPase (373 kD). The stoichiometry of this enzyme is
a3Pf3yde, and the a and p subunits do not obey NCS because each of the three
subunits is in a different catalytic state. Data were collected at the SRS in Dares-
bury to a resolution of 3 A, but unfortunately were only usable to 3.1 A because
the limiting aperture of the MAR Research image plate scanner used for data col-
lection was not designed for a crystal-to-detector distance larger than 450 mm.
The data are summarised in table 1.
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The structure of native F] ATPase, which was refined to 2.8 A (Rf: 17.2%,
Rfree: 25.4%, 603 waters, 0.016 A rms bonds, 2.91° rms angles), was used as a
replacement model for the inhibited form of the enzyme. After rigid body refine-
ment using TNT (the native structure was broken up into domains and second-
ary structure elements), the free R-factor fell from 37.8% to 23.2%. A difference
map allowed localisation of the inhibitor, a peptide with 16 non-canonical ami-
noacids. The presence of the inhibitor locally distorts the structure of F1 ATPase
and the domains of the enzyme had adopted slightly different orientations rela-
tive to one another, perhaps in response to freezing the crystal. These structural
variations prompted some rebuilding of the model.

The model of the native structure contains 603 water molecules which in
the rigid body refinement were treated as a single rigid body. If the water mole-
cules are omitted, the free R-factor increases by 0.6%, so the presence of the water
molecules is legitimate. On the other hand, because the ordered water structure
was treated as a single rigid body, and because the individual domains of F1 had
shifted relative to one another, it was unlikely to be entirely correct.

All further attempts to refine the rebuilt structure using the conventional
refinement techniques of TNT failed, as judged by monitoring the free R-factor.
Various weights on the stereochemical restraints were tried, and the model
could quite easily be refined to one with superb stereochemistry, unfortunately
always accompanied by an increase of the free R-factor. Also, refining only part of
the model did not improve its quality. Neither keeping the waters constant,
keeping the temperature factors constant, nor keeping the poorly ordered parts of

Table 1: Summary of the crystallographic data as a function of the resolution.

15Ato0 55Ato 46Ato 40Ato 36Ato 3.35A to Overall
5.5A 4.6A 4.0A 3.6A 3354 3.14A

Rsyml 0.058 0.072 0.075 0.087 0.111 0.152 0.079

<F/o>2 70 48 43 33 24 16 37
muit.3 26 2.7 2.7 2.5 2.5 2.5 2.6
compl? 097 09 090 0.87 0.85 0.83 0.86
R0 0165 0.165 0190 0220 0245  0.179
Rfree? 0205 0190 0235 0295 0275  0.225

1 Rsym =X I(I-<I>)! / Z(I), where | = observed density, and <I> is the mean density from multiple
measurements after rejections (0.0015% of the data were rejected).

2 The mean of the structure factor amplitude over the standard deviation as estimated from count-
ing statistics (after modification based on the observed agreement between symmetry mates).

3 Multiplicity of the data.

4 Completeness of the data.

5 The crystallographic R-factor.

6 The free R-factor of 1% of the data (877 reflections) not included in the refinement.

189



the model constant (or combinations of these constraints) proved beneficial. The
model could only be refined further upon the introduction of the likelihood-
weighted local NCS restraints described above.

The scope for such an NCS-restrained refinement was quite large: not only
were there three copies of each of the a and § subunits, but also the native
model, refined with more complete data extending to a higher resolution, was
available. Restraining the refinement to the native structure could quite easily be
implemented as non-crystallographic averaging between crystal forms, though in
this case the native model was kept constant. It was already quite clear that the
individual subunits were not identical and the maps also indicated differences
between the native and the inhibited form of the enzyme, yet all differences
seemed to be mainly local. However, some domains did adopt slightly different
orientations and some secondary structure elements had shifted slightly upon
inhibition and/ or freezing of the crystal. Therefore the structure was broken up
into stretches of 4 aminoacids, and the NCS-operators were determined separa-
tely for each of these stretches. An overall standard deviation of the atomic posi-
tions of 0.3 A was assumed, which is close to the expected mean standard devia-
tion at 3 A resolution.

Because of the implementation it was not practical simultaneously to
restrain the refinement to the native structure and to the model itself through
the averaging of the a and B subunits. The rebuilt model was therefore first sub-
jected to 7 cycles of refinement restrained to the native structure, keeping the
temperature factors and the water molecules constant. This improved the free R-
factor from 23.1% to 22.9% and also improved the stereochemistry of the model.
Subsequently the model was subjected to 3 cycles of internal likelihood-weighted
averaging, which improved the free R-factor to 22.8%, and again the stereoche-
mistry benefited. The free R-factor was further reduced to 22.7% by 4 additional
cycles of refinement restrained to the native structure.

In order to further test the benefits of locally weighting the NCS restraints
by likelihood, unweighted averaging was also tried on the resulting model,
which was very close to the final model. As was the case for the likelihood-
weighted averaging, the model was broken up into fragments of 4 aminoacids
before determining the NCS operators. Several global weights on the NCS
restraints were tried, but all resulted in an increase of the free R-factor by at least
1.5%. If the weight was set high, the stereochemistry suffered, and both the
refined R-factor and the free R-factor increased. If the weight was set low, the
quality of the stereochemistry was unaffected, the refined R-factor improved
slightly, but the free R-factor still increased, indicating that the refinement was
drifting away on model bias.

There was still the problem of refining the temperature factors of all the
atoms and the positions of the water molecules. Neither could be altered without
increasing the free R-factor using conventional refinement techniques, indica-
ting the inadequacy of the restraints imposed on these parameters. However it
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was possible to refine these parameters in real space. Refining the positions and
temperature factors of all atoms present in the model, including the water mole-
cules, improved the already excellent geometry of the model substantially to
0.006 A rms deviation of bond lengths, 1.75° rms deviation of bond angles, the
few remaining bad contacts involving water molecules disappeared, the R-factor
dropped to 17.9% and the free R-factor dropped to 22.5%. The ¢-y angles of 86.8%
of the residues are in the most favoured regions of the Ramachandran plot,
12.8% of the residues are in additionally allowed regions, and 0.4% of the resi-
dues are in generously allowed regions. The map used for the two cycles of real
space refinement was calculated using the observed structure factor amplitudes
and the phases of the penultimate model. In a real space refinement the phases
remain unchanged, thereby restraining the model to the map and thus allowing
the otherwise unrestrainable temperature factors and the parameters of the water
molecules to be refined.

DISCUSSION

The tests on F1 ATPase suggest that even the rather crude implementation
of likelihood-weighted NCS restraints described here provides a useful extension
to the currently employed set of restraints. Refinement benefits because the pro-
cedure provides an automatic discrimination between regions where the NCS is
properly maintained and those regions where the similarity between comparable
structures is reduced. The procedure is independent of the actual refinement
algorithm employed, and could well be used in conjunction with the techniques
of maximum likelihood refinement as described in other papers in this volume,
and with simulated annealing techniques. In particular the treatment of local
symmetry using 1:4 distance restraints described in another paper in this
volume, will quite probably enhance the usefulness of likelihood-weighted sym-
metry restraints.

It might be worthwhile to try to extend the usefulness of the procedure as
described here to cases where there is neither (partial) NCS, nor another related
structure for providing the restraints. In such cases, databases of unrelated high
resolution structures could provide coordinates of peptide fragments to which
parts of the structure under investigation could be restrained. If this approach
proved to be useful, the procedure might be extended even further by allowing
multiple conformations to describe poorly ordered regions, each of the confor-
mations tightly restrained against fragments of known high resolution struc-
tures. Also, in this case the increase of the number of parameters should be offset
against the tighter restraints.
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Weighting Diffraction Data
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In small molecule crystallography, structures are typically refined by full-
matrix least-squares using atomic resolution data for which there may be as many
as ten observations per parameter. The results from such refinements typically
allow hydrogen atoms to be located and refined, and it is not unusual to obtain R-
factors of less that 0.05, minimizing ZwA? = Zw(F-F)%. Estimates of the various
sources of error for each amplitude are propagated into o(F_) and the weight
applied to each A is inversely proportional to 0%F,). The underlying assumption
for the validity of applying w = 1/0%F,) is that all atoms within the unit cell which
contribute to the scattering have been appropriately modeled and that errors in F,
are reflected in the o(F,). Under these circumstances, average values of the
goodness of fit (GOF = [(ZwA?/m]'"?) and |A| in equal volume shells of sin6/A, are
evenly distributed. While the goodness of fit should be equal to unity, this is
seldom observed as the standard deviations in even the most careful experiments
are typically underestimated; as a result, the goodness of fit is typically found to
range between 1.5 and 2.0. A more sensitive way in which to examine the
agreement of the entire set of data is through the use of a d (R) plot (Abrahams &
Keve, 1971; Howell & Smith, 1992). In this technique, the ranked 6(real) [0 (real)
= (F, - F,) / o(F,)] are plotted against {(expected), where the latter is calculated
on the basis of a normal distribution of errors. Assuming that the amplitudes (F,)
do not contain a systematic error and that the o(F,) have been correctly estimated,
then the 6(R) plot should be linear with a slope of unity and an intercept of zero.
In practice, the slope is found to range between 1.5 and 2.0 and is comparable to
the goodness of fit. While deviations from linearity may be due in part to errors
in the observed amplitudes or in the model, a 6(R) plot does allow one to assess
the validity of the weights or weighting scheme.

In macromolecular crystallography, the situation is considerably different.
Atomic resolution data are rarely available, there may be fewer than three
observations per parameter, contributions from hydrogen atoms are seldom
included, and there are only a few examples of structures for which the entire
contents of the unit cell have been modeled. The first two problems can be
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overcome through the use of a restrained refinement (Hendrickson & Konnert,
1980; Finzel, 1987; Sheldrick, 1993) or a simulated annealing procedure (Briinger,
Kuriyan & Karplus, 1987). However the inability to model the entire contents of
the unit cell means that differences between F, and F_, particularly in the lower
resolution shells, are due not only to errors in the structure, but also to an
incomplete model. The use of an 8 or 10A lower resolution cutoff compensates in
part for the incomplete model, but is not sufficient to eliminate all bulk solvent
effects. Under these circumstances, what is an appropriate weighting scheme to
apply in macromolecular refinements?

An examination of a plot of {| AF|) against sinf/A in equal volume shells for
a well refined structure at reasonably high resolution provides examples. of less than
optimal weighting schemes and also suggests alternate schemes which may be more
appropriatc As seen in Figure 1, the magnitude of | AF| decreases significantly as
sinB/A increases. This behavior is due primarily to our mabxllty to model the bulk
solvent and the fact that the largest
amplitudes usually are found in the lowest
resolution shells. Thus, any weighting
scheme which applies equal weight across
the entire resolution range will strongly
bias the refinement towards the low
resolution data. In this example, an H
average low resolution reflection will AF 1.
contribute 40 times more to the function 2
minimized than a high resolution te: -
reflection. The use of experimental N 1
weights presents a similar problem as the : N =
ratio of high to low resolution o(F)'s is ,iu 0 DU R N R AR E
smaller than the ratio of high to low 080,00 0.100.12 014 010 .10 0.200.22 0.2 029 0.28 0.2 0.2 0.2 0.3
resolution amplitudes, resulting in a sin 6/A
similar bias towards the low resolution
data. Considerable effort is expended in
the growth of high quality crystals which
diffract to high resolution and in the
measurement and processing of data.
However, there seems little point to
acquire this data and then minimize its
effect upon the refined structure by using
unit or experimental weights.

2(.4/-100.7

BRNEEREINBEEN

|

-
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Figure 1. Plot of | AF| versus sinf/A
for the insulin data between 8 and
1.4A resolution. The single straight
line is the least-squares line through
data between 8 and 1.76 A; the two
connected lines describe the
Sigma(appl) from which weights
were calculated.
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The plot of {| AF|) against sinO/A does suggest an empirical weighting scheme
which would be appropriate. In the original version of PROLSQ (Hendrickson &
Konnert, 1980), an optional weighting scheme as a function of sinG/A was provided
[Sigma(appl) = A + B(sin0/A - 1/6)]. If we consider the {| AF|)'s to be equivalent
to Sigma(appl), then a proper choice of the constants A and B will describe a

" straight line which is proportional to that obtained from the plot of (| AF|) against
sinf/A. For higher resolution cases, a single straight line is not adequate to model
the entire resolution range, and for these cases a two-line empirical weighting
scheme has been devised.

In order to assess the effect of various weighting schemes upon the
refinement, a series of restrained (PROFFT and SHELXL-93) -and -simulated
annealing (XPLOR) refinements, shown in Table I, were performed on a structure
of a complex of insulin with a phenolic derivative. A total of 159339 data from
crystals grown in microgravity were scaled and merged to yield 18076 independent
data with an R,__.(F? of 0.066 and are 99% complete (77% for F = 2a(F,)) to a
resolution of 1.4A. The starting model in all cases was a fully refined dimer (R =
0.153) consisting of 100 of a possible 102 residues (807 atoms) and 139 water
molecules. Overall results
are summarized in Table I
and plots of the goodness of
fit versus sinf/A  are
illustrated in Figure 2. With
the exception of XPLOR for
which the R-factor and
goodness of fit are somewhat
larger, the overall statistics
would suggest that there is
little difference in the results
of the refinement using the
different weighting schemes
in the restrained refinements.
However, examination of ' - " sin 6/

Figure 2 clearly shows that
several of the weighting Figure 2. Plot of the goodness of fit versus

schemes produce an uneven sinG/A for the six refinements on the insulin
distribution of the goodness data. Codes are given in Table L.

of fit, and hence TwA? as a

function of resolution.

G.O.F
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Table I
Refinements and Overall Statistics
Code Method Residual GOF
U Unit Weights 0.153 1.332
PROFFT Refinement
w=1.0
S  Experimental Sigma 0.159 1.235
PROFFT Refinement
w=1/0%F,) S
2L Two-Line Weighting Schem 0.154 1.538
PROFFT Refinement
sinB/A < 0.284: w =1/ [A + B (sin0/A - 1/6)]?
sinB/A > 0.284: w = 1 / [C + D (sinb/A - 1/6)})?
F2 Default Weights" 0.158 1.365
SHELXI.-93 Refinement (F?) (0.273) (1.122)
w = 1.0 / [6*(F.?) + (aP)* + bP]
where P = (F2+2F?% /3

CG Default Weights 0.177 3.285
XPLOR Conjugate Gradient Refinement
w=10

SA Default Weights 0.183 3.371
XPLOR Simulated Annealing Refinement '
w=10

Statistics in parentheses are compiled on the basis of F~.

The larger values of the goodness of fit at low resolution show that these
data dominate the refinement, particularly for the XPLOR refinement. The smallest
variation in the goodness of fit is seen for the two-line empirical weighting scheme
as well as for the default weighting scheme employed in SHELXI.-93. Additional
information is provided by the 8(R) plots for each of the refinements, shown in
Figure 3. The linearity of the empirical two-line and the default weighting scheme
used in SHELXL shows that these weighting schemes quite adequately reflect the
expected normal distribution of errors. In contrast, the sigmoidal shape of the other
four 6(R) plots strongly suggest that the weighting scheme is inappropriate.

Currently XPLOR may be the most widely used program for refinement of
macromolecular structures, but the majority of crystallographers are using the
default weighting scheme of unity. As noted earlier, this tends to minimize the
contribution of the higher resolution data to the refinement. However, it is a
relatively simple matter to use either a one- or two-line weighting scheme as
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Figure 3. 06(R) normal probability plots for the six refinements on the
insulin data. Codes for the refinements are given in Table L

described above. On page 172, Section 12.5.4 of the XPLOR manual for Version
3.1 (Briinger, 1992), a procedure is described to employ the one-line empirical
weighting scheme [Sigma(appl) = A + B(sinB/A - 1/6); w = 1.0 / Sigma(appl)].
A conjugate gradient refinement was performed on the data and structure described
above using 16.91 and -66.92 for the constants A and B, respectively. While these
values are similar to that used in the PROFFT refinement, values of A and B may
be chosen to best match the distribution of | AF| as a function of sinf/A since the
value of WA obtained from the CHECK protocol in XPLOR will proportionately
scale the individual weights [(WA/ZwF,2 )ZwA?] in the crystallographic target
function. There is a marked improvement in the plot of the goodness of fit against
sinf/A (Figure 4a) and the &(R) plot (Figure 4b) is now reasonably linear. These
plots can be contrasted to those obtained with unit weights, illustrated in Figures
2 and 3.

Alternatively, weights can be directly input via the diffraction data file. In
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Figure 4. (a) Plot of the goodness of fit versus sin/A and (b) a 6(R)
normal probability plot for the XPLOR conjugate gradient refinement.

Resol.
2.44
1.95
1.71
1.55
1.44
1.36
1.29
1.23
1.19
1.14
1.11
1.08
1.05
1.02
1.00

Residual and Goodness of Fit for the Tox-II Structure

n
2102
2072
2040
2016
1987
1959
1952
1934
1893
1888
1841
1746
1677
1603
1629

Table II
Unit Weights
R GOF

0.194 0.744
0.187 0.459
0.185 0.309
0.182 0.239
0.186 0.204
0.188 0.174
0.208 0.163
0.202 0.150
0.212 0.150
0.221 0.146
0.232 0.142
0.276 0.152
0.300 0.144
0.322 0.140
0.339 0.136
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Two-Line Weights
R GOF
0.233 0.366
0.209 0.290
0.199 0.228
0.191 0.208
0.190 0.208
0.190 0.214
0.202 0.242
0.192 0.265
0.200 0.272
0.206 0.262
0.214 0.252
0.252 0.268
0.268 0.249
0.303 0.253
0.321 0.244




another test, a two-line weighting scheme was used for a simulated annealing
refinement on a partially refined 64 residue toxin structure. The results for the two-
line scheme are compared to that obtained using unit weights in Table II. Again,
it can be seen that there is a considerable difference in the distributions of the GOF .
and residual as a function of sinf/A. Unlike unit weights, the two-line weighting
scheme produces an even distribution of the GOF as a function of resolution,
resulting in an equal contribution of all data to the function minimized. The
smaller residual in the lower resolution ranges for unit weights might be expected,
since these data make the largest contribution to the function minimized. As bulk
solvent does make a contribution to the lower resolution data, but is not included
as part of the model, one might expect the residual in these shells to be somewhat
larger, as observed for the two-line scheme. A decrease in the residual for the
higher resolution shells is noted for the two-line scheme. As observed in the other
example, the 6(R) plot is sigmoidal for unit weights (Figure 5a) but linear for the
two-line weighting scheme (Figure 5b). Similar results have also been obtained for
a 1800 residue protein which diffracts to 2.0A resolution (P.L. Howell, private
communication).

3

Unit Weights ~ * s Two-line Weights

-3 2 s 2% Delt -3 &, 1. Delises
[} & 3. L. 1 E
Slope =0.271
J - Intercept = 0.017 +. Slope  =0.257

Intercept = 0.026

-3

(a) ' (b)

Figure 5. O(R) normal probability plots for the XPLOR simulated
annealing refinement of the toxin data using (a) unit weights and (b) the
two-line empirical weighting scheme.

Except in unusual circumstances, these results should discourage the use of
experimental or unit weights in a restrained or simulated annealing refinement.
While most users carefully examine the distribution of the residual as a function of
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resolution, equal emphasis should be given to other figures of merit, such as the
goodness of fit, and the regular examination of &(R) plots.
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