
Developing an image analysis plugin
for VolView

DJ Worth

June 2013

 Technical Report
RAL-TR-2013-007

vvf24852
Typewritten Text

vvf24852
Typewritten Text

vvf24852
Typewritten Text

©2013 Science and Technology Facilities Council

Enquiries about copyright, reproduction and requests for additional
copies of this report should be addressed to:

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council reports are available online
at: http://epubs.stfc.ac.uk

ISSN 1358- 6254

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Developing an Image Analysis Plugin for VolView

D.J. Worth

May 2013

Abstract

VolView is a multiplatform volume visualisation application from KitWare built on
VTK and ITK and allowing user plugins to extend its functionality. As such it was
chosen by the UK Collaborative Computational Project in Tomographic Imaging
(CCPi) as the platform for its image analysis algorithms. This report describes the
development of a plugin to VolView. The basic format for a plugin is given in the
VolView User Guide and there is an extensive collection of plugins which also provide
guidance. However there are no details of how a plugin should be compiled and we
rectify that situation in this report and hope that others will now be able to build
plugins more efficiently.

Keywords: CCPi, VolView, volume visualisation, image analysis, C++, plugin

Email: david.worth@stfc.ac.uk

Reports can be obtained from: http://epubs.stfc.ac.uk

Software Engineering Group
Scientific Computing Department
STFC Rutherford Appleton Laboratory
Harwell Oxford
Didcot
Oxfordshire OX11 0QX

Contents

1 Introduction 2

2 Anatomy of a VolView Plugin 2
2.1 The Initialisation Function . 3
2.2 Defining the Plugin’s User Interface . 3
2.3 The ProcessData Function . 5

3 Quantification of a Labelled Image 6

4 Plugin Design 7

5 Plugin Implementation 8
5.1 The Driver Function . 8
5.2 Details for CCPiQuantification . 9
5.3 Details for CCPiQuantificationWorker . 10

6 Build System 10

A The Initialisation Function 12

B Defining the Plugin User Interface 13

C The ProcessData Function 14

D The Driver Function 15

E Makefile 17

1

1 Introduction

The UK Collaborative Computational Project on Tomographic Imaging (CCPi) had a number
of algorithms in image quantification which they wanted to make more widely available to the
image community. As part of the core support for this CCP from the Scientific Computing
Department at STFC these algorithms were to be packaged for volume visualisation software
using good software engineering processes as well as taking into consideration the efficiency of
the implementation. The initial implementations were in a wide variety of languages includ-
ing, C, Matlab and IDL. Some implementations targeted specific display software while others
were simply used for a “one-off” analysis task but the potential for wider application has been
recognised.

The majority of the algorithms had a Matlab implementation and they could have been left as
that however there are costs associated with buying the Matlab software and there is no readily
available interface for manipulating and analysing the image: e.g. cleaning the image by filtering,
measuring components, altering transparency of certain intensities. These criteria lead us to con-
sider alternative visualisation software and following a study of a range of applications VolView
was chosen as the preferred platform. It offered a wide range of existing functionality for manip-
ulation and analysis, it could read raw volume data and could be extended with user plugins in
C or C++ which could make use of the Visualisation Toolkit (VTK – http://www.vtk.org/)
and the Insight Segmentation and Registration Toolkit (ITK – http://www.itk.org/) which
provide an extensive library of algorithms for image analysis. Another important factor is that
VolView is available as open source software giving the possibility of developing the application
itself.

Whilst VolView was the preferred platform we acknowledge that one of the leading commercial
packages is Avizo from the Visualization Services Group (http://www.vsg3d.com/avizo/overview).
Avizo also makes use of ITK and allows users to write their own plugins. In order to keep our
options open to target Avizo at some later time the design of the plugin described here must
separate the infrastructure for communication between the application and the plugin, from the
plugin itself. Similarly for testing purposes it will be convenient to run the plugin from a simple
command-line application and this must be borne in mind for the plugin design. In fact the test
application could be a useful tool in its own right.

The source code and pre-compiled VolView application and shared libraries that implement
this plugin can be obtained from the Image Quantification Algorithms project on CCPForge
http://ccpforge.cse.rl.ac.uk/gf/project/iqa/

2 Anatomy of a VolView Plugin

The entirety of the information on VolView plugins is contained in the user manual [1] and in
the source code for the plugins distributed with the VolView source code. Together they do a
good job in describing how to write a plugin, whether in C or C++ and possibly making use
of VTK and/or ITK for reading files and performing calculations. This section gives a brief
overview of the structure of a plugin and leaves the details to the user manual.

An API is provided as a set of C functions that the developer must implement and which
are called by VolView as it interacts with the plugin and C data structures which are used for
exporting and importing data and transferring GUI parameters from the VolView application.
Figure 1 (taken from the user manual) shows how VolView learns about and interacts with
the plugin. The source code has to implement the 3 functions shown from vtkVVPluginAPI.h

paying particular attention to the naming of the initialisation function. The code should then
be compiled to a shared library for the particular operating system and that shared library file
placed in the Plugins subdirectory of the directory where the VolView application is installed.

There is a strong link between the name of the plugin, the initialisation (Init) function name
and the name of the shared library or DLL file that VolView loads. For example a plugin named

2

Figure 1: The interaction between VolView application and plugin

vvFooFilter the Init function must be named vvFooFilterInit() and the shared library must
be named libvvFooFilter.so in Unix/Linux/OsX and vvFooFilter.dll in Windows.

2.1 The Initialisation Function

This function is called as the VolView application starts before the user interface is displayed.
It performs the following actions:

• Assigns the functions for ProcessData and UpdateGUI.

• Defines the place in the plugin menu structure where this plugin is found.

• Gives documentation for the plugin that is shown in VolView.

• Defines other properties of the plugin that help VolView call the plugin efficiently.

The function must conform to the following API

extern "C"

{

void VV_PLUGIN_EXPORT vvEllipsoidFittingInit(vtkVVPluginInfo *info)

{ }

}

and it is the info data structure that is used to implement the actions in the list above.
The symbol VV PLUGIN EXPORT and the data structure vtkVVPluginInfo are both defined in
the vtkVVPluginAPI.h header file. This header file contains a lot of useful information on
types of parameters, datatypes, GUI components, and parameter values that can be used when
implementing a plugin.

The source code for the initialisation function for the quantification plugin can be found in
Appendix A.

2.2 Defining the Plugin’s User Interface

VolView allows the user to programmatically create the user interface for the plugin as part of
the plugin code. There are a limited number of GUI elements that can be used but they allow
for simple parameterisation of the algorithms. We will describe them later in this section.

3

The signature for the function that VolView will call is as follows

static int UpdateGUI(void *inf)

{}

The first argument is a pointer to a vtkVVPluginInfo data structure which can be recovered
by a simple cast as follows:

vtkVVPluginInfo *info = (vtkVVPluginInfo *)inf;

The function SetGUIProperty() can be called on this data structure to define the GUI
elements. It also contains the output data set information which should also be set – most
importantly the output scalar data type. Often this is the same as the data type of the input
volume but it can be any of the other supported data types listed in Table 1.

Type Macro Type Macro

void VTK_VOID bit VTK_BIT

char VTK_CHAR unsigned char VTK_UNSIGNED_CHAR

short VTK_SHORT unsigned short VTK_UNSIGNED_SHORT

int VTK_INT unsigned int VTK_UNSIGNED_INT

long VTK_LONG unsigned long VTK_UNSIGNED_LONG

float VTK_FLOAT double VTK_DOUBLE

id VTK_ID_TYPE

Table 1: The datatypes used in VolView

We will now describe the three types of interface elements available for a plugin. The source
code for this function for the quantification plugin is given in Appendix B.

Number value with scale

There are 4 components of this element plus alternative ways to set the range for the value.
All are set with the SetGUIProperty() function on the vtkVVPluginInfo data structure. The
table below describes each component and the macro used to identify it.

Description Macro Notes

Type of element VVP_GUI_TYPE Use VVP_GUI_SCALE

Text label VVP_GUI_LABEL A char*

Default value VVP_GUI_DEFAULT A char* with the value

Help text VVP_GUI_HELP A char*. Pops up when mouse hovers over the element.
Make good use of this.

Table 2: Defining a numerical value with scale

There are two alternative methods of defining the limits for the scale. The first is to use the
limits defined in the language for the C data type of the input data:

vvPluginSetGUIScaleRange(element_id);

where element_id is 0 for the first defined element, 1 for the second and so on.
The second method which is best for values that have nothing to do with the input data is

to give a minimum, maximum and step size in a single string as follows:

info->SetGUIProperty(info, element_id, VVP_GUI_HINTS , "1 1000 1");

4

Drop down list

The same 4 components are used for this element with the VVP_GUI_TYPE set to VVP_GUI_CHOICE

and the default set to one of the list entries defined with the VVP_GUI_HINTS macro.
To illustrate how to define the entries in the list take the example of the ImageMathematics

plugin which allows the user to perform a simple arithmetical operation on the voxel values of
two images. The operations are addition, subtraction, multiplication, absolute difference and
division and the symbols are concatenated in a string separated by \n. The number of entries,
in this case 5, is given at the start of the string. The line of code to define the list is therefore:

info->SetGUIProperty(info, 0, VVP_GUI_HINTS, "5\n+\n-\n*\n|-|\n/");

Checkbox

Again the same 4 components are used for this element with the VVP_GUI_TYPE set to VVP_GUI_CHECKBOX.
The value of the check box is either 0 – not checked; or 1 – checked.

2.3 The ProcessData Function

This is the function in which the work is done. It can call other functions, can make use of
other classes written by the user and the VTK and ITK libraries. The info data from the
initialisation function is passed to it along with a data structure containing details of the data
set to be processed. The signature for the function is

static int ProcessData(void *inf, vtkVVProcessDataStruct *pds)

{ }

The first argument is a pointer to a vtkVVPluginInfo and can be accessed in the same way
as for setting up the user interface described above. This data structure contains the following
data that are useful for processing the data:

InputVolumeScalarType The VTK enumeration of the data type of the input data. This is
useful when operations work differently on different data types or for VTK/ITK classes
are used which are templated on the data type.

InputVolumeDimensions Number of voxels in each dimension

InputVolumeSpacing Can be thought of as the ”size” of the voxel in each dimension. Useful
with VTK/ITK classes.

InputVolumeOrigin Origin position for the dataset. Useful with VTK/ITK classes.

These data are for the input volume and there are corresponding variables for a possible
second input data set and the output data set. Those for the output data set should be set by
the plugin.

The second argument, a data structure holding information on the volume data, is defined
in the vtkVVPluginAPI.h header file. Particular parts of the data structure that are of most
interest are:

inData Pointer to the input data

outData Pointer to the output data. Already correctly sized to the same dimension as the
input volume. The data type must be set in the UpdateGUI function which is called when
the plugin is selected in the application. Outputs of the processing are returned to the
application in this data.

5

inData2 Pointer to second input data for a plugin that uses 2 input data sets.

Values from the user interface can be retried from the info data structure. They are returned
as char* data can be used this way to detect the chosen entry from a drop down list or the
standard C functions atoi and atof can be used to get the numerical value. An example in
which we get the value of element 0, is

const unsigned int numberOfIterations =

atoi(info->GetGUIProperty(info, 0, VVP_GUI_VALUE));

The plugin described in this document is written in C++ and the standard VolView C++
plugin implementation uses a template function according to the input volume data type. This
function is called with a VolView supplied macro function. The source code of the ProcessData
and the template function are given in Appendix C

3 Quantification of a Labelled Image

The quantification described here starts from a labelled image, that is one in which all the voxels
have been given a value that allocates them to a particular connected feature in the image or
to the background (zero value). Every voxel in a connected feature has the same label. An
example image is given in Figure 2

Figure 2: An example labelled image

Quantification of this image will give an idea of the size, shape and orientation of each of
the features from which statistical distributions can be extracted. One application is in the
manufacture of synthetic bone grafts (scaffolds) used to aid regeneration of diseased or damaged

6

bone. These scaffolds should have particular structural properties to be effective and also degrade
as host bone forms. A non-destructive method is therefore required for quantifying the pore
and interconnect sizes and the degradation of the scaffold over time. The quantification method
implemented here has been successfully used for this task – see [2] for details.

The plugin calculates the following characteristics for each feature:

• Volume by voxel count

• Equivalent sphere diameter by voxel count. Use the formula 2(3V/(4π))1/3 where V is the
volume by voxel count.

• Bounding box diagonal

• Principal Component Analysis. Eigenanalysis of covariance matrix of voxel positions in
this feature. Eigenvectors give local coordinate axes for the feature and eigenvalues give
length of feature along respective axis.

• Ellipsoid fitting by PCA to calculate external surface of feature.

• Equivalent circle diameter by PCA to find largest cross-sectional area of feature.

• Isosurface. Another way of calculating the external surface of the feature.

• From the isosurface: the surface area, volume enclosed, equivalent sphere diameter of the
volume.

• Sphericity of isosurface. π1/3(6V)2/3/A where V is the volume enclosed by the isosurface
and A is its area.

• Normalised surface area to volume ratio. rA/V where r is the equivalent sphere diameter
of the volume.

For each feature the set of calculations is the same and there is no overlap of data between
features or requirement of one feature’s data prior to any other. This means we can do the
calculations in parallel with no data sharing.

4 Plugin Design

We obviously have to follow the API for VolView plugins but once this is achieved we have free
reign on the implementation of the data processing. Having identified that the calculations can
be performed in parallel for each feature in the volume we should also bear this in mind in the
design. It is most likely that VolView will be used on a desktop machine which we can assume
will have multiple cores and so we should make use of openMP to schedule the calculations for
each feature.

The first step will be to scan through the volume data and store the voxels belonging to each
feature. Then for each feature we take the set of voxels and perform the calculations. There will
be a great deal of supporting data that is required during the quantification for each feature and
this data will be of varying sizes. For this reason we will use an object to store this data and
perform the calculations for each feature as it comes under consideration. This object will be
called CCPiQuantificationWorker. We will also have an object to scan the volume data and
store the voxels by feature and perform any functions required in the overall volume context.
This volume context object will be able to create the object for each feature when required. It
will be called CCPiQuantification. The recipe for using these classes is as follows

An object diagram for this design is given in Figure 4.

7

Create CCPiQuantification object
Initialise this object from VolView data
Create the list of voxels for each labelled feature
Write results header
For each feature

Create the CCPiQuantificationWorker object
Run the worker object
Write results

Figure 3: Pseudo-code for driving the quantification of each feature

5 Plugin Implementation

Given the object oriented design described above implementation of the plugin is in C++ which
allows us to use VTK and ITK classes most naturally when they are required. We can also make
use of standard template types such as vector<T> if they are more suitable. In this section we
will describe the driver function that runs the calculations and implementation details of the
two classes in the design.

5.1 The Driver Function

This is a straightforward implementation of the algorithm in Figure 3. The details to highlight
are the signature of the function and the use of openMP to schedule the calculation for each
feature in parallel and the implications of this for interaction with VolView.

In Section 2.3 we noted that the ProcessData function calls a function templated on the
input volume data type via a VolView supplied macro function. The macro function matches
the given function name and the number of arguments (3 in this case) and calls the template
function with the arguments which means that function signature must be

template <class IT>

void vvQuan3DTemplate(vtkVVPluginInfo *info,

vtkVVProcessDataStruct *pds,

IT *)

where info and pds have been described elsewhere and the third argument is only used to
provide the template datatype.

The template function can now use the two quantification classes to carry out the work.
The first part is to prepare the CCPiQuantification class with the data from VolView, print
some summary data to the console and the header for the CSV results file; and the second is to
schedule the calculations for each feature.

Progress is reported to the user as a fraction of the task that has been completed (second
argument) via the info data structure as follows:

info->UpdateProgress(info,0.01,"Initialising...");

The text given as the third argument is printed in the status bar of VolView to report what
is going on next.

The quantification calculation for each feature is completely separate from any other and so
we can schedule the next calculation to run as soon as a thread becomes free. An alternative
would be to divide up the calculations into blocks for each thread but this will be inefficient
because some features may take much longer than others to process. We use an openMP directive
to loop over the features1 and carry out dynamic scheduling with

1Of which there are totalVoxels number

8

Figure 4: The object diagram for classes that process the data

#pragma omp parallel for schedule(dynamic)

for(int i = 0; i < totalVoxels; i++) {

Each feature is quantified by a worker object created by the CCPiQuantification class. This
introduces a slight complication into the parallelisation as we must ensure that each thread gets
a separate worker which requires that the creation is done within an openMP critical block.
Workers can run in parallel but to prevent results becoming jumbled when workers print to the
output file we must use another critical block for the writing of the results.

Unfortunately there is one (seemingly) insurmountable problem for us when using openMP.
We cannot use the function to update the progress in VolView or the function to check whether
the user has cancelled the running of the plugin. Therefore we have implemented a simple text
based progress meter that can be seen when running VolView from the command line. Again
we must use a critical block to make sure that the appearance of the progress meter is correct.

The source code of the driver function is given in Appendix D

5.2 Details for CCPiQuantification

This class stores data relating to the volume as a whole which it receives from the VolView
vtkVVPluginInfo and vtkVVProcessDataStruct data structures. It keeps a pointer to the
volume data as well as the number of components in the image, the VTK data type of the
input, the number of voxels in each direction and the origin and spacing of the data. These
last two data are required by VTK classes used by the worker when calculating the largest
cross-sectional area of the feature and the isosurface.

The class also provides some utility functions for the worker class to calculate the diameter
of a sphere from its volume, to find the minimum, maximum and mean positions of a set of
points and to calculate the covariance matrix from a set of points.

9

The data types of many of the variables and arguments to functions are determined by which
methods act on those variables. For example, the covariance matrix is a 3 × 3 double precision
ITK matrix because the eigenanalysis is performed by an ITK class. The eigenvectors are stored
in a similar matrix and using this matrix to rotate the voxel positions requires the positions be
stored as an other ITK matrix.

To avoid transferring data relating to the input volume we make the worker class a friend
class of CCPiQuantification.

5.3 Details for CCPiQuantificationWorker

The details about the volume as a whole are kept by the CCPiQuantification class to which
the CCPiQuantificationWorker class keeps a pointer. The worker class uses its m Id member
variable to access data relating to its allocated feature.

The worker class has the sole purpose of doing the quantification for a single feature. Users
call the Run method to start the calculation and the return value is 0 if the calculation was run
or 0 if the feature does not have enough voxels to be significant.

We use the following VTK classes to help with the quantification:

vtkPointsProjectedHull To calculate the largest cross-sectional area of the feature. The
voxel positions are rotated to have the largest PCA derived axes in the x and y directions
before inserting the points into the class. The GetCCWHullZ method calculates the hull
projected onto the x − y plane and vtkPolygon::ComputeArea can be used to calculate
the area.

vtkSynchronizedTemplates3D To calculate the isosurface with input from VTKImageImport

and output to .

vtkMassProperties To calculate the surface area and volume enclosed. This takes a vtkPolyData
object which represents the isosurface (output from vtkSynchronizedTemplates3D) as its
input.

6 Build System

The build system for a VolView plugin is a hand crafted Makefile coupled with the build directory
and source for VolView itself. The VolView build directory contains all the libraries for VTK
and ITK and the source directory contains the header file vtkVVPluginAPI.h which defines the
API for a VolView plugin and also header files for VTK and ITK.

It is necessary to build VolView before building a plugin and this is done using the CMake
utility http://www.cmake.org/ as follows:

%> wget http://www.kitware.com/VolView/files/VolViewSrc.tar.gz

%> tar zxvf VolViewSrc.tar.gz

%> cd VolViewSrc

%> mkdir build

%> cd build

%> cmake ../VolViewPlatformComplete/

%>....Install missing dependencies identified by cmake...

%> cmake ../VolViewPlatformComplete/

%> make

The library files to link against will be in the bin subdirectory of the build directory created
above and the include files for VTK and ITK under VolViewExternalLibraries directory in
VTK and Insight respectively.

10

It is up to the developer to search for the header files and libraries and include the appropriate
directories and files in the include search paths for compilation and library search paths and
library specification for linking. The Makefile for the quantification plugin is given in Appendix
E.

A useful command on Linux/Unix to find the library that contains an unresolved symbol
(vtkImageImport::New() in this case) in the linking stage is

%> nm -A -C *.so | grep "vtkImageImport::New()"

The nm command lists symbols from object files with the -A flag to print the file name for
each symbol and -C to demangle the names of C++ objects. This is piped to grep which find
the lines with the required symbol. The output of this command will look something like the
following and the library we require is the one with T in the column before the symbol name –
libvtkImaging.so in this case.

libKWVolView.so: U vtkImageImport::New()

libvtkImaging.so:0000000000243fda T vtkImageImport::New()

libvtkImagingTCL.so: U vtkImageImport::New()

libvtkKWEWidgets.so: U vtkImageImport::New()

libvvVTKCheckerBoard.so: U vtkImageImport::New()

libvvVTKDilate3D.so: U vtkImageImport::New()

libvvVTKErode3D.so: U vtkImageImport::New()

libvvVTKGradientMagnitude.so: U vtkImageImport::New()

libvvVTKImageCast.so: U vtkImageImport::New()

libvvVTKMedian.so: U vtkImageImport::New()

libvvVTKMergeTets.so: U vtkImageImport::New()

libvvVTKResample.so: U vtkImageImport::New()

libvvVTKShrink.so: U vtkImageImport::New()

libvvVTKSmooth.so: U vtkImageImport::New()

References

[1] VolView 3.2 User Manual, June 23, 2009.

[2] Evaluation of 3-D bioactive glass scaffolds dissolution in a perfusion flow system with X-ray
microtomography, S Yue, PD Lee, G Poologasundarampillai, JR Jones, Acta biomaterialia
7 (2011), 2637-2643

11

A The Initialisation Function

/**

\brief Initialise this plugin.

Sets the name and group for this plugin in the plugin list shown to the VolView

user and gives some documentation. Also defines properties so VolView can judge

the memory requirements and potential for undoing this plugin.

\param info Pointer to object that should be modified to give details about this

plugin.

*/

extern "C"

{

void VV_PLUGIN_EXPORT vvQuan3DInit(vtkVVPluginInfo *info)

{

/* Always check the version */

vvPluginVersionCheck();

/* Set up information that never changes */

info->ProcessData = ProcessData;

info->UpdateGUI = UpdateGUI;

/* Set the properties this plugin uses */

info->SetProperty(info, VVP_NAME, "Quantify 3D");

info->SetProperty(info, VVP_GROUP, "Quantification");

/* Set terse and full documentation displayed to user */

info->SetProperty(info, VVP_TERSE_DOCUMENTATION,

"Quantify several characteristics from a labelled image");

info->SetProperty(info, VVP_FULL_DOCUMENTATION,

"Quantify the following characteristics from a labelled image: Volume by \

voxel counts, Equivalent sphere diameter by voxel counts, Bounding box \

diagonal, Principal Component Analysis, Ellipsoid fitting by PCA, Equivalent \

circle diameter by PCA, Isosurface by marching cube, Surface area, Surface \

volume, Equivalent sphere diameter from surface volume, Sphercity, Normalised \

surface area to volume ratio. \nPLEASE NOTE that the Cancel button and progress \

bar do not work for this OpenMP plug-in.");

/* Set these two values to "0" or "1" based on how your plugin

* handles data all possible combinations of 0 and 1 are valid. */

info->SetProperty(info, VVP_SUPPORTS_IN_PLACE_PROCESSING, "1");

info->SetProperty(info, VVP_SUPPORTS_PROCESSING_PIECES, "0");

/* Set the number of GUI items used by this plugin */

info->SetProperty(info, VVP_NUMBER_OF_GUI_ITEMS, "1");

info->SetProperty(info, VVP_REQUIRED_Z_OVERLAP, "0");

info->SetProperty(info, VVP_REQUIRES_SERIES_INPUT, "0");

info->SetProperty(info, VVP_SUPPORTS_PROCESSING_SERIES_BY_VOLUMES, "0");

info->SetProperty(info, VVP_PRODUCES_OUTPUT_SERIES, "0");

info->SetProperty(info, VVP_PRODUCES_PLOTTING_OUTPUT, "0");

}

}

12

B Defining the Plugin User Interface

/**

\brief Update the VolView GUI to display user parameters.

Sets one GUI parameter - the physical size of the voxels in the image. It

gets called prior to the plugin executing.

\param inf Pointer to object that should be modified to set up GUI elements for

this plugin. It also contains details of the input and output images.

*/

static int UpdateGUI(void *inf)

{

vtkVVPluginInfo *info = (vtkVVPluginInfo *)inf;

/* Create required GUI elements here */

info->SetGUIProperty(info, 0, VVP_GUI_LABEL, "Minimum feature Size");

info->SetGUIProperty(info, 0, VVP_GUI_TYPE, VVP_GUI_SCALE);

info->SetGUIProperty(info, 0, VVP_GUI_DEFAULT , "100");

info->SetGUIProperty(info, 0, VVP_GUI_HELP,

"Minimum number of voxels for a feature to be analysed");

/* Range for possible output values */

info->SetGUIProperty(info, 0, VVP_GUI_HINTS , "1 1000 1");

/* By default the output image’s properties match those of the input */

info->OutputVolumeScalarType = info->InputVolumeScalarType;

info->OutputVolumeNumberOfComponents = info->InputVolumeNumberOfComponents;

for (int i = 0; i < 3; i++) {

info->OutputVolumeDimensions[i] = info->InputVolumeDimensions[i];

info->OutputVolumeSpacing[i] = info->InputVolumeSpacing[i];

info->OutputVolumeOrigin[i] = info->InputVolumeOrigin[i];

}

return 1;

}

13

C The ProcessData Function

/**

\brief Function called by VolView to run the plug in.

It hands off the actual work to the template function vvQuan3DTemplate.

\param inf Pointer to object that holds data for this plugin. The voxel size

can be obtained from it.

\param pds Pointer to object that carries information on data set to be

processed. Includes actual buffer of voxel data, number of voxels along each

dimension, voxel spacing and voxel type.

*/

static int ProcessData(void *inf, vtkVVProcessDataStruct *pds)

{

vtkVVPluginInfo *info = (vtkVVPluginInfo *)inf;

switch (info->InputVolumeScalarType) {

vtkTemplateMacro3(vvQuan3DTemplate, info, pds,

static_cast<VTK_TT *>(0));

}

return 0;

}

/**

\brief Template function to calculate the data from the image

\c IT represents the input volumes data type (e.g. float, short, etc).

\author David Worth, STFC

\date May 2012

\param info Pointer to object that holds data for this plugin. The voxel size

can be obtained from it.

\param pds Pointer to object that carries information on data set to be

processed. Includes actual buffer of voxel data, number of voxels along each

dimension, voxel spacing and voxel type.

*/

template <class IT>

void vvQuan3DTemplate(vtkVVPluginInfo *info,

vtkVVProcessDataStruct *pds,

IT *)

14

D The Driver Function

/**

\brief Template function to calculate the data from the image

\c IT represents the input volumes data type (e.g. float, short, etc).

\author David Worth, STFC

\date May 2012

\param info Pointer to object that holds data for this plugin. The voxel size

can be obtained from it.

\param pds Pointer to object that carries information on data set to be

processed. Includes actual buffer of voxel data, number of voxels along each

dimension, voxel spacing and voxel type.

*/

template <class IT>

void vvQuan3DTemplate(vtkVVPluginInfo *info,

vtkVVProcessDataStruct *pds,

IT *)

{

CCPiQuantification3D<IT> quan3D;

info->UpdateProgress(info,0.01,"Initialising...");

quan3D.Initialise((void*)info, (void*)pds);

quan3D.CreateVoxelIndexList();

quan3D.PrepareForQuantification();

quan3D.PrintSummaryData();

quan3D.WriteCSVData("3D_data.csv");

int totalVoxels = quan3D.GetNumVoxelValues(), n = 0;

info->UpdateProgress(info,0.05,"Processing...");

#pragma omp parallel for schedule(dynamic)

for(int i = 0; i < totalVoxels; i++) {

CCPiQuantificationWorker<IT> *worker = NULL;

// Do the real work

#pragma omp critical(nextworker)

{

worker = quan3D.GetNextWorker();

}

if (worker != NULL) {

if (0 == worker->Run()) {

#pragma omp critical(writefile)

{

worker->WriteCSVData("3D_data.csv");

}

}

delete worker;

}

#pragma omp atomic

n++;

#pragma omp critical(progress)

{

int count = 40*n/totalVoxels;

15

std::cout << ’\r’;

for (int j = 1; j < count+1; j++) {

std::cout << ’*’;

}

for (int j = count+1; j < 41; j++) {

std::cout << ’.’;

}

std::cout << "| " << 100*n/totalVoxels << "%";

}

}

std::cout << std::endl;

info->UpdateProgress(info,(float)1.0,"Processing Complete");

}

16

E Makefile

Makefile for VolView plugins

#

David Worth STFC May 2012

CC=g++

VOLVIEW=/home/djw/CCPi/VolViewSrc

VV_INCLUDE=-I$(VOLVIEW)/VolViewLibraries/KWVolView/Plugins

ITK_INCLUDE=-I$(VOLVIEW)/VolViewExternalLibraries/Insight/Code/Common \

-I$(VOLVIEW)/VolViewPlatformComplete/build/ITK

VXL_INCLUDE=-I$(VOLVIEW)/VolViewExternalLibraries/Insight/Utilities/vxl/core \

-I$(VOLVIEW)/VolViewExternalLibraries/Insight/Utilities/vxl/vcl \

-I$(VOLVIEW)/VolViewPlatformComplete/build/ITK/Utilities/vxl/vcl \

-I$(VOLVIEW)/VolViewPlatformComplete/build/ITK/Utilities/vxl/core

VTK_INCLUDE=-I$(VOLVIEW)/VolViewExternalLibraries/VTK/Graphics \

-I$(VOLVIEW)/VolViewExternalLibraries/VTK/Common \

-I$(VOLVIEW)/VolViewExternalLibraries/VTK/Filtering \

-I$(VOLVIEW)/VolViewExternalLibraries/VTK/Imaging \

-I$(VOLVIEW)/VolViewPlatformComplete/build/VTK

APP_INCLUDE=-I$(VOLVIEW)/VolViewExternalLibraries/VTK/IO/ \

-I$(VOLVIEW)/VolViewExternalLibraries/Insight/Code/IO \

$(VTK_INCLUDE) $(ITK_INCLUDE) $(VXL_INCLUDE) $(VV_INCLUDE)

CFLAGS=$(VV_INCLUDE) $(ITK_INCLUDE) $(VXL_INCLUDE) $(VTK_INCLUDE) -fPIC -Wall -std=c++98 -g -fopenmp

Flags for compiler optimisation

#CFLAGS=$(VV_INCLUDE) $(ITK_INCLUDE) $(VXL_INCLUDE) $(VTK_INCLUDE) -fPIC -Wall -std=c++98 \

-O3 -D_FORTIFY_SOURCE=0

LIB_DIR=$(VOLVIEW)/VolViewPlatformComplete/build/bin

LDFLAGS=-L$(LIB_DIR) $(LIB_DIR)/libITKIO.so.3.2.0 \

$(LIB_DIR)/libITKCommon.so.3.2.0 $(LIB_DIR)/libITKBasicFilters.so.3.2.0 \

$(LIB_DIR)/libITKAlgorithms.so.3.2.0 $(LIB_DIR)/libITKNrrdIO.so.3.2.0 \

$(LIB_DIR)/libitkjpeg12.so.3.2.0 $(LIB_DIR)/libitkjpeg16.so.3.2.0 \

$(LIB_DIR)/libgdcm.so $(LIB_DIR)/libgdcmjpeg8.so $(LIB_DIR)/libgdcmjpeg12.so \

$(LIB_DIR)/libgdcmjpeg16.so $(LIB_DIR)/libvtkopenjpeg.so.1.3.0 \

$(LIB_DIR)/libvtkopenjp3dvm.so $(LIB_DIR)/libitkpng.so.3.2.0 \

$(LIB_DIR)/libitktiff.so.3.2.0 $(LIB_DIR)/libitkjpeg8.so.3.2.0 \

$(LIB_DIR)/libITKSpatialObject.so.3.2.0 $(LIB_DIR)/libITKMetaIO.so.3.2.0 \

$(LIB_DIR)/libitkopenjpeg.so.1.3.0 $(LIB_DIR)/libitkopenjp3dvm.so \

$(LIB_DIR)/libITKDICOMParser.so.3.2.0 $(LIB_DIR)/libITKEXPAT.so.3.2.0 \

$(LIB_DIR)/libITKniftiio.so.3.2.0 $(LIB_DIR)/libITKznz.so.3.2.0 \

$(LIB_DIR)/libitkzlib.so.3.2.0 $(LIB_DIR)/libITKNumerics.so.3.2.0 \

$(LIB_DIR)/libITKStatistics.so.3.2.0 $(LIB_DIR)/libitkvnl_inst.so.3.2.0 \

$(LIB_DIR)/libitkvnl_algo.so.3.2.0 $(LIB_DIR)/libitkvnl.so.3.2.0 \

$(LIB_DIR)/libitkv3p_netlib.so.3.2.0 $(LIB_DIR)/libitkvcl.so.3.2.0 \

$(LIB_DIR)/libitksys.so.3.2.0 -lpthread -ldl -lm

APP_LDFLAGS=-L$(LIB_DIR) $(LIB_DIR)/libvtkFiltering.so $(LIB_DIR)/libvtkCommon.so \

$(LIB_DIR)/libvtkGraphics.so $(LIB_DIR)/libvtkImaging.so $(LIB_DIR)/libitkvnl.so \

$(LIB_DIR)/libITKCommon.so $(LIB_DIR)/libvtkIO.so

vvQuan3D.so : Quan3D.o vvQuan3D.o QuanWorker.o

$(CC) -fPIC -Wall -shared -Wl,-soname,$@ -o $@ $^ $(LDFLAGS) -fopenmp

Use option below in line above to get linker to tell you what symbols are

17

missing rather than find out at run time

-Wl,--no-undefined

vvQuan3D.o : vvQuan3D.cpp Quan3D.hpp QuanWorker.hpp

$(CC) $(CFLAGS) -c $<

Quan3D.o : Quan3D.cpp

$(CC) $(CFLAGS) -c $<

Quan3D.cpp : Quan3D.hpp QuanWorker.hpp

QuanWorker.o : QuanWorker.cpp

$(CC) $(CFLAGS) -c $<

QuanWorker.cpp : QuanWorker.hpp

app: AppQuan3D.o Quan3D.o QuanWorker.o

$(CC) -o $@ $^ $(APP_LDFLAGS) -fopenmp

AppQuan3D.o: AppQuan3D.cpp Quan3D.hpp QuanWorker.hpp

$(CC) -Wall -std=c++98 -g $(APP_INCLUDE) -c $< -fopenmp

clean :

rm -f *.o *.so*

18

	RAL-TR-2013-007-cover.pdf
	RAL-TR-2013-007-report.pdf

