
Branching and bounding improvements
for global optimization algorithms with
Lipschitz continuity properties

C Cartis, JM Fowkes, NIM Gould

June 2013

Submitted for publication in Journal of Global Optimization

 Preprint
RAL-P-2013-009

RAL Library
STFC Rutherford Appleton Laboratory
R61
Harwell Oxford
Didcot
OX11 0QX

Tel: +44(0)1235 445384
Fax: +44(0)1235 446403
email: libraryral@stfc.ac.uk

Science and Technology Facilities Council preprints are available online
at: http://epubs.stfc.ac.uk

ISSN 1361- 4762

Neither the Council nor the Laboratory accept any responsibility for
loss or damage arising from the use of information contained in any of
their reports or in any communication about their tests or
investigations.

mailto:libraryral@stfc.ac.uk�
http://epubs.stfc.ac.uk/�

Branching and bounding improvements for
global optimization algorithms with

Lipschitz continuity properties

Coralia Cartis1,2, Jaroslav M. Fowkes1,2 and Nicholas I. M. Gould3,4

ABSTRACT
We present improvements to branch and bound techniques for globally optimizing func-
tions with Lipschitz continuity properties by developing novel bounding procedures and
parallelisation strategies. The bounding procedures involve nonconvex quadratic or cubic
lower bounds on the objective and use estimates of the spectrum of the Hessian or deriv-
ative tensor, respectively. As the nonconvex lower bounds are only tractable if solved over
Euclidean balls, we implement them in the context of a recent branch and bound algorithm
(Fowkes et al., 2012) that uses overlapping balls. Compared to the rectangular tessellations
of traditional branch and bound, overlapping ball coverings result in an increased number
of subproblems that need to be solved and hence makes the need for their parallelization
even more stringent and challenging. We develop parallel variants based on both data- and
task-parallel paradigms, which we test on an HPC cluster on standard test problems with
promising results.

1 School of Mathematics, The King’s Buildings, University of Edinburgh, EH9 3JZ,
Scotland, EU. Email: coralia.cartis@ed.ac.uk , jaroslav.fowkes@ed.ac.uk .
Current reports available from “http://www.maths.ed.ac.uk/ERGO/preprints.html”.

2 This work was supported by the EPSRC grants EP/I028854/1 and NAIS EP/G036136/1.

3 Computational Science and Engineering Department, Rutherford Appleton Laboratory,
Chilton, Oxfordshire, OX11 0QX, England, EU. Email: nick.gould@stfc.ac.uk .
Current reports available from “http://www.numerical.rl.ac.uk/people/nimg/pubs.html”.

4 This work was supported by the EPSRC grant EP/I013067/1.

Scientific Computing Department
Rutherford Appleton Laboratory
Oxfordshire OX11 0QX
6th June, 2013

Branching and bounding improvements for global optimization 1

1 Introduction
In many applications one encounters the global optimization problem

min
x∈D

f(x), (1.1)

where f : D ⊂ Rn → R is smooth and in general non-convex and D is a compact, convex
set. It has been shown that this problem is NP-hard (Kreinovich and Kearfott, 2005) and
requires global information to be solved efficiently (Stephens and Baritompa, 1998). Branch
and bound algorithms are a traditional way to solve (1.1) (see for example, Neumaier, 2004
and Pinter, 1996). Such algorithms work by recursively splitting (branching) the domain D
into subregions and bounding the objective function f over each subregion until the global
minimum is found.

In order for such algorithms to be efficient, one requires accurate and efficiently com-
putable lower bounds on f over each subregion (upper bounds are typically taken to be the
function evaluated at some point or the outcome of a local solver). Global information in the
form of a Lipschitz constant is often used to construct such lower bounds. The case where
the lower bound is based on a Lipschitz constant Lf of the objective function f has been well
studied in the literature (see Pinter, 1996; Pardalos, Horst and Thoai, 1995 and Neumaier,
2004 and references therein) and has the immediate form f(x) ≥ f(xB)− Lf (B)‖x− xB‖
for some point xB in a subregion B and a Lipschitz constant Lf (B) for f over B. A more
accurate lower bound using a Lipschitz constant Lg(B) of the gradient of the objective
function g = ∇xf can be derived using Taylor’s theorem to first order (Evtushenko and
Posypkin, 2012; Fowkes, Gould and Farmer, 2012)

f(x) ≥ qB(x) := f(xB) + (x− xB)Tg(xB)− Lg(B)
2 ‖x− xB‖2

2 (1.2)

for some point xB in a subregion B and the gradient’s Lipschitz constant Lg(B) for g over
B. Evtushenko and Posypkin (2012) have used (1.2) and refinements where −Lg(B) is
replaced by a lower bound on the spectrum of the Hessian in a special type of branch and
bound algorithm using non-uniform subregions. The case where one goes a step further
and uses second order Taylor’s theorem to obtain a lower bound using a Lipschitz constant
LH(B) for the Hessian H = ∇xxf was considered in Fowkes et al. (2012)

f(x) ≥ cB(x) := f(xB)+(x−xB)Tg(xB)+1
2(x−xB)TH(xB)(x−xB)−LH(B)

6 ‖x−xB‖3
2 (1.3)

for some point xB in a subregion B and the Hessian’s Lipschitz constant LH(B) for H over
B.1

In this paper, we propose new bounding techniques using refinements of the bounds
(1.2) and (1.3). We show that for the first order bound (1.2) it is possible to obtain
tighter results by using existing lower bounds on the spectrum of the Hessian that have

1Note that the bounds (1.2) and (1.3) are well-known but the idea of using them within a global
optimization context is recent (to the best of our knowledge).

2 C. Cartis, J. M. Fowkes and N. I. M. Gould

not been previously used, as far as we are aware, in the context of Lipschitz based global
optimization. Additionally, we extend one of these approaches to the second order bound
(1.3) by replacing the Lipschitz constant estimate with a novel lower bound on the spectrum
of the third order derivative tensor. We test the new proposals in the overlapping branch
and bound (oBB) framework proposed in Fowkes et al. (2012) as this allows efficient global
solution of the non-convex lower bounding subproblems

min
x∈B

lB(x) (1.4)

where lB(x) is either qB(x) in (1.2) or cB(x) in (1.3), over each subdomain B. As one would
expect, due to additional problem information being employed in the model, we find that in
general second order models yield better lower bounds on the objective function compared
to first order models and hence can potentially lead to better branch and bound algorithms
for Lipschitz optimization.

In general, Lipschitz based lower bounding subproblems are non-convex, and branch
and bound algorithms require their global solution (an NP-hard problem over boxes, see
Theorem 2 in Kreinovich and Kearfott, 2005). This is usually achieved using techniques
such as vertex enumeration, interval arithmetic, convexification or problem specific con-
structs (Neumaier, 2004) but these may not be flexible enough or suitably scalable for the
purpose of generic problem solvers. The approach in Evtushenko and Posypkin (2012) and
oBB however, allows global solution for both first and second order models by solving over
Euclidean balls rather than boxes, which ensures that the subproblems can be solved in
polynomial time. Evtushenko and Posypkin (2012) use non-uniform rectangular partitions
and while their algorithm is already in a parallel framework it only uses first order models.
oBB uses overlapping balls leading to an overlapping covering (as opposed to the tradi-
tional hyper-rectangular partition) of the domain. This leads to more computational effort
as well as potential doubling of work so parallelisation is both crucial and challenging for
obtaining good performance.

Similarly to other branch and bound algorithms, there is also the curse of dimensionality
which is made worse by the high number of balls in each oBB covering. At each iteration,
oBB splits a ball into 3n smaller sub-balls (with constant overlap) whereas traditional
branch and bound splits a box into only two larger sub-boxes. In the worst case both
algorithms can be said to perform comparably, with each ball in oBB being split into 3n
sub-balls, compared to each box being split into 2n sub-boxes for traditional branch and
bound. However, as both algorithms use disparate coverings with subdomains of different
sizes, it is difficult to compare them directly in general.

Due to the curse of dimensionality, many parallel branch and bound algorithms over
boxes have been proposed in the literature (see Crainic, Le Cun and Roucairol, 2006;
Paulavičius, Žilinskas and Grothey, 2011 and the survey by Gendron and Crainic, 1994).
Gendron and Crainic (1994); Crainic et al. (2006) have classified the main approaches into
two classes: Type I and Type II parallelism that correspond to forms of data parallelism
and task parallelism respectively. In Type I parallelism operations on subproblems (e.g.

Branching and bounding improvements for global optimization 3

bounding) are conducted in parallel whereas the branch and bound tree is explored in serial
(i.e. by one processor). In Type II parallelism by contrast, the tree itself is explored in par-
allel by many processors. It should be noted that while branch and bound algorithms are
conceptually thought of as exploring a tree, for reasons of efficiency they are often imple-
mented numerically as a priority queue (Crainic et al., 2006). In order to parallelise oBB,
we develop parallel algorithms using both data parallel (Type I) and task parallel (Type
II) paradigms. Our main contribution here is to develop an effective task parallel variant
of oBB using novel hashing techniques that enable efficient communication, essentially re-
moving the doubling of work entirely. Additionally, we address the problem of balancing
the load between processors by implementing an effective load balancing strategy.

The layout of the paper is as follows. First order lower bound estimates are given in
Section 2.1 and second order lower bound estimates in Section 2.2, with numerical results
presented in Section 2.3. We then consider the two main paradigms for parallelising the
oBB algorithm, data parallel (bounds in parallel) in Section 3.1 and task parallel (tree in
parallel) in Section 3.2 with numerical results in Section 3.3. Finally, we draw conclusions
in Section 4.

2 Improving Lipschitz lower bounds
Let us first consider devising more accurate lower bound estimates for Lipschitz based
branch and bound algorithms. We will therefore begin this section by looking at improved
estimates for the first order lower bound (1.2) and then extend some of these ideas to the
second order lower bound (1.3).

2.1 First order lower bounds

As far as we are aware, there are two existing approaches in the literature which provide
suitable estimates for the first order lower bound (1.2) and we will briefly describe these
before discussing alternative approaches. The approach taken to estimate the gradient
Lipschitz constant in Fowkes et al. (2012) was to bound the norm of the Hessian over a
suitable domain using interval arithmetic. Evtushenko and Posypkin (2012) suggest repla-
cing the negative Lipschitz constant by a lower bound on the spectrum of the Hessian,
λmin(H(x)), for x in some interval, which they claim yields a more accurate estimate. They
approximate λmin(H(x)) using Gershgorin’s Theorem, but note that other approximations
to λmin(H(x)), for x in some domain, have been proposed in the literature. Floudas (1999,
Section 12.4) provides a useful summary of such approximations to convexify the objective
function in the context of his branch and bound algorithm. To the best of our knowledge,
none of these have been used before in place of a Lipschitz constant in Lipschitz based
branch and bound algorithms. In this section, we show that some of these estimates are
more accurate than the Lipschitz constant estimates considered in Fowkes et al. (2012)
and estimates using Gershgorin’s Theorem in Evtushenko and Posypkin (2012).

4 C. Cartis, J. M. Fowkes and N. I. M. Gould

We assume the following about problem (1.1) throughout this section:

AF 1. The objective function f : C → R is twice continuously differentiable, where C ⊂ Rn

is a sufficiently large open set containing the convex, compact domain D.2

Let us start by showing why lower bounds on λmin(H(x)) can be used in place of the
gradient Lipschitz constant −Lg in (1.2). To this end, define for some compact domain B

λBmin(H) := min
ξ∈B

λmin(H(ξ)). (2.1)

Lemma 2.1 (Evtushenko and Posypkin, 2012). Let AF 1 hold. Suppose B ⊂ C is a convex,
compact subdomain and xB ∈ B.3 Then, for any x ∈ B we have

f(x) ≥ f(xB) + (x− xB)Tg(xB) + λBmin(H)
2 ‖x− xB‖2

2. (2.2)

Proof: For all x, xB ∈ B and some ξ(x) ∈ B the first order Taylor expansion with the
Lagrange form for the remainder gives

f(x) = f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(ξ)(x− xB)

= f(xB) + (x− xB)Tg(xB) + 1
2

(x− xB)TH(ξ)(x− xB)
(x− xB)T (x− xB) (x− xB)T (x− xB)

≥ f(xB) + (x− xB)Tg(xB) + λmin(H(ξ))
2 ‖x− xB‖2

2

≥ f(xB) + (x− xB)Tg(xB) + λBmin(H)
2 ‖x− xB‖2

2

where the last two inequalities follow from the fact that the Rayleigh quotient reaches its
minimum at the smallest eigenvalue and from (2.1), respectively.

We can therefore use any lower bound on λBmin(H) in place of −Lg(B) in (1.2). In
particular, we consider the following possible lower bounds on λBmin(H) from Floudas (1999,
Section 12.4), which all require the following bounds on the Hessian.

Definition 2.1. Let AF 1 hold. Let hij(ξ) denote the elements of the Hessian matrix H(ξ)
of f . Furthermore, let H = (hij)1≤i,j≤n, H = (hij)1≤i,j≤n be such that for all i, j = 1, . . . , n

hij ≤ hij(ξ) ≤ hij (2.3)

for all ξ in a convex, compact subdomain B.

Such elementwise lower and upper bounds (2.3) can be obtained, for example, using
interval arithmetic.

2Note that we need a larger set here as the balls in our overlapping covering extend outside the domain
during the initial subdivisions.

3Note that B does not need to be convex provided all line segments from xB to x are contained in B,
i.e. if B is star-convex with star-centre xB.

Branching and bounding improvements for global optimization 5

Theorem 2.2 (Floudas, 1999). Let AF 1 hold. Given the elementwise bounds hij, hij and
corresponding matrices H,H in (2.3), the following lower bounds for λBmin(H) in the bound
(2.2) hold:

i) Gershgorin’s Theorem (Ger):

λBmin(H) ≥ min
i

hii −∑
j 6=i

max
{
|hij|, |hij|

} (2.4)

ii) E-Matrix Diagonal (Ediag):

λBmin(H) ≥ λmin(HM)− ρ(∆H) (2.5)

where λmin(HM) denotes the smallest eigenvalue of the midpoint matrix HM := H+H
2

and ρ(∆H) the spectral radius of the radius matrix ∆H := H−H
2 .

iii) E-Matrix Zero (E0):
λBmin(H) ≥ λmin(H̃M)− ρ(∆̃H) (2.6)

where the modified radius matrix ∆̃H is ∆H with zeros on the diagonal and the mod-
ified midpoint matrix H̃M is HM with hii on the diagonal.

iv) Lower Bounding Hessian (lbH):

λBmin(H) ≥ λmin(L) (2.7)

where the lower bounding Hessian L = (lij) is defined as

lij =

hii +∑
k 6=i

hik−hik

2 if i = j
hij+hij

2 if i 6= j

v) Hertz’s Method (Hz):
λBmin(H) = min

k
{λmin(Hk)} (2.8)

where the vertex matrices Hk are defined as follows: Let x ∈ Rn, then there are 2n−1

possible combinations for the signs of the xixj products (i 6= j). For the k-th such
combination, define the vertex matrix Hk = (hkij) where

hkij =


hii if i = j,

hij if xixj ≥ 0, i 6= j

hij if xixj < 0, i 6= j

Proof: See Floudas (1999, Section 12.4) for proofs of the above lower bounds (2.4)–(2.8).

6 C. Cartis, J. M. Fowkes and N. I. M. Gould

We also consider a lower bound on the best −Lg(B) in (1.2), given in the following
Theorem.

Theorem 2.3 (Norm of the Hessian (Norm)). Let AF 1 hold. Suppose B ⊂ C is a convex,
compact subdomain and xB ∈ B. Then, for any x ∈ B, the first order lower bound (1.2)
holds.4 Furthermore, a lower bound for the best −Lg(B) in (1.2) is given by

− Lg(B) ≥ −
√√√√∑

ij

max
{
|hij|, |hij|

}2
(2.9)

where the elementwise bounds hij, hij are defined in (2.3).

Proof: (1.2) is a well-known consequence of first order Taylor expansions; see for example
Theorem 3.1.4 in Conn, Gould and Toint (2000). Note that ‖M‖2 ≤ ‖M‖F for any matrix
M . We have from Taylor’s theorem to first order and Cauchy-Schwarz that for any x, y ∈ B

‖g(x)− g(y)‖2 ≤
∥∥∥∥∫ 1

0
H (y + τ(x− y)) (x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖H (y + τ(x− y))‖2‖x− y‖2

≤ max
0≤τ≤1

‖H (y + τ(x− y))‖F‖x− y‖2

= max
0≤τ≤1

∑
ij

[H (y + τ(x− y))]2ij

1/2

‖x− y‖2

≤

∑
ij

max
{
|hij|2, |hij|2

}1/2

‖x− y‖2

=
∑

ij

max
{
|hij|, |hij|

}2
1/2

‖x− y‖2.

Thus the gradient g is Lipschitz continuous on a compact domain B with `2-norm Lipschitz
constant

√∑
ij max{|hij|, |hij|}2. In particular, this means that for the best gradient Lipschitz

constant Lg(B), we have for all x ∈ B

Lg(B) ≤
√√√√∑

ij

max
{
|hij|, |hij|

}2
.

If we look at the computational cost of the estimation approaches given in (2.4)–(2.8)
and (2.9) (and exclude the cost of calculating the Hessian bounds hij, hij) we can show that
Ger is an O(n2) method (i.e. it requires O(n2) floating point operations). Eidag, E0, lbH
require the calculation of one or two extreme eigenvalues and Hz requires 2n−1 leftmost
eigenvalues. Assuming standard methods for calculating all the eigenvalues of a matrix,

4Note that if B is not assumed to be compact, then (1.2) still holds provided the gradient g is Lipschitz
continuous on the convex subdomain B and f ∈ C1(B).

Branching and bounding improvements for global optimization 7

Eidag, E0, lbH would all be O(n3) methods and Hz would be an O(2n−1n3) method.
In practice, extreme eigenvalues of dense matrices are usually obtained in O(n2+v) flops,
where v < 1, e.g. using the power method. Calculating Norm requires squaring n2 entries
and so is an O(n2) method.

2.2 Second order lower bounds
In Section 2.1, we considered replacing the gradient Lipschitz constant in the first order
lower bound (1.2) by an estimate of the smallest eigenvalue of the Hessian. In this section
we will show that, to an extent, a similar approach is also possible for the second order
lower bound (1.3) and we can replace the Hessian Lipschitz constant by an estimate of the
smallest eigenvalue of the derivative tensor. Before we describe this in detail we need to
introduce some tensor eigenvalue notation.

Let T ∈ Rn×n×n denote a third order tensor, which being a generalisation of a matrix
to three indices, is a 3-dimensional array. As with matrices, tijk denotes the (i, j, k)-th
component (i.e. element in the array) of the tensor T . Furthermore, a tensor T is called
symmetric (sometimes supersymmetric) if tσ(i)σ(j)σ(k) = tijk for any permutation σ of the
indices (i, j, k). This is the natural generalisation of a symmetric matrix to tensors. For a
vector x ∈ Rn, the multiplication of a tensor T three times on the right by x is denoted by

Tx3 :=
n∑
i=1

n∑
j=1

n∑
k=1

tijkxixjxk.

Let ‖T‖F denote the Frobenius norm for the tensor T defined as

‖T‖2
F =

n∑
i=1

n∑
j=1

n∑
k=1

t2ijk.

We have from Lim (2005) that the multilinear Rayleigh quotient for the `3-norm is given
by

Tx3

‖x‖3
3

where ‖·‖3 is the `3-norm for vectors. The `3-eigenvalues (or H-eigenvalues) of T are then
defined as the stationary points of the multilinear Rayleigh quotient. In particular, this
means that the smallest `3-eigenvalue of T , λ`3min(T) is given by5

λ`
3

min(T) = min
x 6=0

Tx3

‖x‖3
3
. (2.10)

We assume the following about problem (1.1) throughout this section:
5Note that one can instead use the alternative definition of `2-eigenvalues that are the stationary

points of the multilinear Rayleigh quotient for the `2-norm, Tx3/‖x‖3
2 (Lim, 2005) and then the smallest

`2-eigenvalue of T , λ`2

min(T) would be given by λ`2

min(T) = minx 6=0 Tx
3/‖x‖3

2. However, we will not use
`2-eigenvalues here for reasons that will become clear later.

8 C. Cartis, J. M. Fowkes and N. I. M. Gould

AF 2. The objective function f : C → R is thrice continuously differentiable, where C ⊂ Rn

is a sufficiently large open set containing the convex, compact domain D.
We are now in a position to show why lower bounds on the spectrum of the derivative

tensor can be used in place of the Hessian Lipschitz constant LH in (1.3). To this end, let

T (x) := ∇xxxf(x)

denote the third order derivative tensor of f(x) and note that it is symmetric by construc-
tion. Define for some compact domain B

λ`
3,B

min (T) := min
ξ∈B

λ`
3

min(T (ξ)). (2.11)

Lemma 2.4. Let AF 2 hold. Suppose B ⊂ C is a convex, compact subdomain and xB ∈ B.
Then, for any x ∈ B we have

f(x) ≥ f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(xB)(x− xB)

+


λ`3,B

min (T)
6 ‖x− xB‖3

2 if λ`
3,B

min (T) ≤ 0,
λ`3,B

min (T)
6 n−1/2‖x− xB‖3

2 if λ`
3,B

min (T) > 0.

(2.12)

Proof: First of all, in order to use `3-eigenvalues in (2.12) we require relations between the
`2 and `3 vector norms. It is a standard result that for any p > r > 0

‖x‖p ≤ ‖x‖r ≤ n(1/r−1/p)‖x‖p
for any x ∈ Rn and in particular this means that

‖x‖3 ≥ n−1/6‖x‖2,

‖x‖3 ≤ ‖x‖2
(2.13)

for any x ∈ Rn.
Now, for x = xB the claim in the theorem is trivial, so w.l.o.g. assume x 6= xB. Then

for all x, xB ∈ B and some ξ(x) ∈ B, the second order Taylor expansion with the Lagrange
form for the remainder gives

f(x) = f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(xB)(x− xB) + 1

6T (ξ)(x− xB)3

= f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(xB)(x− xB) + 1

6
T (ξ)(x− xB)3

‖x− xB‖3
3
‖x− xB‖3

3

≥ f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(xB)(x− xB) + λ`

3
min(T (ξ))

6 ‖x− xB‖3
3

≥ f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(xB)(x− xB) + λ`

3,B
min (T)

6 ‖x− xB‖3
3

≥ f(xB) + (x− xB)Tg(xB) + 1
2(x− xB)TH(xB)(x− xB)

+


λ`3,B

min (T)
6 ‖x− xB‖3

2 if λ`
3,B

min (T) ≤ 0,
λ`3,B

min (T
6 n−1/2‖x− xB‖3

2 if λ`
3,B

min (T) > 0
using (2.10), (2.11) and (2.13) respectively.

Branching and bounding improvements for global optimization 9

We can therefore use any (suitably scaled) lower bound on λ`
3,B

min (T) in place of −LH(B)
in (1.3).6 In Section 2.1, Theorem 2.2 (2.4)–(2.8) and Theorem 2.3 (2.9) give several differ-
ent approaches to obtain lower bounds on the smallest eigenvalue in the case of a Hessian
matrix. We will now show which of these estimation approaches generalises to the case of a
third order derivative tensor. While there are `3-eigenvalue algorithms that are guaranteed
to converge to the smallest eigenvalue, these are only applicable to tensors with non-
negative (or equivalently non-positive) entries (Kolda and Mayo, 2011). Unfortunately, the
tensor generalisations of the matrices required for the lower bounding strategies presented
in (2.5)–(2.8), namely the E-matrix, Lower bounding Hessian and Hertz method have both
positive and negative entries in general. However, the generalisation of Gershgorin’s The-
orem (Qi, 2005) does not require an eigenvalue algorithm and we can therefore generalise
Theorem 2.2 (2.4) to tensors. We first need the following definition before we can give the
generalised theorem.

Definition 2.2. Let AF 2 hold. Let tijk(ξ) denote the elements of the third order derivative
tensor T (ξ). Furthermore, let T = (tijk)1≤i,j,k≤n, T = (tijk)1≤i,j,k≤n be such that for all
i, j, k = 1, . . . , n

tijk ≤ tijk(ξ) ≤ tijk (2.14)

for all ξ in a convex, compact subdomain B.

Once again, the elementwise lower and upper bounds (2.14) can be obtained using
interval arithmetic.

Theorem 2.5 (Gershgorin’s Theorem for the derivative Tensor (Ger T)). Let AF 2 hold.
Assuming the elementwise bounds tijk, tijk in (2.14), λ`

3,B
min (T) in (2.12) can be bounded

below by

λ`
3,B

min (T) ≥ min
i

tiii − ∑
k 6=j 6=i

max
{
|tijk|, |tijk|

} . (2.15)

Proof: Let ξ ∈ B be arbitrary. We have from Qi (2005) that Gershgorin’s Theorem for
tensors applied to the third order derivative tensor T (ξ) gives

λ`
3

min(T (ξ)) = min
i

tiii − ∑
k 6=j 6=i

|tijk(ξ)|


≥ min
i

tiii − ∑
k 6=j 6=i

max
{
|tijk|, |tijk|

}
for any ξ ∈ B. As λ`

3,B
min (T) = minξ∈B λ`

3
min(T (ξ)) from (2.11), the result follows.

6Note that an analogous result holds for `2-eigenvalues. Unfortunately, to the best of our knowledge,
there are no known eigenvalue algorithms that are guaranteed to converge to the smallest `2-eigenvalue
but it is possible to use generalisations of the power method using multiple starting points (Kolda and
Mayo, 2011; Zhang, Qi and Ye, 2012). However, this is not reliable as (1.3) requires a bound on the
smallest eigenvalue and using multiple starting points does not guarantee this. Furthermore, there is no
generalisation of Gershgorin’s Theorem for `2-eigenvalues, which is what we propose next for `3-eigenvalues.

10 C. Cartis, J. M. Fowkes and N. I. M. Gould

Additionally, we also have a bound on the Hessian Lipschitz constant in (1.3), an
extension of the Norm bound (2.9) from Theorem 2.3.7

Theorem 2.6 (Norm of the derivative tensor (Norm T)). Let AF 2 hold. Suppose B ⊂ C
is a convex, compact subdomain and xB ∈ B. Then, for any x ∈ B, the second order lower
bound (1.3) holds.8 Furthermore, a lower bound for the best −LH(B) in (1.3) is given by

− LH(B) ≥ −
√√√√∑

ijk

max
{
|tijk|, |tijk|

}2
(2.16)

where the elementwise bounds tijk, tijk are defined as in (2.14).

Proof: (1.3) is a well-known consequence of second order Taylor expansions; see for example
Theorem 3.1.5 in Conn et al. (2000). Note that as in the matrix case, ‖T‖2 ≤ ‖T‖F for
any tensor T (see Lemma 6.1 in Fowkes et al., 2012, for a proof). We have from Taylor’s
theorem to first order and Cauchy-Schwarz that for any x, y ∈ B

‖H(x)−H(y)‖2 ≤
∥∥∥∥∫ 1

0
T (y + τ(x− y)) (x− y)dτ

∥∥∥∥
2

≤ max
0≤τ≤1

‖T (y + τ(x− y))‖F‖x− y‖2

= max
0≤τ≤1

∑
ijk

[T (y + τ(x− y))]2ijk

1/2

‖x− y‖2

≤

∑
ijk

max
{
|tijk|, |tijk|

}2
1/2

‖x− y‖2.

Thus the Hessian H is Lipschitz continuous on a compact domain B with `2-norm Lipschitz
constant

√∑
ijk max{|tijk|, |tijk|}2. In particular, this means that for the best Hessian

Lipschitz constant LH(B), we have

LH(B) ≤
√√√√∑

ijk

max
{
|tijk|, |tijk|

}2
.

Looking at the computational cost of the second order estimation approaches Ger T
and Norm T given in (2.15), (2.16) (and excluding the cost of calculating the tensor
bounds tijk, tijk) we can see that they are O(n3) methods since each requires summing or
squaring n3 elements.

2.3 Numerical results
The overlapping branch and bound algorithm (oBB), namely Algorithm 2.1 from Fowkes
et al. (2012), is especially suited to testing the first and second order estimation approaches

7Note that this bound appears in Section 6.2 of Fowkes et al. (2012) but it is incorrect there.
8Note that if B is not assumed to be compact, then (1.3) still holds provided the Hessian H is Lipschitz

continuous on the convex subdomain B and f ∈ C2(B).

Branching and bounding improvements for global optimization 11

from Section 2.1 and Section 2.2. As oBB is exactly Algorithm 3.1 from Section 3.1 in
which all the worker calculations are performed by the master, we will only briefly outline
it here and postpone a detailed description to Section 3.1. The algorithm is structured in
much the same way as most standard branch and bound algorithms: It starts with a ball
covering the domain and recursively subdivides it into overlapping balls, bounding each
ball and discarding balls that cannot contain a global minimiser until the global minimum
is located. The branching subdivides each ball into 3n half-sized overlapping sub-balls that
cover the original ball and have a fixed amount of overlap. The bounding uses the first
and second order Lipschitz-based lower bounds (1.2), (1.3) but can also accommodate the
eigenvalue-based lower bounds (2.2), (2.12) all of which it can solve in polynomial due to
its use of overlapping balls.

We test the first and second order estimation approaches on test sets of

1) Random polynomials
2) Random radial basis functions (RBFs)

which we will describe in turn. The aim of the numerical experiments is to test which
estimation approach gives the best oBB performance in terms of runtime. This gives an
indirect indication of the accuracy of the estimation approach.

Random Polynomials (Evtushenko and Posypkin, 2012) This is a collection of bound
constrained global optimization problems with polynomial objective functions and ran-
domly generated coefficients. The polynomial objective functions used are of the form

f(x) =
n∑
i=1

10xmi +
∑
p∈P

apx
p1
i1 . . . x

pn
in (2.17)

where m is an even polynomial degree and P = {(p1, . . . , pn) : pi ∈ Z+,
∑n
i=1 pi ≤ m−1} is

the set of n-tuples corresponding to the powers of the monomials. The randomly generated
coefficients ap are uniformly distributed in [0, 10]. Let |P| =

(
m−1+n

n

)
be the number of

n-tuples in P . Evtushenko and Posypkin (2012) then observe that for an evenm, the global
optimiser lies in the box [−|P|, |P|]n and this is therefore taken to be the search domain.
Following Evtushenko and Posypkin (2012), we set the following following values for m
and n in (2.17):

• Series 1: n = 3,m = 4
• Series 2: n = 3,m = 6 (2.18)
• Series 3: n = 4,m = 4

and test 10 realisations of (2.17) for each series. The bounds required by our estimation
approaches, namely hij, hij in (2.3) on the Hessians and tijk, tijk in (2.14) on the derivative
tensors of the polynomials are calculated using our own implementation of standard interval
arithmetic (see e.g. Section 11 of Neumaier, 2004).

12 C. Cartis, J. M. Fowkes and N. I. M. Gould

Random RBFs This is a RBF test set similar to the one above for random polynomials.
We will use cubic spline RBF objective functions of the form

f(x) = µ0 +
n∑
i=1

µixi +
N(m,n)∑
j=1

λj‖x− xj‖3
2 (2.19)

where µi, λj are coefficients of the linear and radial terms respectively and N(m,n) :=(
m−1+n

n

)
is a given number of centres xj ∈ Rn. As before, we let the coefficients µi, λj be

random, that is uniformly distributed in the interval [0, 10]. We will use the same values for
m and n in (2.19) as those for random polynomials given in (2.18) and test 10 realisations
of (2.19) for each series. Note that we choose N(m,n) =

(
m−1+n

n

)
so that we have the

same number of terms in the RBFs as in the polynomials above (up to a constant). We
also take the box [−N(m,n), N(m,n)]n as the search domain so that the search regions for
the RBFs are the same as for the polynomials. The bounds hij, hij in (2.3) on the Hessians
and tijk, tijk in (2.14) on the derivative tensors of the RBFs are calculated using a more ac-
curate interval arithmetic type approach (see Section 6.2 of Fowkes et al., 2012, for details).

As we are interested in the relative performance of the first and second order estimation
approaches, we will look at runtime performance profiles (Dolan and Moré, 2002) for both
on the random polynomial and RBF test sets described above. To this end, we ran a
Python-based serial implementation of oBB to an absolute tolerance of 10−6 for the global
minimum using one of the estimation approaches given in (2.4)–(2.8) and (2.9). If the
algorithm did not complete a run in 24 hours then that run was considered a failure. The
hardware used was part of the ECDF Eddie cluster using a single 2.4GHz Intel Xeon E5645
processor core with 2GB of RAM for each random polynomial or RBF realisation.

2.3.1 First order lower bounds

Let us first consider the numerical performance of the first order estimation approaches
Ger,Eidag,E0, lbH,Hz andNorm given in (2.4)–(2.8) and (2.9). Figure 2.1 below shows
performance profiles of the total runtime for the first order estimation approaches on the
random polynomials. For clarity we consider two ranges of the performance ratio so we can
clearly see the poorer estimates (Norm and Ediag) in the left-hand side of Figure 2.1 and
the better estimates (Hz, lbH, E0 and Ger) in the right-hand side of Figure 2.1, which
is a close-up of the left-hand figure. From the left-hand side of Figure 2.1 we can see that
Norm is by far the weakest approach, in fact the algorithm only finds the global minimum
within 24 hours in a third of the problems tested. For all the other estimates, the global
minimum is always found, although the Ediag approach also performs poorly. Looking at
the better performing approaches in the right-hand side of Figure 2.1, we can see that Hz
is the best, presumably because it always calculates exactly the smallest eigenvalue of the
Hessian H(ξ) for H ≤ H(ξ) ≤ H. However, this necessitates calculating the eigenvalues of
2n−1 matrices and while this is practical for two and three dimensional polynomials this
will clearly be an issue in higher dimensions. With this in mind, the best approaches seem

Branching and bounding improvements for global optimization 13

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger

Norm

Hz

lbH

E0

Ediag

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger

Norm

Hz

lbH

E0

Ediag

Figure 2.1: Random polynomial runtime performance profiles (left) with a close up of the
left-hand figure (right) for the first order estimation approaches given in (2.4)–(2.8) and
(2.9).

to be lbH and E0 which perform similarly well, followed by Ger which does not appear
to be quite as good but nonetheless still shows reasonable performance.

Figure 2.2 below shows performance profiles of the total runtime for the first order es-
timation approaches on the random RBFs. We can see from Figure 2.2 that the performance
profiles for random RBFs are very different from those for the random polynomials obtained
above in Figure 2.1. In particular, lbH significantly outperforms all the other estimation
approaches. Ger, E0, Hz and Eidag all perform similarly well and this is especially sur-
prising as the Eidag approach showed poor performance on the random polynomials. The
Norm approach is once again the weakest, although it performs somewhat better on the
random RBFs.

It is evident from these numerical experiments that there is a need for several different
estimation approaches as no single approach is superior. In particular, as the computational
cost of the estimation approach is generally negligible compared to the cost of computing
the bounds hij, hij, it is possible to have an adaptive algorithm that computes several
estimates and uses the best one.

14 C. Cartis, J. M. Fowkes and N. I. M. Gould

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger

Norm

Hz

lbH

E0

Ediag

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger

Norm

Hz

lbH

E0

Ediag

Figure 2.2: Random RBF runtime performance profiles (left) with a close up of the left-
hand figure (right) for the first order estimation approaches given in (2.4)–(2.8) and (2.9).

2.3.2 Second order lower bounds

We will now look at the numerical performance of the second order tensor Gershgorin
and Norm approaches given in (2.15) and (2.16), respectively, on the random polynomial
and RBF test sets. Figure 2.3 below shows performance profiles of the total runtime for
the second order estimation approaches on the random polynomials and RBFs. We can
see in the left-hand side of Figure 2.3 that the Gershgorin based estimate consistently
outperforms the tensor norm approach for random polynomials. Although the algorithm
always finds the global minimum using these estimates, the Gershgorin estimate yields
faster and more accurate second order lower bounds. The situation, however, is completely
reversed for random RBFs as we can see from the performance profiles in the right-hand
side of Figure 2.3. In this case the tensor norm based estimate outperforms the Gershgorin
estimate and yields faster and more accurate bounds. Once again, this emphasises the need
to compute several estimation approaches and use whichever is best.

Branching and bounding improvements for global optimization 15

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger T

Norm T

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger T

Norm T

Figure 2.3: Random Polynomial (left) and RBF (right) runtime performance profiles for
the second order estimation approaches given in (2.15) and (2.16), respectively.

2.3.3 Comparison of first versus second order bounds

Finally, to wrap up the discussion of finding better bounds, we compare both first and
second order lower bounds in Figure 2.4 by recalculating performance profiles of the total
runtime for both. One can clearly see from the left-hand side of Figure 2.4 that for random
polynomials the second order lower bounds significantly outperform the first order ones,
with the tensor Gershgorin approach clearly superior. This is perhaps not surprising as
the second order lower bounds (2.12),(1.3) utilising second order derivative information
are likely to be more accurate than the first order lower bounds (2.2),(1.2) which can
only make use of first order information. However, the situation is not quite so simple
for the random RBFs as we can see from the right-hand side of Figure 2.4 where the
first order lower bounding Hessian estimation approach actually outperforms the second
order tensor Gershgorin approach. This is encouraging since it shows that in some cases
first order bounds which are significantly cheaper to compute can be competitive with the
more expensive second order bounds. The tensor norm approach is, however, evidently the
best for random RBFs, outperforming all other approaches.

In conclusion, there is no single first or second order bound that is clearly superior
across different objective functions. There are even instances where first order bounds
outperform second order ones. The best strategy in our opinion is therefore to implement
all the first and second order bounds within a branch and bound algorithm and adaptively
choose which is best. For example, for the first few subproblems all possible bounds could
be computed and the best two or three used throughout the rest of the computation. As
the computational cost of calculating the lower bounds is negligible compared to the cost of

16 C. Cartis, J. M. Fowkes and N. I. M. Gould

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger H

Norm H

Hz

lbH

E0

Ediag.

Ger T

Norm T

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Performance Ratio

Ger H

Norm H

Hz

lbH

E0

Ediag.

Ger T

Norm T

Figure 2.4: Random Polynomial (left) and RBF (right) runtime performance profiles
for the first order (dotted, solid and dash-dotted lines) and second order (dashed lines)
estimation approaches.

calculating the bounds hij, hij or tijk, tijk, such adaptive strategies are feasible and indeed
recommended to maximise performance.

3 Parallelising Overlapping Branch and Bound (oBB)
In Section 2 we considered improving the bounding in Lipschitz based branch and bound
global optimization algorithms and tested our findings using an implementation of oBB,
Algorithm 2.1 from Fowkes et al. (2012). In this section we will consider this implementation
of oBB and show how it can be speeded up through parallelism. As mentioned in the
introduction, there are two main approaches to parallelising branch and bound algorithms:
data parallel, namely performing the bounding operations in parallel and task parallel,
traversing the branch and bound tree in parallel (Gendron and Crainic, 1994; Crainic
et al., 2006). We consider applying these in turn to oBB in the following sections.

3.1 Data Parallelism: Bounds in Parallel
The idea behind data parallelism of a branch and bound algorithm is to share the compu-
tational burden of calculating the bounds amongst many processor cores. Our implement-
ation of this is a very straightforward master/worker approach. The master processor core
runs the entire algorithm except for the calculations involved in obtaining bounds on each
subdomain, which are (roughly) evenly divided amongst itself and the worker processors.
It is immediately obvious that this type of parallelism will only be successful if there are

Branching and bounding improvements for global optimization 17

many bounding calculations that can be performed independently at the same time and if
these calculations are relatively expensive compared to the rest of the algorithm.

The oBB algorithm uses Euclidean balls as the subdomains since this allows the lower
bounding subproblem (1.4) to be solved in polynomial time. However, this comes at a cost,
as the rigorous variant of oBB requires that each ball is split into 3n sub-balls which can
very quickly become prohibitively large as the dimension n increases. Nevertheless, this
lends itself well to data parallelism since at each step of the algorithm we have to bound
around 3n balls and these bounding operations can of course be done in parallel. This is
the basis of the data parallel version of oBB, given below as Algorithm 3.1.

The algorithm solves (1.4) to obtain a lower bound f(B) on the objective function f

over the subdomain B, that is
f(B) := min

x∈B
lB(x) (3.1)

where lB(x) can be any of the first or second order lower bounds given in (1.2), (2.2)
and (1.3), (2.12), respectively. The upper bound f(B) on f over B is simply the objective
function f evaluated at a feasible point xF ∈ B, that is

f(B) := f(xF). (3.2)

It is important to note that if we run this algorithm on one master processor core, we
recover the serial version of oBB.

Algorithm 3.1. Data Parallel Branch and Bound Algorithm

Master Processor

0. Initialisation:

(a) Set k = 0 and tmax to be the maximum runtime.
(b) Let B0 be a ball with centre xB ∈ D of sufficiently large radius to cover D.
(c) Let L0 = {B0} be the initial set of balls.
(d) Let U0 = f(B0) be the initial upper bound for minx∈B0 f(x).
(e) Let L0 = f(B0) be the initial lower bound for minx∈B0 f(x).

1. While Uk − Lk > ε and the runtime < tmax, repeat the following procedure:

(a) Pruning: Remove from Lk balls B ∈ Lk such that f(B) > Uk.
(b) Branching: Choose B ∈ Lk such that f(B) = Lk. Split B into 3n overlapping

sub-balls B1, . . . ,B3n according to the splitting rule in Section 2.2 of Fowkes et al.
(2012) and discard any sub-balls that lie entirely outside of D. Let Rk denote
the set of remaining sub-balls and let Lk+1 := (Lk \ {B}) ∪Rk.

(c) Bounding: Partition Lk+1 into p subsets and distribute them amongst the p

worker processors for bounding. Wait until all the bounds f(B), f(B) for B ∈
Lk+1 are received back.

18 C. Cartis, J. M. Fowkes and N. I. M. Gould

(d) Set Uk+1 := minB∈Lk+1 f(B).
(e) Set Lk+1 := minB∈Lk+1 f(B).
(f) Set k = k + 1.

2. Send termination signal to worker processors.
3. Return Uk as the estimate of the global minimum of f(x) over D.

Worker Processor p

1. Repeat the following procedure until termination signal is received:

(a) Wait for a set of balls Lp from the master processor.
(b) When the set is received, calculate bounds f(B), f(B) for each ball B ∈ Lp and

send the bounds back to the master processor.

In step 1b, the algorithm splits each ball B into 3n overlapping sub-balls of half-radius
r(B)/2 centred at the vertices of a hypercubic tessellation of edge length r(B)/

√
n around

the centre of the ball. We refer the interested reader to Fowkes et al. (2012, Section 2.2)
for details of this splitting rule.

3.2 Task Parallelism: Tree in Parallel
In task parallelism of a branch and bound algorithm, the focus is on exploring the branch
and bound tree in parallel. Conceptually, a branch and bound algorithm running on an
arbitrary problem can be thought of as generating a tree. The nodes of the tree repres-
ent the subregions and the edges denote the regions they are split from. One can then
think of having several processor cores generating different sections of the tree starting
from different subregions. In the case of traditional branch and bound using boxes this is
conceptually straightforward to implement as each subregion forms a distinct partition of
the domain and any subregions split from it are also contained within that partition. All
that is required is that the processor cores communicate the best upper bound found so
far and balance the load, namely make sure the work is evenly distributed amongst the
processor cores.

However, we are interested in parallelising oBB which uses overlapping balls rather
than rectangular partitions. This makes the parallelisation more difficult since the balls
do not form natural partitions. As such several processor cores can end up bounding and
splitting the same promising ball, arrived at by repeatedly splitting different initial balls
and so doubling of work can occur. Our solution to this problem is to essentially eliminate
the doubling entirely through efficient communication. That is, the master processor keeps
a list of all the balls created so far and any new balls created by the worker processors
are cross-checked against this list to see if they already exist. Of course, such an approach
relies heavily on the ability to efficiently communicate centres and radii from the workers
to the master. Sending the centre and radius of each ball would be prohibitively expensive,
but if we instead send an integer hash (Knuth, 1998, Section 6.4) of each centre and radius

Branching and bounding improvements for global optimization 19

this greatly decreases the cost of communication. In fact, every time a worker processor
splits a ball it needs to check whether at most 3n balls of the same radius exist. Thus,
we only need to send a hash of one radius and at most 3n balls, so 3n + 1 integers in
total. Of course, the hashes are not guaranteed to be unique and there is a chance that
the algorithm will occasionally discard a ball that does not already exist. However, such
an event is extremely rare, likely to have a very small effect on the resulting minimum
and can be easily corrected for by running a local solver at the end of the algorithm. If
we combine this approach with task parallelism ideas, we obtain a suitable parallel branch
and bound version of oBB with hashing.

An important performance consideration is the order in which the master processor
deals with the incoming hashes and we have found two different approaches to be suitable.
The first approach is perhaps the most obvious, the master processes the hashes one at
a time as they are received and the workers simply wait for confirmation of which balls
already exist before bounding them (see One-at-a-time Hashing in Section 3.2.1). While
this approach is suitable in situations where the balls are inexpensive to bound relative to
the cost of communicating the hashes, it does not perform as well when they are not. This
is because the workers tend to spend a significant amount of time waiting for a response
from the master. The second approach therefore tries to address these issues by getting
the master to process the hashes from all the workers in one go while the workers start
bounding the balls in the background (see Synchronous Hashing in Section 3.2.1). This is
indeed advantageous if bounding the balls is expensive relative to the communication cost.

Another performance improvement to oBB we implement is the use of a priority queue
to store the subproblems. A priority queue is simply an ordered list where each element is
ranked according to a specified order. In our case we order the list of balls according to the
lower bound f(B), with the smallest lower bound included first in the list. This enables
us to restructure oBB so that we do not need to find or communicate the smallest lower
bound, resulting in a more efficient algorithm in standard numerical form (Crainic et al.,
2006).

We also need a strategy to balance the load between processor cores, i.e. the number
of balls, or equivalently the number of subproblems, on each processor core. After due
consideration and testing of the underlying hardware topology, we implemented a two tier
strategy. This is because most modern HPC clusters consists of a large number of nodes
(i.e. sets of processors which share the same memory) interconnected by gigabit ethernet
or infiniband switches. It therefore makes sense to load balance both within each node
where communication via shared memory will be very efficient and across different nodes
where communication via gigabit ethernet or infiniband will be relatively slow. We will
describe this load balancing strategy in detail in Section 3.2.2. The complete task parallel
branch and bound algorithm is given below, with the lower and upper bounds calculated
as before in (3.1),(3.2). Details of the hashing and load balancing are presented later in
Sections 3.2.1 and 3.2.2.

20 C. Cartis, J. M. Fowkes and N. I. M. Gould

Algorithm 3.2. Task Parallel Branch and Bound Algorithm

Master Processor

0. Initialisation

(a) Set tmax to be the maximum runtime of the algorithm.
(b) Let B be a ball with centre xB ∈ D of sufficiently large radius to cover D.
(c) Split B into 3n overlapping sub-balls according to the splitting rule in Section

2.2 of Fowkes et al. (2012) and discard any sub-balls that lie entirely outside of
D. Partition the remaining sub-balls into p subsets and distribute them amongst
the p worker processors as sets Lp.

(d) Let R = ∅ be the initial ordered list of hashes of radii.
(e) Let C = ∅ be the initial ordered list of sets of hashes of centres with the same

radius.

1. While Lp 6= ∅ ∀p and the runtime < tmax, repeat the following procedure:

(a) Asynchronously receive Up and |Lp| from all p worker processors.
(b) Asynchronously send U := minp Up to all p worker processors.
(c) Hashing: Process lists of hashes received from worker processors, updating R,

the list of radius hashes, and C, the list of ball-centre hashes, and inform the
workers of any duplicate entries. See Section 3.2.1 for details.

(d) Perform load balancing across nodes: see Section 3.2.2 for details.
(e) Perform load balancing within nodes: see Section 3.2.2 for details.

2. Send termination signal to worker processors.
3. Return U as the estimate of the global minimum of f(x) over D.

Worker Processor p

1. Initialisation

(a) Receive workload Lp from master processor.
(b) Calculate bounds f(B), f(B) for each ball B ∈ Lp and convert Lp into a priority

queue w.r.t. f(B).
(c) Set Up := minB∈Lp f(B).
(d) Asynchronously send Up and |Lp| to master processor.
(e) Asynchronously receive U from master processor.

2. Repeat the following procedure until termination signal is received:

(a) Pruning: Remove from the priority queue Lp balls B such that f(B) > U − ε.

Branching and bounding improvements for global optimization 21

(b) Branching: Let B be the first element in the priority queue Lp.9 Split B into 3n
overlapping sub-balls B1, . . . ,B3n according to the splitting rule in Section 2.2 of
Fowkes et al. (2012) and discard any sub-balls that lie entirely outside of D. Let
R denote the list of remaining sub-balls.

(c) Hashing: Generate an integer hash for each ball in R and an integer hash for
the radius. Send the integer hashes to master processor to see if any of the balls
already exist. (Synchronised hashing only: Start bounding f(x) for each ball in R
until the master processor sends the results of the check back). Receive an ordered
integer list from the master processor that contains either 1 or 0 depending on
whether each ball exists and update R accordingly.

(d) Bounding: Calculate bounds f(B), f(B) for each ball B ∈ R if not already
bounded.

(e) Remove the split ball B from the priority queue Lp and add the list of remaining
sub-balls R to Lp.

(f) Set Up := minB∈Lp f(B).
(g) Load Balancing: Asynchronously send the requested number of subproblems from

the current workload to the required processor(s) as instructed by the master
processor and update Lp accordingly. If more subproblems are requested than in
the current workload, send as many as possible. Send confirmation to the master
processor once the send has completed.

(h) Load Balancing: Asynchronously receive subproblems from other processors and
update Lp accordingly.

(i) Asynchronously send Up and |Lp| to master processor.
(j) Asynchronously receive U from master processor.

There are a number of strategies we have tried in an attempt to further improve
Algorithm 3.2 and we will briefly mention them here. One may be tempted to think
that breaking down the communication of the hashes into smaller messages would be
more efficient, as this would allow the algorithm to solve some of the subproblems during
sending/receiving. However, sending several small messages can cause the communication
latency to dominate the overall cost of communication. Our tests have indicated that it is
indeed more efficient to send all the hashes in one large message as this minimises latency
and increases the effective communication bandwidth. Another aspect we have looked at
is whether the cost of solving each subproblem has a significant effect on the speedup
observed. To test this we artificially extended the cost of solving each subproblem by one
second on the random polynomials and tested Algorithm 3.2 on this modified test set.
However, we observed little difference in the speedup when compared to Algorithm 3.2 on
the original test set.

9Note that since Lp is a priority queue w.r.t. f(B), B has the smallest lower bound f(B) of all balls in
Lp.

22 C. Cartis, J. M. Fowkes and N. I. M. Gould

3.2.1 Hashing

In this section we will describe the hashing process used in Algorithm 3.2 in more de-
tail, primarily the role of the master processor. In order to be able to process the hashes
efficiently, the master processor keeps a list R containing hashes of the radius and a cor-
responding list C of sets of hashes of centres of balls with that radius (see step 0d and
step 0e for the master processor in Algorithm 3.2). For example if R = {#r1,#r2} and
C = {{#xB1 ,#xB2}, {#xB3}} then balls B1,B2 have radius r1 and B3 has radius r3. Every
time a ball is split into sub-balls by a worker processor in the algorithm, each sub-ball
has exactly the same radius and so the worker only has to send one radius hash along
with the hashes of the centres. When the master processor receives the radius hash and
corresponding centre hashes, it can quickly determine the radius of the split balls since
hashes of radii are stored in a separate list R which can be efficiently searched.10

As for calculating the hashes themselves, hashing the radius is straightforward, we
simply multiply by a suitably large number (e.g. we use 108) and convert to a 32-bit
integer. For hashing the centre of each ball, we use a variant of the hash function from
Section 4.1 of Teschner, Heidelberger, Mueller, Pomeranets and Gross (2003). That is, for
x ∈ Rn, a collection of large primes p1, . . . , pn and a resolution r, the hash is

#x =
⌊
x1

r

⌋
p1 Y

⌊
x2

r

⌋
p2 Y · · · Y

⌊
xn
r

⌋
pn

where Y denotes a bitwise xor (i.e. an exclusive or on the binary digits). The hash is
then converted to a 32-bit integer which ensures that the communication is as efficient
as possible. In our implementation we use a collection of arbitrarily chosen 8-digit primes
along with a resolution r of 10−5, so any ‖x‖∞ < 10−5 hashes to zero.

As we have mentioned previously, there are two possible ways for the master to pro-
cess the hashes: one-at-a-time or synchronised (namely, all together). We describe how in
Algorithm 3.2, step 1c the master processor handles either of the two approaches below.

One-at-a-time Hashing

Master Processor: (Step 1c of Algorithm 3.2)

1. If a worker processor p wants to check if a set of balls of the same radius already
exists, receive a list containing an integer hash #ci of the centre of each ball Bi and
an integer hash #r of the radius.

2. Check if #r is in R. If it is not, append #r to R, append the set of #ci’s to C since
they cannot already be present in C. If #r is in R, check if any of the #ci’s are
already present in the corresponding set in C. Add any #ci’s that are not present to
the corresponding set in C.

3. Set E to be an ordered list that contains either 1 or 0 for each i depending on whether
#ci is present in the corresponding set in C or not and send E to worker processor p.

10Note that R is always a finite set. As the radius is halved each time a ball is split, there can only be
a finite number of radii before numerical underflow occurs.

Branching and bounding improvements for global optimization 23

Synchronised Hashing

Master Processor: (Step 1c of Algorithm 3.2)

1. Receive from all worker processors p, a list containing integer hashes of the radius
#rp and centres {#cpi } of each ball Bpi on processor p wanting to be checked.

2. For each p, check if #rp is in R. If it is not, append #rp to R, append the set of
#cpi ’s to C since they cannot already be present in C. If #rp is in R, check if any of
the #cpi ’s are already present in the corresponding set in C. Add any #cpi ’s that are
not present to the corresponding set in C.

3. For each p, set Ep to be an ordered list that contains either 1 or 0 for each i depending
on whether #cpi is present in the corresponding set in C or not and send Ep to worker
processor p.

3.2.2 Load Balancing

As we have discussed previously, our load balancing scheme in Algorithm 3.2 takes into
account the underlying topology of modern HPC clusters by alternately balancing across
and within the underlying physical nodes of the cluster. In this section we describe the
two load balancing approaches, starting with load balancing within nodes as it forms the
basis of our strategy for load balancing across nodes. We will use N throughout to denote
a node.

Load balancing across processors within a node

For each node, we balance the load across processors within the node as follows: At each
load balancing step the master processor takes a snapshot of the load on the node and
works out how many subproblems each processor within that node should have in order to
be balanced. It then assigns the shortfall from the processor with the largest load to the
one with the smallest, updates the snapshot and repeats until all processors in the node
have a load that does not differ by more than 10%. That is, for all processors p1, p2 ∈ N

|Sp1 − Sp2|
max{min{Sp1 , Sp2}, 1} > 0.1 (3.3)

where Sp denotes the load (i.e. the number of subproblems) on processor p. The scheme
for the master processor in Algorithm 3.2, step 1e is given in more detail below.

Master Processor: (Step 1e of Algorithm 3.2) For each node N , repeat the following pro-
cedure: Let Sp be a snapshot of the load |Lp| on each worker processor p in N , i.e. a local
copy of the load that we will work with. Let I =

⌊∑
p∈N S

p/|N |
⌋
be the ideal load on each

processor in N . We would like all processor loads to be as close as possible to the ideal load
I. Set k = 0. While (3.3) holds and k < |N |, repeat the following procedure:

24 C. Cartis, J. M. Fowkes and N. I. M. Gould

1. Let Spmin and Spmax be the smallest and largest loads in the node N on processors
pmin and pmax respectively.

2. Calculate I − Spmin as the load we need to add to Spmin so that it has ideal load.
3. If any previous send has reached its destination, instruct processor pmax to asynchron-

ously send I − Spmin subproblems to processor pmin.
4. Update snapshots: subtract I − Spmin from Spmax and add I − Spmin to Spmin so that

the previously smallest load increases to I and the previously largest load decreases
to Spmax + Spmin − I > Spmin (unless Spmax = I in which case it is already balanced).

5. Set k = k + 1.

Load balancing across nodes

We apply a similar scheme for load balancing across nodes as follows: At each load balancing
step the master processor takes a snapshot of the overall load on each node and works out
how many subproblems each node should have in order to be balanced. It then assigns
a fraction of the shortfall from the processor with the largest load and distributes it as
evenly as possible to all processors on the node with the smallest load. The snapshot of
the total load on each node is then updated and the process repeats until all the nodes
have a load that does not differ by more than 10%. That is, for all nodes j1, j2 = 1, . . . , N

|T j1 − T j2 |
max{min{T j1 , T j2}, 1} > 0.1 (3.4)

where T j denotes the total load on node Nj for j = 1, . . . , N . Of course by the time the
subproblems are actually transmitted the nodes are unbalanced again and the whole pro-
cess starts over at the next load balancing step. The scheme for the master processor in
Algorithm 3.2, step 1d is given in more detail below.

Master Processor: (Step 1d of Algorithm 3.2) Let Sp be a snapshot of the load |Lp| on
each worker processor p = 1, . . . , P , i.e. a local copy of the load that we will work with. Let
T j = ∑

p∈Nj
Sp denote the total load on each node Nj for j = 1, . . . , N . Set k = 0. While

(3.4) holds and k < P , repeat the following procedure:

1. Let I =
⌊∑N

j=1 T
j/N

⌋
be the ideal node load. We would like all node loads to be as

close as possible to the ideal node load I.
2. Let T jmin and T jmax be the smallest and largest node loads, present on the nodes Njmin

and Njmax respectively. Calculate I − T jmin as the node load we need to add to node
Njmin so that it has ideal node load.

3. Let Spmin and Spmax be the smallest and largest processor loads on nodes Njmin and
Njmax respectively. Ideally, we would like to take I−T jmin subproblems from processor
pmax and distribute them evenly across all processors in node Njmin. However, this
may deplete processor pmax so we lower the amount we take by Spmin and do not take

Branching and bounding improvements for global optimization 25

more than [Spmax/3], where [·] denotes rounding to the nearest integer. This gives the
actual amount A to take from pmax as

A =

max{I − T jmin − Spmin , 0} if less than [Spmax/3] ,
[Spmax/3] otherwise.

4. If A > 0 and any previous send has reached its destination, instruct processor pmax to
asynchronously send [A/|Njmin|] subproblems to each of the processors on node Njmin.

5. Update snapshots: add [A/|Njmin|] to Sp for all processors p in node Njmin and sub-
tract A from Spmax so that the previously smallest node load increases by A and the
previously largest node load decreases by A.

6. Recompute the total node load T j = ∑
p∈Nj

Sp on each node Nj for j = 1, . . . , N .
7. Set k = k + 1.

In order to get an idea of how the load on a processor core varies throughout the
computation, we have included in Appendix B diagrams of the load on an arbitrarily chosen
processor for RBF approximations to biggsc4, ex2_1_4 and brownden with average, poor
and excellent speedup, respectively. Each figure depicts the load against time on processor
core no. 12 for the task parallel algorithm, Algorithm 3.2, running on 24, 36, 48 and 60
processor cores. One can see from the figures that while the load is somewhat erratic at
times, in general the problems with better speedup (biggsc4 and brownden) have a load
that is better balanced. It should be noted that good load balancing is very difficult to
obtain for task parallel branch and bound algorithms because entire sub-trees within the
branch and bound tree regularly disappear as they become fathomed, i.e. can no longer
contain the global minimum as they have a lower bound greater than the smallest upper
bound. This requires large transfers of data to smooth out the sudden load imbalance,
which the communication hardware struggles to cope with.

3.3 Numerical Results
We will now test the parallel performance of our data parallel and task parallel algorithms,
namely Algorithm 3.1 and Algorithm 3.2, respectively, on the random polynomials and
RBFs from Section 2.3 along with RBF approximations to a selection of problems from
the COCONUT benchmark (Shcherbina, Neumaier, Sam-Haroud, Vu and Nguyen, 2003).
We will also run the serial code, namely Algorithm 3.1 on one processor core, so that we can
compare the parallel performance against the serial. In order to do this we will calculate
the speedup of the parallel algorithm on p processor cores over the serial, Sp, defined as

Sp = T1

Tp
(3.5)

where T1 is the runtime of the serial algorithm and Tp the runtime of the parallel algorithm
on p processors. The hardware used is part of the ECDF Eddie cluster where each node
consists of two six-core 2.4GHz Intel Xeon E5645 processors with 2GB of RAM per core
and the nodes communicate via Gigabit Ethernet.

26 C. Cartis, J. M. Fowkes and N. I. M. Gould

3.3.1 Random Polynomials and RBFs

Let us begin by looking at the parallel performance of our data and task parallel algorithms
on the random polynomials and RBFs from Section 2.3. To this end, we will run a parallel
Python-based MPI implementation of both Algorithm 3.1 and Algorithm 3.2 with one-at-a-
time hashing to an absolute tolerance of 10−6, i.e. we set ε = 10−6 in step 1 of Algorithm 3.1
and in step 2a of Algorithm 3.2. As the first two series of problems described in Section 2.3
are very fast to solve in serial, there is little to be gained from running them in parallel
and we will therefore focus on series three only. We will test the same ten realisations of
series three from Section 2.3 in both serial and parallel for 12, 24, 36, 48 and 60 processor
cores. Based upon the results of Section 2.3 we will use cubic underestimators (2.12) with
the second order tensor Gershgorin estimation approach given in (2.15) for the random
polynomials and the second order tensor norm approach given in (2.16) for the random
RBFs.

Let us first consider the parallel performance of our data parallel algorithm, Algorithm 3.1.
In the left-hand side of Figure 3.1 we can see the average speedup with confidence intervals

1 12 24 36 48 60
0

10

20

30

40

50

60

No. of Processors

S
p
e
e
d
u
p

Data Parallel

Linear

Polynomial

Poly. +/−1 StdDev

RBF

RBF +/−1 StdDev

1 12 24 36 48 60
0

10

20

30

40

50

60

No. of Processors

S
p
e
e
d
u
p

Task Parallel

Linear

Polynomial

Poly. +/−1 StdDev

RBF

RBF +/−1 StdDev

Figure 3.1: Average speedup (3.5) with confidence intervals for Algorithm 3.1 (Data Paral-
lel, left) and Algorithm 3.2 (Task Parallel, right) over random polynomial and RBF series
3.

for Algorithm 3.1 over random polynomial and RBF series three as the number of pro-
cessor cores is increased. We can see that we get rather poor sublinear speedup for both
with a maximum of 17 times average speedup for the random polynomials and 24 times
average speedup for the random RBFs on 60 processor cores. The reason for the better
performance of the random polynomials is that calculating the elementwise lower and up-
per bounds is more demanding as it uses a more sophisticated interval arithmetic approach

Branching and bounding improvements for global optimization 27

(see Section 6.2 of Fowkes et al., 2012, for details) and therefore the worker processors are
better utilised.

Let us now look at the performance of our task parallel algorithm, Algorithm 3.2 with
one-at-a-time hashing. We have found that one-at-a-time hashing significantly outperforms
synchronised hashing for both random polynomials and RBFs because the subproblems are
inexpensive to solve relative to the cost of communicating the hashes. We can immediately
see from the right-hand side of Figure 3.1 that our task parallel algorithm performs signific-
antly better than the data parallel algorithm. Random RBFs exhibit the best performance
with superlinear speedup until 48 processor cores with a maximum of 55 times average
speedup before levelling off. Random polynomials do not perform as well with superlinear
speedup until 24 processor cores with a maximum of 36 times average speedup before dip-
ping slightly, nonetheless the performance is still much better than that achieved with the
data parallel algorithm. The poorer performance of the random polynomial problems is due
to the fact that they are very quick to solve, taking only around four hundred seconds on
12 processor cores (see Table A.2), which coupled with the fact that the subproblems them-
selves are fast to solve, leaves little scope for improvement by adding additional processor
cores.

3.3.2 COCONUT Benchmark

For a more thorough numerical evaluation we will test the parallel performance of our data
parallel and task parallel algorithms on radial basis function approximations to a selection
of 31 problems11 from the COCONUT benchmark whose dimension varies from 4 to 6 (see
Shcherbina et al., 2003, for details of the benchmark). Table A.3 in Appendix A gives a
brief overview of the test functions we have approximated. We chose to approximate the
COCONUT problems using RBFs as they enable us to calculate the tensor bounds (2.14)
used in the estimation approach for the lower bound (3.1) efficiently using a more accurate
interval arithmetic type approach (see Section 6.2 of Fowkes et al., 2012). As before, we
will use cubic underestimators (2.12) with the second order tensor norm approach given
in (2.16).

The RBF approximations are fitted to a maximin Latin Hypercube sample of 10n
scattered sample points in Rn and use the cubic spline objective function we have previously
used for the random RBFs in (2.19) with a weighted norm (see Chapters 3 and 4 of Fowkes,
2012, for details). Once again, we will run a parallel Python-based MPI implementation
of both Algorithm 3.1 and Algorithm 3.2 but this time with synchronous hashing. This is
because we have found that synchronous hashing leads to significantly better performance
for our approximation to the COCONUT benchmark since in general the subproblems are
expensive to bound relative to the cost of communicating the hashes. So that we can test
both easier and harder problems we will run each problem to the absolute tolerance it
achieved in 12 hours on the serial code. We will test all 31 problems in both serial and

11Note that the majority of problems in the COCONUT benchmark have nonlinear constraints that our
algorithms cannot handle at present. This rather limited the number of problems we could actually test.

28 C. Cartis, J. M. Fowkes and N. I. M. Gould

parallel for 12, 24, 36, 48 and 60 processor cores. We will use the tensor norm approach
given Theorem 2.6 (2.16) as we have shown in Section 2.3 that it performs better for RBF
approximations.

As before, let us start by looking at the performance of our data parallel algorithm,
Algorithm 3.1, on our approximation to the COCONUT benchmark. In the left-hand side of

1 12 24 36 48 60
0

10

20

30

40

50

60

No. of Processors

S
p
e
e
d
u
p

Data Parallel

Linear

Coconut

+/−1 StdDev

1 12 24 36 48 60
0

10

20

30

40

50

60

70

80

90

100

No. of Processors

S
p
e
e
d
u
p

Task Parallel

Linear

Coconut

+/−1 StdDev

Figure 3.2: Average speedup (3.5) with confidence intervals for Algorithm 3.1 (Data Par-
allel, left) and Algorithm 3.2 (Task Parallel, right) over RBF approximations to selected
functions from the COCONUT test set.

Figure 3.2 we can see that the performance is in fact very poor with an average speedup of
around three times all the way through from 12 to 60 processors. This is very disappointing
but not unexpected as bounding subproblems is not where the majority of the work in the
algorithm takes place but it is in exploring the branch and bound tree.

Looking at the performance of our task parallel algorithm, Algorithm 3.2 with synchron-
ous hashing in the right-hand side of Figure 3.2, we can see significantly better speedup.
In fact, we are able to achieve superlinear speedup on average up to 36 processor cores,
past which the speedup continues to increase, albeit remaining slightly sublinear, up to a
maximum of 52 times average speedup.

In conclusion, we can clearly see from the numerical results that a task parallel ap-
proach leads to a very efficient parallel algorithm on average which exhibits good speedup.
The data parallel algorithm on the other hand performs rather poorly, especially on our
approximation to the COCONUT test set. This is due to the fact that the subproblem
bounding which is parallelised in the data parallel algorithm does not account for major-
ity of the computational work in exploring the branch and bound tree. Overall, we have
shown that it is indeed possible to devise an efficient parallel overlapping branch and bound
algorithm albeit after overcoming some underlying difficulties.

Branching and bounding improvements for global optimization 29

4 Conclusions

We have presented branching and bounding improvements for global optimization al-
gorithms with Lipschitz continuity properties and implemented our findings by improving a
recent serial branch and bound algorithm presented in Fowkes et al. (2012). We have shown
that it is possible to significantly improve upon the bounding strategies used in Lipschitz
based global optimization algorithms by drawing upon a variety of both existing and novel
bounds. Our numerical results indicate that no single bound is optimal across all types of
objective function, although our novel second order bounds exhibit the best performance in
general. As these bounds are inexpensive to calculate for small to medium-scale problems
compared with the cost of the rest of the algorithm it is feasible to implement all of them in
a branch and bound algorithm and adaptively choose the best bound at runtime. Clearly,
the latter would be the best way to maximise the efficiency of Lipschitz based branch and
bound algorithms.

Our second avenue of investigation considered improving the branching used in a
Lipschitz based global optimization algorithm through the use of parallelism. We invest-
igated two standard parallel programming paradigms, namely data parallelism and task
parallelism. We found that our data parallel approach which focused on parallelising the
bounding operations within the algorithm performed poorly. However, our task parallel
approach which focused on parallelising the branch and bound tree itself and proved to be
a real challenge to realise, proved very successful once implemented and exhibited excellent
average speedup on a large number of varied test problems. Our use of hashing within the
task parallel algorithm was essential to obtaining good performance and we identified two
main strategies for processing the hashes, namely one-at-a-time and synchronous hash-
ing. Once again, adaptively choosing between these two strategies in the algorithm would
maximise its efficiency over a large variety of problems.

A critical challenge remains: scaling up the problem dimension so that we can solve
problems of greater practical interest. Scaling up the code to larger parallel machines seems
like an immediate solution but may not yield results as good as one might expect due to
the increased communication overhead this would bring. In the context of our approach, a
better remedy perhaps lies in finding more efficient coverings that would still allow us to
use non-convex bounding procedures within the algorithm.

Acknowledgements

The work of the first and second authors was supported by EPSRC grants EP/I028854/1
and NAIS EP/G036136/1 and the work of the third author by EP/I013067/1. We are also
grateful to NAIS for funding computing time.

30 C. Cartis, J. M. Fowkes and N. I. M. Gould

Bibliography
Conn, A. R., Gould, N. I. M. and Toint, P. L. (2000) Trust Region Methods. MPS-SIAM

Series on Optimization. SIAM. ISBN 978-0-89871-460-9. http://books.google.co.uk/books?
id=5kNC4fqssYQC.

Crainic, T. G., Le Cun, B. and Roucairol, C. (2006) ‘Parallel Branch-and-Bound Algorithms’. In
Talbi, E. (ed.) Parallel Combinatorial Optimization, Wiley Series on Parallel And Distributed
Computing. Wiley. ISBN 978-0-471-72101-7, pp. 1–28. http://books.google.co.uk/books?id=
rYtuk_sm23UC.

Dolan, E. D. and Moré, J. J. (2002) ‘Benchmarking Optimization Software with Perform-
ance Profiles’. Mathematical Programming, vol. 91, pp. 201–213. http://dx.doi.org/10.1007/
s101070100263.

Evtushenko, Y. and Posypkin, M. (2012) ‘A Deterministic Approach to Global Box-constrained
Optimization’. Optimization Letters, pp. 1–11. ISSN 1862-4472. http://dx.doi.org/10.1007/
s11590-012-0452-1.

Floudas, C. (1999) Deterministic Global Optimization: Theory, Methods and Applications. Non-
convex Optimization and Its Applications. Springer. ISBN 978-0-7923-6014-8. http://books.
google.co.uk/books?id=qZSpq27TsOcC.

Fowkes, J. M. (2012) Bayesian Numerical Analysis: Global Optimization and Other Applications.
Ph.D. thesis, Mathematical Institute, University of Oxford. http://ora.ox.ac.uk/objects/uuid:
ab268fe7-f757-459e-b1fe-a4a9083c1cba.

Fowkes, J. M., Gould, N. I. M. and Farmer, C. L. (2012) ‘A Branch and Bound Algorithm
for the Global Optimization of Hessian Lipschitz Continuous Functions’. Journal of Global
Optimization, pp. 1–25. ISSN 0925-5001. http://dx.doi.org/10.1007/s10898-012-9937-9.

Gendron, B. and Crainic, T. G. (1994) ‘Parallel Branch-and-Bound Algorithms: Survey and
Synthesis’. Operations Research, vol. 42, no. 6, pp. 1042–1066. http://dx.doi.org/10.1287/
opre.42.6.1042.

Knuth, D. (1998) The Art of Computer Programming: Sorting and Searching, The Art of Com-
puter Programming, vol. 3. Addison-Wesley. ISBN 978-0-201-89685-5. http://books.google.co.
uk/books?id=ePzuAAAAMAAJ.

Kolda, T. and Mayo, J. (2011) ‘Shifted Power Method for Computing Tensor Eigenpairs’. SIAM
Journal on Matrix Analysis and Applications, vol. 32, no. 4, pp. 1095–1124. http://dx.doi.org/
10.1137/100801482.

Kreinovich, V. and Kearfott, R. (2005) ‘Beyond Convex? Global Optimization is Feasible Only
for Convex Objective Functions: A Theorem’. Journal of Global Optimization, vol. 33, pp.
617–624. http://dx.doi.org/10.1007/s10898-004-2120-1.

http://books.google.co.uk/books?id=5kNC4fqssYQC
http://books.google.co.uk/books?id=5kNC4fqssYQC
http://books.google.co.uk/books?id=rYtuk_sm23UC
http://books.google.co.uk/books?id=rYtuk_sm23UC
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s101070100263
http://dx.doi.org/10.1007/s11590-012-0452-1
http://dx.doi.org/10.1007/s11590-012-0452-1
http://books.google.co.uk/books?id=qZSpq27TsOcC
http://books.google.co.uk/books?id=qZSpq27TsOcC
http://ora.ox.ac.uk/objects/uuid:ab268fe7-f757-459e-b1fe-a4a9083c1cba
http://ora.ox.ac.uk/objects/uuid:ab268fe7-f757-459e-b1fe-a4a9083c1cba
http://dx.doi.org/10.1007/s10898-012-9937-9
http://dx.doi.org/10.1287/opre.42.6.1042
http://dx.doi.org/10.1287/opre.42.6.1042
http://books.google.co.uk/books?id=ePzuAAAAMAAJ
http://books.google.co.uk/books?id=ePzuAAAAMAAJ
http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1137/100801482
http://dx.doi.org/10.1007/s10898-004-2120-1

Branching and bounding improvements for global optimization 31

Lim, L.-H. (2005) ‘Singular Values and Eigenvalues of Tensors: A Variational Approach’. In
Computational Advances in Multi-Sensor Adaptive Processing, 2005 1st IEEE International
Workshop on. pp. 129 –132. http://dx.doi.org/10.1109/CAMAP.2005.1574201.

Neumaier, A. (2004) ‘Complete Search in Continuous Global Optimization and Constraint Satis-
faction’. Acta Numerica, vol. 13, pp. 271–369. http://dx.doi.org/10.1017/S0962492904000194.

Pardalos, P. M., Horst, R. and Thoai, N. V. (1995) Introduction To Global Optimization,
Nonconvex Optimization and its Applications, vol. 3. Springer. ISBN 978-0-7923-3556-6.
http://www.springer.com/mathematics/book/978-0-7923-3556-6.

Paulavičius, R., Žilinskas, J. and Grothey, A. (2011) ‘Parallel Branch and Bound for Global
Optimization with Combination of Lipschitz Bounds’. Optimization Methods and Software,
vol. 26, no. 3, pp. 487–498. http://dx.doi.org/10.1080/10556788.2010.551537.

Pinter, J. D. (1996) Global Optimization in Action, Nonconvex Optimization and its Applications,
vol. 6. Springer. ISBN 978-0-7923-3757-7. http://www.springer.com/mathematics/book/
978-0-7923-3757-7.

Qi, L. (2005) ‘Eigenvalues of a Real Supersymmetric Tensor’. Journal of Symbolic Computation,
vol. 40, no. 6, pp. 1302 – 1324. ISSN 0747-7171. http://dx.doi.org/10.1016/j.jsc.2005.05.007.
http://www.sciencedirect.com/science/article/pii/S0747717105000817.

Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H. and Nguyen, T.-V. (2003) ‘Benchmark-
ing Global Optimization and Constraint Satisfaction Codes’. In Bliek, C., Jermann, C. and
Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction, Lecture Notes in Com-
puter Science, vol. 2861. Springer Berlin Heidelberg. ISBN 978-3-540-20463-3, pp. 211–222.
http://dx.doi.org/10.1007/978-3-540-39901-8_16.

Stephens, C. P. and Baritompa, W. (1998) ‘Global Optimization Requires Global Information’.
Journal of Optimization Theory and Applications, vol. 96, no. 3, pp. 575–588. http://dx.doi.
org/10.1023/A:1022612511618.

Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D. and Gross, M. (2003) ‘Optimized
Spatial Hashing for Collision Detection of Deformable Objects.’ In Proceedings of Vision,
Modeling, Visualization VMV’03. pp. 47–54.

Zhang, X., Qi, L. and Ye, Y. (2012) ‘The Cubic Spherical Optimization Problems’. Math-
ematics of Computation, vol. 81, no. 279, pp. 1513–1525. http://dx.doi.org/10.1090/
S0025-5718-2012-02577-4.

http://dx.doi.org/10.1109/CAMAP.2005.1574201
http://dx.doi.org/10.1017/S0962492904000194
http://www.springer.com/mathematics/book/978-0-7923-3556-6
http://dx.doi.org/10.1080/10556788.2010.551537
http://www.springer.com/mathematics/book/978-0-7923-3757-7
http://www.springer.com/mathematics/book/978-0-7923-3757-7
http://dx.doi.org/10.1016/j.jsc.2005.05.007
http://www.sciencedirect.com/science/article/pii/S0747717105000817
http://dx.doi.org/10.1007/978-3-540-39901-8_16
http://dx.doi.org/10.1023/A:1022612511618
http://dx.doi.org/10.1023/A:1022612511618
http://dx.doi.org/10.1090/S0025-5718-2012-02577-4
http://dx.doi.org/10.1090/S0025-5718-2012-02577-4

32 C. Cartis, J. M. Fowkes and N. I. M. Gould

A Tables of Results

Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap

Polynomial 8.23 11.93 14.30 16.65 17.33 9.67e+08 1.00e-06
RBF 9.39 14.93 18.80 22.91 24.49 4.78e+08 1.00e-06

Table A.1: Average speedup (3.5) for Algorithm 3.1 (Data Parallel) on Random Polyno-
mial and RBF series three. Also included are the average initial and final tolerances.

Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap

Polynomial 25.14 38.16 37.38 36.97 35.54 9.67e+08 1.00e-06
RBF 22.01 43.48 52.00 55.73 55.29 4.78e+08 1.00e-06

Table A.2: Average speedup (3.5) for Algorithm 3.2 (Task Parallel) on Random Polyno-
mial and RBF series three. Also included are the average initial and final tolerances.

Branching and bounding improvements for global optimization 33

Problem Objective Type Constraint Type Problem Type n m nnl

biggsc4 Quadratic Linear Academic 4 7 4
biggs5 Sum of Squares Fixed Variables Academic 6 1 5
brownden Sum of Squares Unconstrained† Academic 4 0 4
bt3 Sum of Squares Linear Academic 5 3 5
ex2_1_1 Quadratic Linear Academic 5 1 5
ex2_1_2 Quadratic Linear Academic 6 2 5
ex2_1_4 Quadratic Linear Academic 6 5 1
ex6_2_10 Other Linear Real Application 6 3 6
ex6_2_13 Other Linear Real Application 6 3 6
expfita Other Linear Academic 5 22 5
expfitb Other Linear Academic 5 102 5
expfitc Other Linear Academic 5 502 5
hatflda Sum of Squares Bound Constrained Academic 4 0 4
hatfldb Sum of Squares Bound Constrained Academic 4 1 4
hatfldc Sum of Squares Bound Constrained Academic 4 3 4
hatfldh Quadratic Linear Academic 4 7 4
hong Other Linear Academic 4 1 4
hs038 Other Bound Constrained Academic 4 0 4
hs041 Other Linear Academic 4 5 3
hs045 Other Bound Constrained Academic 5 0 5
hs048 Sum of Squares Linear Academic 5 2 5
hs049 Other Linear Academic 5 2 5
hs051 Quadratic Linear Academic 5 3 5
hs052 Quadratic Linear Academic 5 3 5
hs053 Quadratic Linear Academic 5 3 5
hs054 Other Linear Academic 6 1 6
hs055 Other Linear Academic 6 6 2
hs086 Other Linear Academic 5 10 5
hs268 Quadratic Linear Academic 5 5 5
kowosb Sum of Squares Unconstrained† Modelling 4 0 4
lsnnodoc Other Linear Network Academic 5 4 5

Table A.3: Selected problems from the COCONUT test set with summary statistics: n -
number of variables; m - number of constraints; nnl - number of nonlinear variables. †Note
that we have imposed suitable bounds on these problems so that we can test them using our
algorithms.

34 C. Cartis, J. M. Fowkes and N. I. M. Gould

Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap ‖xp − x∗‖

biggsc4 1.96 2.20 2.07 2.20 2.18 2.25e+03 1.63e-02 6.22e-04
biggs5 1.40 1.30 1.35 1.32 1.33 3.26e+07 3.33e+05 1.30e+02
brownden 1.67 1.63 1.68 1.69 1.69 1.56e+12 1.02e+09 3.46e+01
bt3 1.58 1.67 1.61 1.74 1.64 3.56e+04 7.69e-02 5.49e-02
ex2_1_1 1.62 1.57 1.64 1.64 1.68 6.27e+03 5.89e+01 1.41e+00
ex2_1_2 4.19 4.79 5.03 5.31 5.26 4.07e+05 5.31e+01 0.00e+00
ex2_1_4 1.43 1.40 1.51 1.43 1.45 9.94e+04 1.17e+02 3.99e-01
ex6_2_10 1.50 1.41 1.40 1.41 1.42 5.06e+02 6.38e+00 4.80e-02
ex6_2_13 1.26 1.29 1.28 1.32 1.37 9.14e+02 1.60e+00 2.50e-01
expfita 2.83 3.23 3.28 3.35 3.52 9.52e+06 8.14e+03 1.61e+01
expfitb 1.22 1.22 1.19 1.23 1.23 2.07e+09 2.09e+06 2.76e+01
expfitc 1.21 1.18 1.24 1.24 1.24 2.60e+11 3.24e+08 1.49e+01
hatflda 4.93 6.04 6.37 6.67 6.76 4.60e+03 1.52e-01 1.68e+00
hatfldb 2.23 2.42 2.47 2.62 2.59 5.74e+03 7.75e-01 1.22e+00
hatfldc 2.18 2.11 2.27 2.24 2.20 4.40e+06 1.11e+03 4.36e+00
hatfldh 2.07 2.17 2.14 2.17 2.12 2.25e+03 1.62e-02 6.22e-04
hong 8.38 9.77 10.02 11.05 10.71 1.01e+06 1.17e-04 2.00e-01
hs038 1.40 1.40 1.47 1.43 1.46 2.43e+09 1.79e+06 1.32e+01
hs041 1.40 1.46 1.45 1.43 1.40 2.20e+02 7.93e-03 1.47e-02
hs045 1.32 1.40 1.36 1.39 1.31 1.13e+03 1.52e+01 1.25e-02
hs048 5.10 6.49 7.23 7.31 7.60 2.40e+04 2.88e-02 2.70e-01
hs049 1.20 1.13 1.17 1.14 1.23 8.95e+08 3.92e+05 7.45e+00
hs051 2.32 2.51 2.49 2.39 2.44 3.56e+04 3.30e-03 1.43e-01
hs052 1.87 1.96 1.97 1.93 1.88 2.36e+05 9.40e-02 4.49e-01
hs053 1.73 1.83 1.91 1.92 1.87 1.44e+05 7.83e-02 3.68e-02
hs054 2.51 2.74 2.83 2.80 3.02 1.13e+05 1.33e+01 7.07e-01
hs055 1.87 1.80 1.95 1.96 1.87 3.24e+04 1.16e-01 4.24e-06
hs086 4.39 5.19 5.45 5.49 5.14 3.46e+05 1.50e-01 3.92e-01
hs268 1.43 1.42 1.48 1.49 1.51 5.84e+08 5.46e+05 5.61e+00
kowosb 3.13 3.49 3.71 3.63 3.76 9.99e+07 5.39e+04 9.13e+00
lsnnodoc 1.29 1.37 1.30 1.39 1.28 1.78e+08 1.89e+04 1.44e+00

Table A.4: Speedup (3.5) for Algorithm 3.1 (Data Parallel) on RBF approximations to
selected problems from the COCONUT test set. Also included are the initial tolerance, final
tolerance and the distance of the obtained RBF solution to the best known solution for the
original problem. All problems were run to the absolute tolerance they achieved in 12 hours
on the serial code.

Branching and bounding improvements for global optimization 35

Function 12 pr. 24 pr. 36 pr. 48 pr. 60 pr. Initial Gap Final Gap ‖xp − x∗‖

biggsc4 21.56 36.69 46.10 52.46 53.88 2.25e+03 1.63e-02 6.22e-04
biggs5 11.53 21.22 25.69 30.82 32.79 3.26e+07 3.33e+05 1.30e+02
brownden 24.91 47.94 65.61 78.69 88.87 1.56e+12 1.02e+09 3.46e+01
bt3 15.41 22.54 27.28 29.75 31.59 3.56e+04 7.69e-02 5.49e-02
ex2_1_1 17.58 23.23 24.12 26.06 26.20 6.27e+03 5.89e+01 1.41e+00
ex2_1_2 13.87 19.27 20.21 23.23 24.45 4.07e+05 5.31e+01 0.00e+00
ex2_1_4 8.52 12.51 15.84 15.18 17.02 9.94e+04 1.17e+02 3.99e-01
ex6_2_10 12.69 17.93 21.55 20.19 21.59 5.06e+02 6.38e+00 4.80e-02
ex6_2_13 11.10 14.06 15.21 15.77 17.38 9.14e+02 1.60e+00 2.50e-01
expfita 15.16 24.12 29.68 33.03 36.90 9.52e+06 8.14e+03 1.61e+01
expfitb 14.27 24.18 28.58 34.35 33.77 2.07e+09 2.09e+06 2.76e+01
expfitc 12.95 22.33 27.63 31.91 34.63 2.60e+11 3.24e+08 1.49e+01
hatflda 24.62 47.01 60.92 74.38 83.00 4.60e+03 1.52e-01 1.68e+00
hatfldb 39.05 73.73 95.85 108.16 137.10 5.74e+03 7.75e-01 1.22e+00
hatfldc 17.84 31.74 41.63 47.93 51.83 4.40e+06 1.11e+03 4.36e+00
hatfldh 20.86 36.30 45.91 54.21 56.37 2.25e+03 1.62e-02 6.22e-04
hong 17.88 31.82 40.81 48.55 50.59 1.01e+06 1.17e-04 2.00e-01
hs038 24.19 44.38 59.98 71.19 79.05 2.43e+09 1.79e+06 1.32e+01
hs041 72.57 123.27 155.45 159.58 206.15 2.20e+02 7.93e-03 1.47e-02
hs045 15.66 29.06 33.67 40.41 49.38 1.13e+03 1.52e+01 1.25e-02
hs048 12.00 19.76 25.96 29.37 32.83 2.40e+04 2.88e-02 2.70e-01
hs049 12.08 16.10 17.72 17.49 18.37 8.95e+08 3.92e+05 7.45e+00
hs051 19.64 31.01 38.03 40.68 45.44 3.56e+04 3.30e-03 1.43e-01
hs052 14.03 22.08 25.27 28.21 29.60 2.36e+05 9.40e-02 4.49e-01
hs053 16.90 25.65 30.56 32.43 35.52 1.44e+05 7.83e-02 3.68e-02
hs054 13.26 17.26 20.95 23.66 23.73 1.13e+05 1.33e+01 7.07e-01
hs055 45.09 60.30 61.25 63.20 61.10 3.24e+04 1.16e-01 4.24e-06
hs086 12.81 20.67 25.18 30.05 32.14 3.46e+05 1.50e-01 3.92e-01
hs268 10.86 18.42 22.81 24.18 28.26 5.84e+08 5.46e+05 5.61e+00
kowosb 20.53 34.97 47.75 55.27 61.99 9.99e+07 5.39e+04 9.13e+00
lsnnodoc 59.22 91.96 110.59 120.18 128.07 1.78e+08 1.89e+04 1.44e+00

Table A.5: Speedup (3.5) for Algorithm 3.2 (Task Parallel) on RBF approximations to
selected problems from the COCONUT test set. Also included are the initial tolerance, final
tolerance and the distance of the obtained RBF solution to the best known solution for the
original problem. All problems were run to the absolute tolerance they achieved in 12 hours
on the serial code.

36 C. Cartis, J. M. Fowkes and N. I. M. Gould

B Diagrams of Processor Load

0 200 400 600 800 1000 1200
Time (s)

0

50

100

150

200

250

300

S
u
b
p
ro

b
le

m
s

biggsc4 on 24 Processors, Processor Core 12

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

0

50

100

150

200

250

300

350

400

450

S
u
b
p
ro

b
le

m
s

biggsc4 on 36 Processors, Processor Core 12

0 500 1000 1500 2000 2500 3000 3500 4000
Time (s)

0

50

100

150

200

250

300

350

S
u
b
p
ro

b
le

m
s

biggsc4 on 60 Processors, Processor Core 12

0 50 100 150 200 250 300
Time (s)

0

10

20

30

40

50

60

S
u
b
p
ro

b
le

m
s

biggsc4 on 48 Processors, Processor Core 12

Figure B.1: Plots of the load against time for processor core no. 12 of the RBF approx-
imation to problem biggsc4 on, clockwise from top left, 24, 36, 48 and 60 processor cores.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

120

S
u
b
p
ro

b
le

m
s

ex2_1_4 on 24 Processors, Processor Core 12

0 500 1000 1500 2000 2500 3000
Time (s)

0

10

20

30

40

50

60

70

S
u
b
p
ro

b
le

m
s

ex2_1_4 on 36 Processors, Processor Core 12

0 500 1000 1500 2000 2500 3000
Time (s)

0

5

10

15

20

25

30

35

40

45

S
u
b
p
ro

b
le

m
s

ex2_1_4 on 60 Processors, Processor Core 12

0 500 1000 1500 2000 2500 3000
Time (s)

0

10

20

30

40

50

60

70

80

S
u
b
p
ro

b
le

m
s

ex2_1_4 on 48 Processors, Processor Core 12

Figure B.2: Plots of the load against time for processor core no. 12 of the RBF ap-
proximation to problem ex2_1_4 on, clockwise from top left, 24, 36, 48 and 60 processor
cores.

Branching and bounding improvements for global optimization 37

0 100 200 300 400 500 600 700 800 900
Time (s)

0

50

100

150

200

250

300

S
u
b
p
ro

b
le

m
s

brownden on 24 Processors, Processor Core 12

0 100 200 300 400 500 600 700
Time (s)

0

20

40

60

80

100

120

S
u
b
p
ro

b
le

m
s

brownden on 36 Processors, Processor Core 12

0 100 200 300 400 500
Time (s)

0

20

40

60

80

100

120

140

S
u
b
p
ro

b
le

m
s

brownden on 60 Processors, Processor Core 12

0 100 200 300 400 500 600
Time (s)

0

20

40

60

80

100

S
u
b
p
ro

b
le

m
s

brownden on 48 Processors, Processor Core 12

Figure B.3: Plots of the load against time for processor core no. 12 of the RBF ap-
proximation to problem brownden on, clockwise from top left, 24, 36, 48 and 60 processor
cores.

	RAL-P-2013-009-cover.pdf
	RAL-P-2013-009-report.pdf
	Introduction
	Improving Lipschitz lower bounds
	First order lower bounds
	Second order lower bounds
	Numerical results

	Parallelising Overlapping Branch and Bound (oBB)
	Data Parallelism: Bounds in Parallel
	Task Parallelism: Tree in Parallel
	Numerical Results

	Conclusions
	Tables of Results
	Diagrams of Processor Load

