

Sparse Communication Avoiding Pivoting

Jonathan Hogg

Jennifer Scott

STFC Rutherford Appleton Laboratory

25th Biennial Numerical Analysis Conference June 2013

Communication avoiding pivoting: why?

Now:

- ▶ K10 GPU has 16,384 threads for 1,536 "cores" (or 48 warps)
- Xeon Phi has 240 threads for 60 cores
- Typical workstation 32 threads for 16 cores

Communication avoiding pivoting: why?

Now:

- ▶ K10 GPU has 16,384 threads for 1,536 "cores" (or 48 warps)
- Xeon Phi has 240 threads for 60 cores
- Typical workstation 32 threads for 16 cores

Future:

- Exascale about 10,000,000,000 (10 billion) threads
- More, less powerful, lower clocked cores
- Multiple threads per core to hide latencies

Communication avoiding pivoting: why?

Now:

- ▶ K10 GPU has 16,384 threads for 1,536 "cores" (or 48 warps)
- Xeon Phi has 240 threads for 60 cores
- Typical workstation 32 threads for 16 cores

Future:

- Exascale about 10,000,000,000 (10 billion) threads
- More, less powerful, lower clocked cores
- Multiple threads per core to hide latencies

More cores = More communication

Communication isn't getting (that much) faster

Sparse direct solvers

Solve:

$$Ax = b$$

Where A is

- Large
- Sparse

and for this talk

Symmetric

Using the factorization

 $A = LDL^T$

LDL^{T} factorization

Work by blocks:

► Factorize dense blocks on diagonal using dense algorithm $A_{jj} = L_{jj} D_{jj} L_{jj}^T$

- "Divide" remainder of column by diagonal block $L_{ij} = A_{ij}L_{ij}^{-T}$
- Update matrix to right as $A_{ik} = A_{ik} L_{ij} D_{jj} L_{kj}^{T}$

Threshold Partial Pivoting

For backwards stability:

- Sufficient to bound entries of L
- Threshold test such that $L_{ij} = A_{ij}L_{jj}^{-T}$ yields $I_{ij} \le u^{-1}$
- Need to consider whole column

Threshold Partial Pivoting

For backwards stability:

- Sufficient to bound entries of L
- Threshold test such that $L_{ij} = A_{ij}L_{jj}^{-T}$ yields $I_{ij} \le u^{-1}$
- Need to consider whole column
- 1×1 pivot test

 $|a_{jj}| \ge u\max_{i>j} |a_{ij}|$

Threshold Partial Pivoting

For backwards stability:

- Sufficient to bound entries of L
- Threshold test such that $L_{ij} = A_{ij}L_{ij}^{-T}$ yields $I_{ij} \le u^{-1}$
- Need to consider whole column
- 1×1 pivot test

 $|a_{jj}| \geq u \max_{i>j} |a_{ij}|$

 $\mathbf{2}\times\mathbf{2}$ pivot test

 $\left| \begin{pmatrix} a_{jj} & a_{j(j+1)} \\ a_{j(j+1)} & a_{(j+1)(j+1)} \end{pmatrix}^{-1} \right| \begin{pmatrix} \max_{i>j+1} |a_{ij}| \\ \max_{i>j+1} |a_{i(j+1)}| \end{pmatrix} \leq \begin{pmatrix} u^{-1} \\ u^{-1} \end{pmatrix}$

Various a priori treatments to reduce/eliminate need for pivoting:

Scaling. "Normalize" entries of A

- ► Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵI

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵI
- Use as preconditioner e.g. iterative refinement

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵI
- Use as preconditioner e.g. iterative refinement

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵI
- Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵI
- Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

Parallel decomposition

Apply 2D data decomposition

Parallel decomposition

- Apply 2D data decomposition
- Update step parallelizes nicely as per _gemm

Parallel decomposition

- Apply 2D data decomposition
- Update step parallelizes nicely as per _gemm
- For pivoting equivalent to 1D on tall skinny matrix

Parallel Variants

Various options:

- Restricted pivoting: only pivot within diagonal block
- Assume all pivots are valid, check L maxima a posteriori
- Traditional TPP

n

р

Parallel Variants

Various options:

- Restricted pivoting: only pivot within diagonal block
- Assume all pivots are valid, check L maxima a posteriori
- Traditional TPP
- Parallel variant TPP:
 - **Either** one thread owns the diagonal block
 - or each thread has its own copy of diagonal block
 - Regardless, needs a reduction for every pivot
 - ▶ O(p log n) messages

n

р

Instead:

- Compress information into small matrix
- Determine pivot order

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum $|a_{ij}|$

Partitioned rows

Strict Compressed Pivoting

- 1. Partition rows into sets by column of maximum $|a_{ij}|$
- 2. Represent each set by single row: take maximum $|a_{ij}|$

Partitioned rows

Compressed matrix

Strict Compressed Pivoting

- 1. Partition rows into sets by column of maximum $|a_{ij}|$
- 2. Represent each set by single row: take maximum $|a_{ij}|$
- 3. Update using a "worst-case" formula

Compressed matrix

Partitioned rows

- Provably backwards stable
- Sometimes too pessimistic

Relaxed example

- 1. For each column, pick a "representative" row: largest $|a_{ij}|$
- 2. Apply standard threshold partial pivoting.

Partitioned rows

Relaxed example

- 1. For each column, pick a "representative" row: largest $|a_{ij}|$
- 2. Apply standard threshold partial pivoting.

Partitioned rows

Compressed matrix

Relaxed example

- 1. For each column, pick a "representative" row: largest $|a_{ij}|$
- 2. Apply standard threshold partial pivoting.

Compressed matrix

Partitioned rows

- Not backwards stable!
- Stable in practice (see results)

Results: numerical stability

Results: numerical stability

Results: speed p = 512

Results: speed n = 100000

Conclusions

Summary

- ► CPU compressed pivoting 2+ times faster on large problems
- Restricted pivoting not good enough for all problems
- Strict compressed pivoting guarantees backwards stability
- Relaxed compressed pivoting works well and cheaper in practice

Conclusions

Summary

- ► CPU compressed pivoting 2+ times faster on large problems
- Restricted pivoting not good enough for all problems
- Strict compressed pivoting guarantees backwards stability
- Relaxed compressed pivoting works well and cheaper in practice

New-style solver

- Factorize without pivoting and check L
- If too large, roll-back factorization and...
- ...use compressed pivoting to minimize communication

Conclusions

Summary

- ► CPU compressed pivoting 2+ times faster on large problems
- Restricted pivoting not good enough for all problems
- Strict compressed pivoting guarantees backwards stability
- Relaxed compressed pivoting works well and cheaper in practice

New-style solver

- Factorize without pivoting and check L
- If too large, roll-back factorization and...
- ...use compressed pivoting to minimize communication

Now do it on a GPU!

Thank you!

Stability

- What if diagonal block is singular?
- What if off-diagonal entries much larger than diagonal entries?

Then factorization is not backwards stable

