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Communication avoiding pivoting: why?

Now:

I K10 GPU has 16,384 threads for 1,536 “cores” (or 48 warps)

I Xeon Phi has 240 threads for 60 cores

I Typical workstation 32 threads for 16 cores

Future:

I Exascale about 10,000,000,000 (10 billion) threads

I More, less powerful, lower clocked cores

I Multiple threads per core to hide latencies

More cores = More communication

Communication isn’t getting (that much) faster
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Sparse direct solvers

Solve:
Ax = b

Where A is

I Large

I Sparse

and for this talk

I Symmetric

Using the factorization
A = LDLT
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LDLT factorization
Work by blocks:

I Factorize dense blocks on diagonal using dense algorithm
Ajj = LjjDjjL

T
jj

I “Divide” remainder of column by diagonal block Lij = AijL
−T
jj

I Update matrix to right as Aik = Aik − LijDjjLkj
T

i

j

j

k
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Threshold Partial Pivoting
For backwards stability:

I Sufficient to bound entries of L
I Threshold test such that Lij = AijL

−T
jj yields lij ≤ u−1

I Need to consider whole column

1× 1 pivot test
|ajj | ≥ umax

i>j
|aij |

2× 2 pivot test∣∣∣∣( ajj aj(j+1)

aj(j+1) a(j+1)(j+1)

)
−1

∣∣∣∣ ( maxi>j+1 |aij |
maxi>j+1 |ai(j+1)|

)
≤
(

u−1

u−1

)
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Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!
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Parallel decomposition

I Apply 2D data decomposition

I Update step parallelizes nicely as per gemm

I For pivoting equivalent to 1D on tall skinny matrix
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Parallel Variants

n

p

Various options:

I Restricted pivoting: only pivot within diagonal block

I Assume all pivots are valid, check L maxima a posteriori

I Traditional TPP

Parallel variant TPP:

I Either one thread owns the diagonal block

I or each thread has its own copy of diagonal block

I Regardless, needs a reduction for every pivot

I O(p log n) messages
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Compressed pivoting

n

p

2p

p

Instead:

I Compress information into small matrix

I Determine pivot order

I Execute pivoting

I O(log n) messages rather than O(p log n)

?
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Strict Compressed Pivoting

1. Partition rows into sets by column of maximum |aij |

2. Represent each set by single row: take maximum |aij |
3. Update using a “worst-case” formula

12 10 10

2 3 4

10 −3

4 −5 4

−6 8




Partitioned rows

12 10 10

4 10 4

2 6 8




Compressed matrix

I Provably backwards stable

I Sometimes too pessimistic
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Relaxed example

1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.

12 10 10

2 3 4

10 −3

4 −5 4

−6 8




Partitioned rows

12 10 10

10 −3

−6 8




Compressed matrix

I Not backwards stable!

I Stable in practice (see results)
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Results: numerical stability
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25 difficult
problems

I Strict and
TPP always
good

I Relaxed
better than
restricted

I Matching-
based
ordering helps
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Results: delays
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13 / 17



Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Results: speed p = 512
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Results: speed n = 100000
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Conclusions

Summary
I CPU compressed pivoting 2+ times faster on large problems

I Restricted pivoting not good enough for all problems

I Strict compressed pivoting guarantees backwards stability

I Relaxed compressed pivoting works well and cheaper in
practice

New-style solver
I Factorize without pivoting and check L

I If too large, roll-back factorization and...

I ...use compressed pivoting to minimize communication

Now do it on a GPU!
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Thank you!
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Stability

i

j

j

k

I What if diagonal block is singular?

I What if off-diagonal entries much larger than diagonal
entries?

Then factorization is not backwards stable
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