Sparse Communication Avoiding Pivoting

Jonathan Hogg
Jennifer Scott
STFC Rutherford Appleton Laboratory
25th Biennial Numerical Analysis Conference June 2013

Communication avoiding pivoting: why?

Now:

- K10 GPU has 16,384 threads for 1,536 "cores" (or 48 warps)
- Xeon Phi has 240 threads for 60 cores
- Typical workstation 32 threads for 16 cores

Communication avoiding pivoting: why?

Now:

- K10 GPU has 16,384 threads for 1,536 "cores" (or 48 warps)
- Xeon Phi has 240 threads for 60 cores
- Typical workstation 32 threads for 16 cores

Future:

- Exascale about 10,000,000,000 (10 billion) threads
- More, less powerful, lower clocked cores
- Multiple threads per core to hide latencies

Communication avoiding pivoting: why?

Now:

- K10 GPU has 16,384 threads for 1,536 "cores" (or 48 warps)
- Xeon Phi has 240 threads for 60 cores
- Typical workstation 32 threads for 16 cores

Future:

- Exascale about 10,000,000,000 (10 billion) threads
- More, less powerful, lower clocked cores
- Multiple threads per core to hide latencies

More cores $=$ More communication
 Communication isn't getting (that much) faster

Sparse direct solvers

Solve:

$$
A x=b
$$

Where A is

- Large
- Sparse
and for this talk
- Symmetric

Using the factorization

$$
A=L D L^{T}
$$

$L D L^{\top}$ factorization

Work by blocks:

- Factorize dense blocks on diagonal using dense algorithm $A_{j j}=L_{j j} D_{j j} L_{j j}^{T}$
- "Divide" remainder of column by diagonal block $L_{i j}=A_{i j} L_{j j}^{-T}$
- Update matrix to right as $A_{i k}=A_{i k}-L_{i j} D_{j j} L_{k j}{ }^{T}$

Threshold Partial Pivoting

For backwards stability:

- Sufficient to bound entries of L
- Threshold test such that $L_{i j}=A_{i j} L_{j j}^{-T}$ yields $I_{i j} \leq u^{-1}$
- Need to consider whole column

Threshold Partial Pivoting

For backwards stability:

- Sufficient to bound entries of L
- Threshold test such that $L_{i j}=A_{i j} L_{j j}^{-T}$ yields $I_{i j} \leq u^{-1}$
- Need to consider whole column
1×1 pivot test

$$
\left|a_{j j}\right| \geq u \max _{i>j}\left|a_{i j}\right|
$$

Threshold Partial Pivoting

For backwards stability:

- Sufficient to bound entries of L
- Threshold test such that $L_{i j}=A_{i j} L_{j j}^{-T}$ yields $I_{i j} \leq u^{-1}$
- Need to consider whole column

1×1 pivot test

$$
\left|a_{j j}\right| \geq u \max _{i>j}\left|a_{i j}\right|
$$

2×2 pivot test

$$
\left|\left(\begin{array}{cc}
a_{j j} & a_{j(j+1)} \\
a_{j(j+1)} & a_{(j+1)(j+1)}
\end{array}\right)-1\right|\binom{\max _{i>j+1}\left|a_{i j}\right|}{\max _{i>j+1}\left|a_{i(j+1)}\right|} \leq\binom{ u^{-1}}{u^{-1}}
$$

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵ I

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵ I
- Use as preconditioner e.g. iterative refinement

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵ I
- Use as preconditioner e.g. iterative refinement

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵ I
- Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

- Scaling. "Normalize" entries of A
- Ordering. Large entries to subdiagonal
- Static pivoting. If a diagonal block is non-singular, add ϵ I
- Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

Parallel decomposition

- Apply 2D data decomposition

Parallel decomposition

- Apply 2D data decomposition
- Update step parallelizes nicely as per _gemm

Parallel decomposition

- Apply 2D data decomposition
- Update step parallelizes nicely as per _gemm
- For pivoting equivalent to 1D on tall skinny matrix

Parallel Variants

Various options:

- Restricted pivoting: only pivot within diagonal block
- Assume all pivots are valid, check L maxima a posteriori
- Traditional TPP

Parallel Variants

Various options:

- Restricted pivoting: only pivot within diagonal block
- Assume all pivots are valid, check L maxima a posteriori
- Traditional TPP

Parallel variant TPP:

- Either one thread owns the diagonal block
- or each thread has its own copy of diagonal block
- Regardless, needs a reduction for every pivot
- $O(p \log n)$ messages

Compressed pivoting

Compressed pivoting

Instead:

- Compress information into small matrix
- Determine pivot order

Compressed pivoting

Compressed pivoting

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum $\left|a_{i j}\right|$

Partitioned rows

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum $\left|a_{i j}\right|$
2. Represent each set by single row: take maximum $\left|a_{i j}\right|$

$$
\begin{aligned}
& \left(\begin{array}{|ccc|}
\begin{array}{|ccc|}
\hline 12 & 10 & 10 \\
4 & 10 & 4 \\
2 & 6 & 8 \\
\hline
\end{array}
\end{array}\right) \\
& \text { Compressed matrix }
\end{aligned}
$$

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum $\left|a_{i j}\right|$
2. Represent each set by single row: take maximum $\left|a_{i j}\right|$
3. Update using a "worst-case" formula

Compressed matrix

Partitioned rows

- Provably backwards stable
- Sometimes too pessimistic

Relaxed example

1. For each column, pick a "representative" row: largest $\left|a_{i j}\right|$
2. Apply standard threshold partial pivoting.

Partitioned rows

Relaxed example

1. For each column, pick a "representative" row: largest $\left|a_{i j}\right|$
2. Apply standard threshold partial pivoting.

Partitioned rows

Relaxed example

1. For each column, pick a "representative" row: largest $\left|a_{i j}\right|$
2. Apply standard threshold partial pivoting.

Partitioned rows

- Not backwards stable!
- Stable in practice (see results)

Results: numerical stability

Results: numerical stability

Results: delays

TPP Relaxed \longrightarrow Strict

Results: speed $p=512$

Results: speed $n=100000$

Conclusions

Summary

- CPU compressed pivoting $2+$ times faster on large problems
- Restricted pivoting not good enough for all problems
- Strict compressed pivoting guarantees backwards stability
- Relaxed compressed pivoting works well and cheaper in practice

Conclusions

Summary

- CPU compressed pivoting $2+$ times faster on large problems
- Restricted pivoting not good enough for all problems
- Strict compressed pivoting guarantees backwards stability
- Relaxed compressed pivoting works well and cheaper in practice
New-style solver
- Factorize without pivoting and check L
- If too large, roll-back factorization and...
- ...use compressed pivoting to minimize communication

Conclusions

Summary

- CPU compressed pivoting $2+$ times faster on large problems
- Restricted pivoting not good enough for all problems
- Strict compressed pivoting guarantees backwards stability
- Relaxed compressed pivoting works well and cheaper in practice
New-style solver
- Factorize without pivoting and check L
- If too large, roll-back factorization and...
- ...use compressed pivoting to minimize communication

Now do it on a GPU!

Thank you!

Stability

- What if diagonal block is singular?
- What if off-diagonal entries much larger than diagonal entries?

Then factorization is not backwards stable

