
Sparse Communication Avoiding Pivoting

Jonathan Hogg
Jennifer Scott

STFC Rutherford Appleton Laboratory

25th Biennial Numerical Analysis Conference
June 2013

1 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Communication avoiding pivoting: why?

Now:

I K10 GPU has 16,384 threads for 1,536 “cores” (or 48 warps)

I Xeon Phi has 240 threads for 60 cores

I Typical workstation 32 threads for 16 cores

Future:

I Exascale about 10,000,000,000 (10 billion) threads

I More, less powerful, lower clocked cores

I Multiple threads per core to hide latencies

More cores = More communication

Communication isn’t getting (that much) faster

2 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Communication avoiding pivoting: why?

Now:

I K10 GPU has 16,384 threads for 1,536 “cores” (or 48 warps)

I Xeon Phi has 240 threads for 60 cores

I Typical workstation 32 threads for 16 cores

Future:

I Exascale about 10,000,000,000 (10 billion) threads

I More, less powerful, lower clocked cores

I Multiple threads per core to hide latencies

More cores = More communication

Communication isn’t getting (that much) faster

2 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Communication avoiding pivoting: why?

Now:

I K10 GPU has 16,384 threads for 1,536 “cores” (or 48 warps)

I Xeon Phi has 240 threads for 60 cores

I Typical workstation 32 threads for 16 cores

Future:

I Exascale about 10,000,000,000 (10 billion) threads

I More, less powerful, lower clocked cores

I Multiple threads per core to hide latencies

More cores = More communication

Communication isn’t getting (that much) faster

2 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Sparse direct solvers

Solve:
Ax = b

Where A is

I Large

I Sparse

and for this talk

I Symmetric

Using the factorization
A = LDLT

3 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

LDLT factorization
Work by blocks:

I Factorize dense blocks on diagonal using dense algorithm
Ajj = LjjDjjL

T
jj

I “Divide” remainder of column by diagonal block Lij = AijL
−T
jj

I Update matrix to right as Aik = Aik − LijDjjLkj
T

i

j

j

k

4 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Threshold Partial Pivoting
For backwards stability:

I Sufficient to bound entries of L
I Threshold test such that Lij = AijL

−T
jj yields lij ≤ u−1

I Need to consider whole column

1× 1 pivot test
|ajj | ≥ umax

i>j
|aij |

2× 2 pivot test∣∣∣∣(ajj aj(j+1)

aj(j+1) a(j+1)(j+1)

)
−1

∣∣∣∣ (maxi>j+1 |aij |
maxi>j+1 |ai(j+1)|

)
≤
(

u−1

u−1

)

5 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Threshold Partial Pivoting
For backwards stability:

I Sufficient to bound entries of L
I Threshold test such that Lij = AijL

−T
jj yields lij ≤ u−1

I Need to consider whole column

1× 1 pivot test
|ajj | ≥ umax

i>j
|aij |

2× 2 pivot test∣∣∣∣(ajj aj(j+1)

aj(j+1) a(j+1)(j+1)

)
−1

∣∣∣∣ (maxi>j+1 |aij |
maxi>j+1 |ai(j+1)|

)
≤
(

u−1

u−1

)

5 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Threshold Partial Pivoting
For backwards stability:

I Sufficient to bound entries of L
I Threshold test such that Lij = AijL

−T
jj yields lij ≤ u−1

I Need to consider whole column

1× 1 pivot test
|ajj | ≥ umax

i>j
|aij |

2× 2 pivot test∣∣∣∣(ajj aj(j+1)

aj(j+1) a(j+1)(j+1)

)
−1

∣∣∣∣ (maxi>j+1 |aij |
maxi>j+1 |ai(j+1)|

)
≤
(

u−1

u−1

)

5 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Alternatives

Various a priori treatments to reduce/eliminate need for pivoting:

I Scaling. “Normalize” entries of A

I Ordering. Large entries to subdiagonal

I Static pivoting. If a diagonal block is non-singular, add εI

I Use as preconditioner e.g. iterative refinement

A combination of these approaches works for 95% of real matrices.

For the other 5% we need pivoting!

6 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Parallel decomposition

I Apply 2D data decomposition

I Update step parallelizes nicely as per gemm

I For pivoting equivalent to 1D on tall skinny matrix

7 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Parallel decomposition

I Apply 2D data decomposition

I Update step parallelizes nicely as per gemm

I For pivoting equivalent to 1D on tall skinny matrix

7 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Parallel decomposition

I Apply 2D data decomposition

I Update step parallelizes nicely as per gemm

I For pivoting equivalent to 1D on tall skinny matrix

7 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Parallel Variants

n

p

Various options:

I Restricted pivoting: only pivot within diagonal block

I Assume all pivots are valid, check L maxima a posteriori

I Traditional TPP

Parallel variant TPP:

I Either one thread owns the diagonal block

I or each thread has its own copy of diagonal block

I Regardless, needs a reduction for every pivot

I O(p log n) messages

8 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Parallel Variants

n

p

Various options:

I Restricted pivoting: only pivot within diagonal block

I Assume all pivots are valid, check L maxima a posteriori

I Traditional TPP

Parallel variant TPP:

I Either one thread owns the diagonal block

I or each thread has its own copy of diagonal block

I Regardless, needs a reduction for every pivot

I O(p log n) messages

8 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Compressed pivoting

n

p

2p

p

Instead:

I Compress information into small matrix

I Determine pivot order

I Execute pivoting

I O(log n) messages rather than O(p log n)

?

9 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Compressed pivoting

n

p

2p

p

Instead:

I Compress information into small matrix

I Determine pivot order

I Execute pivoting

I O(log n) messages rather than O(p log n)

?

9 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Compressed pivoting

n

p

2p

p

Instead:

I Compress information into small matrix

I Determine pivot order

I Execute pivoting

I O(log n) messages rather than O(p log n)

?

9 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Compressed pivoting

n

p

2p

p

Instead:

I Compress information into small matrix

I Determine pivot order

I Execute pivoting

I O(log n) messages rather than O(p log n)

?

9 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum |aij |

2. Represent each set by single row: take maximum |aij |
3. Update using a “worst-case” formula

12 10 10

2 3 4

10 −3

4 −5 4

−6 8

Partitioned rows

12 10 10

4 10 4

2 6 8

Compressed matrix

I Provably backwards stable

I Sometimes too pessimistic

10 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum |aij |
2. Represent each set by single row: take maximum |aij |

3. Update using a “worst-case” formula

12 10 10

2 3 4

10 −3

4 −5 4

−6 8

Partitioned rows

12 10 10

4 10 4

2 6 8

Compressed matrix

I Provably backwards stable

I Sometimes too pessimistic

10 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Strict Compressed Pivoting

1. Partition rows into sets by column of maximum |aij |
2. Represent each set by single row: take maximum |aij |
3. Update using a “worst-case” formula

12 10 10

2 3 4

10 −3

4 −5 4

−6 8

Partitioned rows

12 10 10

4 10 4

2 6 8

Compressed matrix

I Provably backwards stable

I Sometimes too pessimistic

10 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Relaxed example

1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.

12 10 10

2 3 4

10 −3

4 −5 4

−6 8

Partitioned rows

12 10 10

10 −3

−6 8

Compressed matrix

I Not backwards stable!

I Stable in practice (see results)

11 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Relaxed example

1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.

12 10 10

2 3 4

10 −3

4 −5 4

−6 8

Partitioned rows

12 10 10

10 −3

−6 8

Compressed matrix

I Not backwards stable!

I Stable in practice (see results)

11 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Relaxed example

1. For each column, pick a “representative” row: largest |aij |
2. Apply standard threshold partial pivoting.

12 10 10

2 3 4

10 −3

4 −5 4

−6 8

Partitioned rows

12 10 10

10 −3

−6 8

Compressed matrix

I Not backwards stable!

I Stable in practice (see results)

11 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Results: numerical stability

1e-20

1e-15

1e-10

1e-05

1

TSO
PF/TSO

PF
FS

b162
c1

TSO
PF/TSO

PF
FS

b39
c7

Schenk
IBM

N
A/c-64

GH
S
indef/ncvxqp1

Q
Y/case39

GH
S
indef/stokes128

GH
S
indef/cvxqp3

TSO
PF/TSO

PF
FS

b162
c3

TSO
PF/TSO

PF
FS

b39
c19

GH
S
indef/cont-201

TSO
PF/TSO

PF
FS

b162
c4

GH
S
indef/bratu3d

TSO
PF/TSO

PF
FS

b39
c30

GH
S
indef/darcy003

Schenk
IBM

N
A/c-62

TSO
PF/TSO

PF
FS

b300

TSO
PF/TSO

PF
FS

b300
c1

GH
S
indef/cont-300

GH
S
indef/ncvxqp5

GH
S
indef/turon

m

GH
S
indef/d

pretok

GH
S
indef/ncvxqp3

TSO
PF/TSO

PF
FS

b300
c2

GH
S
indef/ncvxqp7

TSO
PF/TSO

PF
FS

b300
c3

bw
d

er
r

TPP
Relaxed Compressed

Strict Compressed
Restricted

25 difficult
problems

I Strict and
TPP always
good

I Relaxed
better than
restricted

I Matching-
based
ordering helps

12 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Results: numerical stability

1e-20

1e-15

1e-10

1e-05

1

TSO
PF/TSO

PF
FS

b162
c1

TSO
PF/TSO

PF
FS

b39
c7

Schenk
IBM

N
A/c-64

GH
S
indef/ncvxqp1

Q
Y/case39

GH
S
indef/stokes128

GH
S
indef/cvxqp3

TSO
PF/TSO

PF
FS

b162
c3

TSO
PF/TSO

PF
FS

b39
c19

GH
S
indef/cont-201

TSO
PF/TSO

PF
FS

b162
c4

GH
S
indef/bratu3d

TSO
PF/TSO

PF
FS

b39
c30

GH
S
indef/darcy003

Schenk
IBM

N
A/c-62

TSO
PF/TSO

PF
FS

b300

TSO
PF/TSO

PF
FS

b300
c1

GH
S
indef/cont-300

GH
S
indef/ncvxqp5

GH
S
indef/turon

m

GH
S
indef/d

pretok

GH
S
indef/ncvxqp3

TSO
PF/TSO

PF
FS

b300
c2

GH
S
indef/ncvxqp7

TSO
PF/TSO

PF
FS

b300
c3

bw
d

er
r

TPP
Relaxed Compressed

Strict Compressed
Restricted

25 difficult
problems

I Strict and
TPP always
good

I Relaxed
better than
restricted

I Matching-
based
ordering helps

12 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Results: delays

1

10

100

1000

10000

100000

1000000

GH
S

indef/blockqp1

GH
S

indef/a2nnsnsl

GH
S

indef/boyd1

GH
S

indef/dixm
aanl

O
berwolfach/rail 79841

GH
S

indef/daw
son5

Boeing/bcsstk39

GH
S

indef/c-72

GH
S

indef/helm
2d03

GH
S

indef/copter2

Boeing/crystk03

O
berwolfach/filter3D

Boeing/pct20stif

K
outsovasilis/F2

Cunningham
/qa8fk

O
berwolfach/gas

sensor

M
cRae/ecology1

GH
S

indef/bm
w

3
2

O
berwolfach/t3dh

Andrianov/m
ip1

Lin/Lin

GH
S

indef/sparsine

PARSEC/Ge99H
100

PARSEC/Ga10As10H
30

PARSEC/Ga19As19H
42

TPP Relaxed Strict

25 general
problems

I TPP and
relaxed very
similar

I Strict very
pessimistic
and hence
slow

13 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Results: speed p = 512

0.001

0.01

0.1

1

1000 10000 100000

ti
m

e
(s

ec
on

d
s)

n

p = 512

Parallel TPP
Relaxed Compressed

Strict Compressed
Restricted

14 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Results: speed n = 100000

0.001

0.01

0.1

1

10

10 100 1000

ti
m

e
(s

ec
on

d
s)

p

n = 100000

Parallel TPP
Relaxed Compressed

Strict Compressed
Restricted

15 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Conclusions

Summary
I CPU compressed pivoting 2+ times faster on large problems

I Restricted pivoting not good enough for all problems

I Strict compressed pivoting guarantees backwards stability

I Relaxed compressed pivoting works well and cheaper in
practice

New-style solver
I Factorize without pivoting and check L

I If too large, roll-back factorization and...

I ...use compressed pivoting to minimize communication

Now do it on a GPU!

16 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Conclusions

Summary
I CPU compressed pivoting 2+ times faster on large problems

I Restricted pivoting not good enough for all problems

I Strict compressed pivoting guarantees backwards stability

I Relaxed compressed pivoting works well and cheaper in
practice

New-style solver
I Factorize without pivoting and check L

I If too large, roll-back factorization and...

I ...use compressed pivoting to minimize communication

Now do it on a GPU!

16 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Conclusions

Summary
I CPU compressed pivoting 2+ times faster on large problems

I Restricted pivoting not good enough for all problems

I Strict compressed pivoting guarantees backwards stability

I Relaxed compressed pivoting works well and cheaper in
practice

New-style solver
I Factorize without pivoting and check L

I If too large, roll-back factorization and...

I ...use compressed pivoting to minimize communication

Now do it on a GPU!

16 / 17

Thank you!

17 / 17

Sparse Communication Avoiding Pivoting J.D. Hogg and J.A. Scott

Stability

i

j

j

k

I What if diagonal block is singular?

I What if off-diagonal entries much larger than diagonal
entries?

Then factorization is not backwards stable

1 / 1

	Appendix

