

The Significant Properties of Software: A Study

Brian Matthews, Brian McIlwrath, David Giaretta, Esther Conway
STFC

Rutherford Appleton Laboratory
Chilton OX11 0QX

UK

December 2008

 Significant Properties of Software

 2

Revision History:

Version Date Authors Sections Affected / Comments
0.1 18/02/2008 BMM Outline
0.5 05/03/2008 BMM First Draft
0.6 09/03/2008 DG DG added section on OAIS/CASPAR
0.7 11/03/2008 BMM Added section on StarLink + revisions.
0.8 23/03/2008 BMcI, EC, BMM Expanded use cases
1.0 28/03/2008 BMM, BMcI First Complete release version
1.1 23/12/2008 BMM Final Revision

 Significant Properties of Software

 3

Executive Summary .. 5

Recommendations ... 6

1 Background to the Study ... 9
1.1 Introduction ... 9

1.2 Significant Properties .. 10

2 Scope of Study .. 12
2.1 Definition of Software .. 12
2.2 Diversity of Software .. 12
2.3 Scope of Study .. 14

2.4 Methodology ... 16

3 Digital Preservation of Software ... 18
3.1 What is software preservation? ... 18

3.2 Why preserve software? .. 19
3.2.1 Museums and Archives ... 19
3.2.2 Preserve a complete record of work .. 21
3.2.3 Preserving the data .. 21

3.2.4 Handling Legacy ... 22
3.3 The nature of software artefacts .. 22

4 Software Engineering .. 24
4.1 Introduction ... 24

5 Frameworks for Software Preservation .. 26
5.1 The Role of Software in Approaches to Digital Preservation 26

5.1.1 OAIS ... 26

5.1.2 CASPAR ... 29

5.2 Virtualisation and Software Emulation ... 29
5.2.1 Basic virtualisation .. 30
5.2.2 Virtualisation and Software Preservation ... 31

5.2.3 Planets and Dioscuri ... 31
5.3 Existing Software Repositories ... 33

5.4 Classification Schemes for Software .. 33
5.5 SourceForge and CCPForge ... 34

6 Case Studies of Software Developments .. 36
6.1 BADC ... 36

6.1.1 On the fly provision of processed data ... 37
6.1.2 Generic Analysis tools .. 38
6.1.3 Met Office Ported Unified Model ... 43
6.1.4 Data Set Specific software tools and scripts ... 44

6.2 NAG .. 45
6.2.1 Maintaining the NAG Library .. 46
6.2.2 Documenting the NAG Library .. 47

6.2.3 Lessons for Software Preservation .. 48
6.3 Astronomical Analysis Software – Starlink .. 48

6.3.1 Astronomical Software ... 48
6.3.2 Introduction to Starlink ... 49
6.3.3 Principle Features .. 50

7 Conceptual Framework .. 58
7.1 Software Preservation Approach .. 58
7.2 Performance Model and Adequacy ... 59

 Significant Properties of Software

 4

7.2.1 Performance of software and data ... 61

7.3 A Conceptual Model for Software .. 62
7.3.1 The Software System .. 63
7.3.2 Software Components ... 66

8 Significant Properties of Software .. 69
8.1 Categories of Significant Properties ... 69

8.1.1 Package Properties .. 72
8.1.2 Version Properties ... 72
8.1.3 Variant Properties ... 73
8.1.4 Download Properties ... 74

8.2 Component Properties ... 74
8.3 An example of Significant Properties: Xerces .. 75

9 Conclusions and Recommendations ... 79
9.1 Conclusions of Study .. 79

9.2 Recommendations ... 81

Acknowledgements ... 82
References.. 83

Appendix A: An OWL Ontology for Significant Properties of Software 84
Appendix B: Questions to Analyse Software Preservation Practices 93

Significant Properties of Software .. 93

Outline Questions ... 94

More detailed questions .. 94
1 What Performance/Behaviour does your current user(s) expect from this software and what

needs preserving? .. 94

2 What information do you provide to a new user, and what support do you give them during

their use of the software? .. 95

3 How is the software provenance captured? ... 95
4 How is the software currently catalogued? .. 95

5 Are there any access restrictions? .. 96
6 Identify common "domain objects" currently used ... 96
7 What information is required to reconstruct the software objects or reproduce the

performance or duplicate the required behaviour? ... 96
8 Structural Representation Information – (non media dependent encoding) 96

9. How is the software physically stored? .. 97

Appendix C: A possible categorisation of software licensing 98

 Significant Properties of Software

 5

Executive Summary

Digital preservation has become pressing concern as more and more of the records of human

activity are generated and processed electronically. Software is a class of electronic object

which is not only the result of research, but is frequently a vital pre-requisite to the preservation

of other electronic objects. However, consideration to the preservation of software as a digital

object in its own right has to date has been very limited. Software is seen as complex –

forbiddingly so for people who want to maintain access to software but were not involved in its

development – and its preservation is often seen as a secondary activity and one with limited

ultimate purpose.

Software preservation is thus a relatively new topic of research and there is little practical

experience in the field of software preservation per se. This study has become an exploration

of the area of software preservation as much as defining the significant properties for

preservation. Consequently, we discuss some of the motivations and approaches taken to

preserve software.

Software is a very large topic with great range and diversity. In this study we restricted

ourselves to mathematical and scientific software used in the academic research community in

parts of the UK. We considered the literature and discussed case studies with either

practitioners in providing repositories of software, or developers of software packages which

have had a very long lifetime.

Although there are many groups who are holding software to support archives, or to support a

community, and many others who are maintaining a usable software package for a long time,

these groups do not consider themselves to be doing software preservation and have other

priorities. Those that do carry out software preservation are often amateur or specialised in

science museums or special interest groups; these are ad hoc and small scale and do not tackle

the systematic problems of keeping software replayable in a broad context for the long term.

Other projects are looking more systematically at digital preservation and tend to rely on the

persistence of software, or at least access to software with similar functionality to the original.

However, they tend not to concentrate on the problem of how to preserve the software itself.

However, there are good reasons of preserving research effort in software, often as a vital

adjunct for preserving other digital objects. Preserving software essentially means that

software can be reconstructed and replayed to behave sufficiently closely to the original.

Software is inherently complex with a large number of components related in a dependency

graph, and with specification, source and binary components, and a highly sensitive

dependency on the operating environment. Handling this complexity is a major barrier to the

preservation of software. Different preservation approaches can be adopted which can execute

binaries directly, can emulate the software, or carry out software migration by recompiling

source code, or even recoding. All can in different circumstances support good preservation.

Adopting the notion of performance from the NAA and InSPECT, we developed a notion of

performance of software which is closely related to the adequacy of the performance on the

target data. Establishment and preservation of test cases for expected behaviour of end

 Significant Properties of Software

 6

software on test data is a key feature for assessing the adequacy of performance of software

preservation on specific chosen significant properties.

Good software engineering practice to support software version control, software maintenance,

migration and especially software testing can also support software preservation. Groups

which have successfully maintained software over a long period have developed rigorous

software engineering practice and developed techniques to support software migration in

particular.

To capture and control the inherent complexity of software, we have developed a conceptual

model for software which is more complex than that of InSPECT, Many of the structuring

significant properties of software are thus captured in this model. Significant properties of

software are then categorised according to this model and also according to their role. As a

consequence, it is observed that the InSPECT categorisation of significant properties does not

match comfortably with the significant properties of software. This is probably because of the

indirect performance model of software, which is tested by the performance of the end data.

Contextual significant properties play a key role and software is dependent upon them being

satisfied for satisfactory reconstruction and replay, whilst behavioural significant properties

determine the performance of the software on end data.

Given the relatively immature state of the art in software preservation, we consider our

definition of a conceptual model of software and the associated identification and classification

of significant properties to be a proposal, which needs to be evaluated further in practice to

judge its value and effectiveness in practice.

The significant properties identified in this study are still relatively general and do not go into

the detail of other significant studies. For example, we decided that we would stop at the level

of granularity of code represented by the common coding concept represented by a public class

or module or subroutine (terminology varies between programming language) and it would not

be worthwhile detailing any further. Other significant properties also stop at a high level, and

do not for example enumerate the possible values which they could take
1
. Further testing and

evaluation is required to see if this is sufficient and whether the significant properties are

always appropriate and whether they can be extracted and used in practice.

Tools support should be eventually forthcoming to support the significant properties of

software; however, we feel that the above development of the methodology needs to be

investigated further before investing comprehensive tool support.

Recommendations

We conclude with a set of recommendations for JISC.

 Raising awareness of the software preservation within the JISC community.

 Further consideration should be given to the justification and role of software

preservation within a broader digital preservation strategy.

1
 As an example of how this may be undertaken, see the example of licensing in Appendix C.

 Significant Properties of Software

 7

 Specific consideration should be given to the role of software preservation in

preservation processes which are conformant to OAIS.

 Further studies should be undertaken to test and extend the notion the conceptual model

of software and its significant properties. Studies and test cases should be undertaken

specifically in areas which were seen as outside the scope of this study, in particular:

o Database software

o Commercial software

o Business and office software

o Software which supports the performance of other key digital objects (e.g.

documents, vector images, science data).

o Systems and networking software.

 Studies and practice of software preservation should involve experience software

engineers to introduce best practice in code development, testing maintenance and

reuse.

 Specialist consideration should be given to the problem of preserving the user

interaction model of a software package.

 Guidance developed on the relative value of adopting an emulation or a migration

strategy to support the preservation of software.

 Reconsideration of the categories of significant properties identified in InSPECT and

those appropriate for software.

 Development of methodologies to exploit software testing as a measure of adequacy of

performance.

 Significant Properties of Software

 8

 Significant Properties of Software

 9

1 Background to the Study

1.1 Introduction

Digital preservation has become pressing concern as more and more of the records of human

activity are generated and processed electronically. Unlike traditional paper-based records

where preserving the media is usually sufficient, electronic records are highly sensitive to the

persistence of the electronic environment in which it is created and used, and highly dependent

for its reusability (and thus effective usable persistence) on other computing artefacts also

persisting and being usable. With the rapid change in the computing environment over the last

50 years, change which looks set to continue, there has been an increased realisation that

electronic records maybe more vulnerable than paper based records, and require different and

potentially more complex actions to be undertaken to preserve them in a usable state. Thus in

recent years there has been a strong impetus to investigate methods, tools and practices to

enable the long-term preservation of digital objects in a reusable state, a process often call

digital curation to emphasise that the focus is on caring for the artefacts to ensure their future

“replayability” and usefulness. This has been particularly strong in the museum and library

sector, and also the academic research sector where there is a realisation that unless action is

undertaken to preserve the results of research, there is a danger that their long-term use is likely

to be compromised.

Much of the effort has gone into preserving the records traditionally preserved by libraries;

human readable document written by humans for and intended to be read by humans. This is

extended to other records intended for direct human interaction, such as still and moving

images, and audio files. The recognition that large amounts of communication are now

electronic has also led to the preservation of “electronic ephemera” such as emails, and

websites.

More recently, work has gone into the preservation of primary data, both the numerical data

which is typically the generated within scientific experiments, and also the records which are

kept in databases. Data differs from documents in that it is intended to be primary machine

processed, so that in order for the data to remain interpretable a greater effort needs to

undertaken to preserve auxiliary and annotation material to preserve the context and meaning

of the data so that it can re-processed appropriately.

Software is another class of electronic object which is frequently the result of research and as

discussed below, is often a vital pre-requisite to the preservation of other electronic objects.

However, the consideration to the preservation of software as a digital object in its own right

has to date has been very limited. It is notable that many of the organisations which maintain

access to software over a long period do not claim to preserve software in itself. Software is

seen as complex – forbiddingly so for people who were not involved in its development but

nevertheless want to maintain access to software – and also its preservation is frequently seen

as a secondary activity and one with limited ultimate purpose. Consequently, we discuss in

this document some of the motivation and approaches taken to preserve software.

This document reports the result of a study into the significant properties for preservation of

software so that it can be systematically preserved in a reusable state for the long-term. .

However, it is not possible to establish the properties of software without a wider study into

 Significant Properties of Software

 10

what software preservation means, as what characterises software is open ended and dependent

on the context in which preservation is being undertaken.

1.2 Significant Properties

In this report, we use the definition of significant properties as give in [1]:

Significant Properties, also referred to as “significant characteristics” or “essence”,

are essential attributes of a digital object which affect its appearance, behaviour,

quality and usability. They can be grouped into categories such as content, context

(metadata), appearance (e.g. layout, colour), behaviour (e.g. interaction, functionality)

and structure (e.g. pagination, sections). In an ideal world, libraries and archives

would completely characterize the significant properties of their holdings so that they

could be accurately recalled and, crucially, reused at a later date. Significant

properties are thus those attributes of a digital object which need to be recorded and

preserved over time for the digital object to remain accessible and meaningful.

Significant properties have been considered in for a number of digital objects, such as text

documents and raster images within other projects, including the following.

The Investigating the Significant Properties of Electronic Content Over Time (INSPECT)

project
2
 supported by JISC is an investigation into significant properties. INSPECT aims to:

 expand and articulate the concept of 'significant properties' ;

 determine sets of significant properties for a specified group of digital object types

(raster images, emails, structured text, digital audio) ;

 evaluate methods for measuring these properties for a sample of representation formats;

 investigate and test the mapping and comparison of these properties between different

representation formats.

JISC has also commissioned a number of studies into significant properties of a number of type

digital objects

 Vector Images: see the final report [2]

 Moving Images

 SPELOS: Significant Properties of E-Learning Objects for Digital Preservation
3

 Software: SigSoft (this study)
4
.

These studies work with and supplement INSPECT as part of a framework for significant

properties.

To date there has been no substantial study specifically into the significant properties of

software; indeed while there is a large literature and a number of projects considering the

preservation of other digital objects, particularly documents designed for human

comprehension, and more latterly computer data designed for processing, there has been

relatively little consideration given to the specific problems of preserving software in itself.

2
 http://ahds.ac.uk/about/projects/inspect/

3
 http://spelos.ulcc.ac.uk/wiki/index.php/Main_Page

4
 http://sigsoft.dcc.rl.ac.uk/index.html

http://ahds.ac.uk/about/projects/inspect/
http://spelos.ulcc.ac.uk/wiki/index.php/Main_Page
http://sigsoft.dcc.rl.ac.uk/index.html

 Significant Properties of Software

 11

This is despite the frequent recognition, in for example OAIS and the emulation approach used

by Planets, that preserving software is an important prerequisite to preserving the digital object

itself. These initiatives are discussed further below.

The reasons for this has perhaps been two fold: firstly, software is intrinsically highly complex

and specialised, so capturing it comprehensively in a reusable manner is difficult; and secondly,

preserving software is seen as a secondary activity, a necessary evil for the preservation of

another digital object rather than an ends to itself. We shall consider these points in more detail

below. Nevertheless, there are good reasons to preserve software (also discussed below), and

thus a systematic approach needs to be developed to enable the preservation of software. This

study thus represents an attempt to survey the features which should be considered in a

software approach and to identify those features which are the significant properties which

need to be considered for preservation.

 Significant Properties of Software

 12

2 Scope of Study

2.1 Definition of Software

Software is defined as: “a collection of computer programs, procedures and documentation

that perform some task on a computer system.”
5
 Computer programs themselves are sequences

of formal rules or instructions to a processor to enable it to execute a specific task or function.

However, note that the definition also includes documentation, a crucial element in defining the

significant properties of software, and thus in scope of this study. We refer to a single

collection of software artefacts which are brought together for an identifiable broad purpose as

a software package.

The term is sometimes used in a broader context to describe any electronic media content

which embodies expressions of ideas stored on film, tapes, records etc for recall and replay by

some (typically but not always) electronic device. For example, a piece of music stored for

reproduction on vinyl disc or compact disc is sometimes described as the software for the

record or CD player, in analogy to the instructions of a computer. However, for the purposes

of this study, such content is considered a data format for a different digital object type, and is

thus out of scope of this study.

2.2 Diversity of Software

Software is a very large area with a huge variation in the nature and scale, with a spectrum

including microcode, real-time control, operating systems, business systems, desktop

applications, distributed systems, and expert systems, with an equally wide range of

applications. There are also varying constraints of the business context in which the software is

developed from personally coded systems (typical in research), open-source systems, to

commercial packages. We can classify this diversity along a number of different axes, which

require different significant properties for preservation.

 Diversity of application. Software is used in almost every domain of human activity.

Thus there are software packages in for example business office systems, scientific analysis

applications, navigation systems, industrial control systems, electronic commerce,

photography, art and music media systems. Each area has different functional

characteristics on at least a conceptual user domain. Significant properties need to classify

the software according to some application oriented classification or description of the

domain.

 Diversity in hardware architecture. Software is designed to run on a large range of

different computer configurations and architectures, and indeed “levels” of abstraction in

relation to the raw electronics of the underlying computing hardware. At a micro level,

assembler and micro-code are used to control the hardware directly and low level

operations such as memory management or drivers for hardware devices. At a higher level

of abstraction, applications are intended to be deployed on a wide range of computing

hardware and architectures (e.g. workstations, hand-held or mobile devices, main-frame

5
 http://en.wikipedia.org/wiki/Software

http://en.wikipedia.org/wiki/Software

 Significant Properties of Software

 13

computers, clusters). In order to recreate the functionality of system, significant properties

of the hardware configuration may need to be taken into account.

 Diversity in software architecture. Even within a common hardware configuration, there

are different software architectures, requirements on the coordination of software

components which need to interact using well-defined protocols to achieve the overall

functionality of the system. For example, in the StarLink system (see below) there is an

assumption that the system runs on a particular storage management component. Another

common example is a client-server architecture, where user clients mediate the user

interaction and send requests to services on a server, which performs processing and

responds with the results to the user. In order to recreate the functionality of the entire

system, the reconfiguration of a number of interacting components into a common

architecture will need to be recreated, and significant properties recorded accordingly.

 Diversity in scale of software. Software ranges from individual routines and small

programs which may only be a few lines long, such a Perl routines written for specific data

extraction tasks; through packages which provide particular set of library functions, such as

the Xerces XML processor; major application packages, such as Microsoft Word, which

provides a large group of related functionality to the user with large range of extra features,

user interface support and backward compatibility; to large multi-function systems which

provide entire environments or platforms for complex applications, such as the Linux

operating system, which have millions of lines of code and entire sub-areas which would be

major packages in their own right, but are required to work together into a coherent whole.

 Diversity in provenance. Software is developed by a wide range of different people

organised in different ways. These would range from individuals writing specialised

programs for personal use or to support particular functionality required by that individual;

through community developments, where code is passed from person to person who has an

interest in developing further functionality; formal collaborative working as is widely

undertaken in major open-source initiatives, such as Apache or Linux, where a mixture of

diverse contribution to the core code base is combined with a more centrally controlled

acceptance and integration procedure; to software developed and supported by a large or

small team within a single organisation, for the internal purposes of the organisation, or else

to be distributed usually as a commercial proposition. A single software package may pass

through a number of different individuals and organisations with a number of different

business goals, models, and licensing requirements. These different development models

need to be reflected in the significant properties of the system, so proper attribution and

licensing condition can be respected.

 Diversity in user interaction. Software can support a wide range of interaction with the

user. System software which controls the low level operation of the machine itself is

designed to have no user interaction at all; library functions typically are designed to

interact with other software components and have no or little user feedback, possibly

delivering error messages; broader packages are typically designed to have a user interface

component which mediate commands from and responses to the user often via simple

command-line or file based interaction. Other systems have rich user interactions with

complex graphical user interfaces requiring keyboard and pointer and high-resolution

displays, or audio input and output. Other require specialised input or output hardware

devices such as joysticks and other control devices for games playing, or specialised

screens and displays for virtual reality display. Clearly, in order to accurately reproduce the

 Significant Properties of Software

 14

correct functionality of the software in the future, the appropriate level of user interaction

will need to be recreated in some form.

Clearly there is huge diversity in the nature and application of software. However, we believe

that there is sufficient commonality between these different scales that there are categories of

significant properties which can be identified which are applicable to a wide range of different

software packages.

2.3 Scope of Study

Nevertheless, for the purposes of this limited study into the significant properties of software, it

is not practically possible to investigate more than a limited sample of the vast spectrum of

software. Consequently, in this study we have decided to concentrate largely (although not

exclusively) on mathematical, scientific and e-Science software as used within areas of

science in the UK academic community.

We believe that this category of software is of interest to a large part of the academic and

research community, which is the constituency of JISC, and should be representative for a large

number of the significant properties which are generally applicable to wider categories of

software. Further, there are particular features of the mathematical and scientific software

domain which make it particularly suitable for this study, as follows.

 Narrow Focus. Scientific software is focussed on the application domain involved, and

does not tend to gather extraneous features (“feature creep”) which can confuse or obscure

the purpose of the software.

 Application Focus. Scientific software is aimed at providing functionality for end users

interested in the science, rather than say operating system, networking or control system

software which is directed at functionality for controlling the computing infrastructure

itself. This means that while the audience does tend to be computer literate, it is not

computer specialised, so there is an onus on providing software which is intelligible to the

scientific domain specialist.

 Long life times. Scientific users were early adopters of computing technology, dating back

to the 50s and 60s in some cases, so there is a long legacy of software within the

community. Further, scientific data and analysis does not go out of date – there is a need to

revisit data and analysis which was collected a long time ago, so the software involved may

not be obsolete. And finally, scientific research programmes can often be of long duration;

space missions for example may take 15 years of preparation and take many times longer

than that to execute and analyse the results. Control systems and data transmissions are

still operational on the Voyager spacecraft more than 30 years after their launch and the

onboard software needs to be kept operational on 1970s hardware at remote distance. As a

consequence of these long life spans, the scientific and mathematical software community

has a strong need to preserve and reuse software over long periods.

 Established development teams and practices. As a consequence of the longevity of

scientific software, there are long-established teams which have experience of maintaining

software packages over long period of time. They have long experience of maintaining

and extending the function of software in the face of frequent technology and environment

change and have established strong processes and tools to manage this change. Further,

 Significant Properties of Software

 15

since there is close involvement with the scientific community, who tend to be computer

literate, there is an emphasis on openness and collaboration so that the function and

organisation of the system are easily available.

As a necessary consequence of this focus on scientific software, other aspects of interest are

less well-covered in this study, and not considered for any particular characteristics. Some

which are particularly important are the following:

 Systems Software. Software which controls computer systems at a low level, such as

device drivers, operating systems software, and networking. These are vitally important to

maintaining computer infrastructure, and other software packages will typically depend on

them. Significant properties of application software should record these dependencies, but

details of the systems software are not considered in detail.

 Business Application Software. A class of common office client tools (e.g. Word

processors, spreadsheets, small databases, email clients, web-browsers, calendaring

systems, presentation systems, graphics editors), and back office tools (e.g. web servers,

mail servers, document management systems, databases) clearly should be considered for

preservation to maintain a record of a large amount of commonly produced material for

largely human consumption.

 Databases. Databases may be regarded as a special category of software, with their own

characteristics of data representation and management, and should be considered for

specific significant properties for preservation. However, care must be taken to distinguish

between preserving the database software (e.g. the DBMS and accompanying database

modelling and querying language) and the data represented and stored within a database.

 Software processing of specific digital object types. An important class of software is

designed to represent, manipulate and display human readable digital objects, including

word processors (e.g. Word, WordPerfect), document markup and processing system (e.g.

LaTeX, Acrobat), graphics editors (e.g. Visio), image presentation and processing systems

(e.g. PhotoShop).

Clearly these software packages are closely associated with other digital objects types (e.g.

documents, raster and vector images), and some of the significant properties of these

systems are closely associated with the significant properties of those digital objects. For

example, visual significant properties of data objects such as fonts or line thicknesses will

be dependent on the capabilities of the processing software to render these properties (and

indeed ultimately on the capabilities of the hardware). This is clearly an important area

which requires close consideration, and also close interaction with the effort to define

significant properties for those object types. However, for the purposes of this study, these

properties are not explored in detail.

 Commercial software. A good deal of the software which is available for within the

mathematical and scientific domain is the result of community effort and is freely available

and often open-source, allowing recompilation and migration by users. Within this study

we mainly considered the issues arising from the use and maintenance of such software,

and did not consider special characteristics and properties which arise from the software

being commercial. The major exception was the NAG library, developed by a commercial

company. However, even in those circumstances we concentrated on the maintenance and

 Significant Properties of Software

 16

reuse efforts which have been undertaken, rather than any requirements which arose from a

specifically commercial environment.

Clearly, there are special characteristics arising from commercial packages, particularly that

usage and licensing conditions should be respected, including conditions on copying and

distribution, and also typically only binary distributions are available. However, detailed

consideration of these aspects was not covered in this study.

 Software with complex user interactions. As already noted above, computer software

can have a wide range of different human-computer interactions, with in sophisticated

modern user interfaces, complex layouts, displays and interactions with the user. Inputs

and outputs can be audio or haptic as well as visual, and use a wide variety of specialist

devices as well as the familiar monitor-keyboard-pointer arrangement of most workstations.

The particular layout and characteristics (e.g. colour, font, positioning) of a screen may or

may not be key elements for reproducibility of the functionality of the software.

Typically for much mathematical and scientific software, the user interaction model is less

crucial behaviour to be preserved than the accuracy of the algorithms used for analysis;

often such software is designed to interact via internal function calls from another program

or via a command line as well as using a graphical user interface, and even with a GUI, the

exact layout may not be critical
6
.

Consequently, a full treatment of the significant properties of the user interaction of

software is a much larger topic, almost certainly requiring specialist user interface

expertise, and is considered beyond the scope of this study.

2.4 Methodology

The study undertook a number of activities to complete its task of providing a outline

framework for the significant properties of software.

 Set bounds of project. A scoping exercise to set the boundaries of the study, to set

application domain of interest considered and also consider areas out of scope. This

identified mathematical and scientific software and being of particular interest, and scoped

the project as in section 2.3 above.

 Surveying literature. An ongoing task was to survey the literature available to consider

the current state of software preservation and work on identifying the significant properties

of software in particular. It soon came apparent that there is relatively little work on

software preservation and virtually none on identifying significant properties in this

context. However, it soon was apparent that a number of related areas were of interest to

software preservation, particularly aspects of software engineering, especially version

control, testing and reuse. We consider various relevant aspects of software engineering in

section 4 below.

6
 An obvious exception to this is visualisation software used to provide human readable representations of

mathematical and scientific data and artefacts, typically graphs or geometric representations of data in 2D or 3D

virtual space. In this case, the characteristics of the display are clearly vital. However, we do not cover these

aspects in detail in this study. Note that there are close similarities between the significant properties of these

visualisation and those of other digital object types, especially vector images and animations.

 Significant Properties of Software

 17

 Consider case studies in software preservation. In order to establish the current best

practise in software reuse, we considered in detail a number of specific examples of

software developments, where packages have been developed, distributed and maintained

over a long period, and repositories which are either specifically designed to hold software.

A number of visits were undertaken to discuss with software package and repository

managers their approach to software maintenance and the ongoing problems of long-term

preservation of software, and how to accommodate change in the technological

environment. Discussions and visits were undertaken with Starlink, BADC, CCPForge,

and NAG.

In preparation for these visits, we prepared a number of questions which, although not a

formal questionnaire which was given to managers, nevertheless provided guidelines for

discussion, and could be used in future as a basis for a more formal analysis of significant

properties. We reproduce these questions in Appendix B.

 Develop framework and test on examples. From the literature and the case studies, and

also discussions with other projects on preservation and significant properties, notably,

InSpect, the study on Vector Graphics, the CASPAR and SCARP projects, an analysis was

undertaken and a conceptual framework for software developed, so that the complex

organisation of software artefact could be captured and organised, and significant properties

assigned appropriately. A number of smaller illustrative examples were considered.

 Significant Properties of Software

 18

3 Digital Preservation of Software

During the course of the study, it became clear that software preservation was a term that was

not necessarily considered a great deal, and when it was, it means different things to different

people. Although we acknowledge that a single definition will not satisfy everyone, in this

section we set out some baseline concepts of software preservation, and consider some of the

motivations behind software preservation. This is a necessary prerequisite before considering

the significant properties of software; the properties are clearly only significant in the context

of the preservation task in hand.

3.1 What is software preservation?

Software preservation has four major aspects.

 Storage. A copy of a software “package” needs to be stored for long term preservation. As

we discuss below, software is a complex digital object, with potentially a large number of

components constituting a package (c.f. an information package as in OAIS); what is

actually preserved is dependent on the software preservation approach taken (see Section

7.2). Whatever the exact items stored, their should be a strategy to ensure that the storage

is secure and maintains its authenticity (fixity again using OAIS terminology) over time ,

with appropriate strategies for storage replication, media refresh, format migration etc as

necessary.

 Retrieval. In order for a preserved software package to be retrieved at a date in the future,

it needs to be clearly labelled and identified (reference information in OAIS terminology),

with a suitable catalogue. This should provide search on its function (e.g. terms from

controlled vocabulary or functional description) and origin (provenance information).

 Reconstruction. The preserved package can be reinstalled or rebuilt within a sufficiently

close environment to the original that it will execute satisfactorily. For software, this is a

particularly complex operation, as there are a large number of contextual dependencies to

the software execution environment which are required to be satisfied before the software

will execute at all.

 Replay. In order to be useful at a later date, software needs be replayed, or executed and

perform in a manner which is sufficient close in its behaviour to the original. As with

reconstruction, there may be environmental factors which may influence whether the

software delivers a satisfactory level of performance.

In the first two aspects, software (once a decision has been taken on what software components

to preserve) is much like any other digital object type. Storage media which are secure and

maintain integrity, and methods to identify and retrieve suitable objects are required in all

cases. However, the problem of reconstruction and replay is especially acute for software.

Digital objects designed for human consumption have requirements for rendering which again

have issues of satisfactory performance; science data objects also typically require information

on formats and analysis tools to be “replayed” appropriately. However, software requires an

 Significant Properties of Software

 19

additional notion of a software environment with dependencies to other hardware, software and

build and configuration information.

Note that other digital objects require software to provide the appropriate level of satisfactory

replay, and thus for other digital objects there is a need to preserve software (and thus record its

significant properties) too; as we shall see, there is also a dependency on the preservation of

other object types (e.g. documentation) for the adequate preservation of software.

3.2 Why preserve software?

A key question to answer with respect to preservation of software is why it is a desirable thing

to do in the first place. After all, software has a track record of being both being very fragile

and very disposable.

Software is fragile as it is very sensitive to changes in environment; as hardware, operating

system, versions of systems (e.g. programming languages and compilers) and configuration

change. When the environment changes, software notoriously stops working, crashes

corrupting vital pieces of data, or works but not quite as originally intended, with missing or

non-quite the same functionality. The last case can be particularly damaging, as the software

may seem to operate but actually produces subtly different results. For example, compiling

with a different floating point module may produce quite different results in the analysis.

Software is disposable as often in the face of environment change, and also in the face of the

complexity of large-scale systems, developers often throw away the previous software and start

again from scratch ("not invented here syndrome"). After all, if you know the problem to be

solved, and you have preserved the original data, it may be easier to write new software rather

than handle legacy code, and you may be able to produce a faster, more user-friendly system

which operates in a modern environment, and with the developer who understand the code to

hand, rather than long gone from the organisation.

However, there are also good reasons to preserve software - especially in a research and

teaching environment. Some of these reasons would include the following.

3.2.1 Museums and Archives

A small but significant constituency of software preservation is museums and archives which

specialise on preserving aspects of the history of computing and its influence on the wider

course of events. These institutions thus want to preserve important software artefacts as they

were developed at the time of their creation or use, so that future generations of historians of

science (and the general public) can study and appreciate the computers available that

particular period, and trace its development over time. It is also recognised that archives of

software may be useful to resolve copyright or patent disputes.

Such museums themselves often concentrate on preserving hardware. For example, Bletchley

Park
7
 and the National Museum of Computing

8
 preserve or rebuild historic machines, including

7
 http://www.bletchleypark.org.uk/

8
 http://www.tnmoc.org/index.htm

http://www.bletchleypark.org.uk/
http://www.tnmoc.org/index.htm

 Significant Properties of Software

 20

early code-breaking machines from WWII, as does the Science Museum
9
, the Museum of

Science and Industry in Manchester
10

, and the Computer History Museum
11

 in Silicon Valley

in California, USA. These machines are often kept in working operation, so there is a need to

preserve the software.

Others archives are interested in preserving the software alone, typically via a web presence.

Examples include the Chilton Computing website
12

, which includes the Atlas Basic Language

Manual describing the software architecture of the Atlas computer from 1965, the Multics

History Project
13

, which preserves the code for the Multics operating system, or Bitsavers
14

,

which preserves documentation and software for minicomputers and mainframes from the 50's

to the 80's.

To give more detail on the Multics History Project, this has a concerted effort to locate and

involved the original experts on designing and using the system before they die to capture their

knowledge. The project seeks to preserve the binary, to “preserve the bits” and document the

formats, But it also has an emphasis on capturing the implicit knowledge of the development

organization and process, and to create a “map” of the software describing different ways of

approaching it, via for example, capturing its source code, the coding interfaces, and its

functions. It also wants to capture the development history and as much of the documentation

as is available. This is for historical purposes; it seems unlikely that the Multics system will be

revived in itself, and most of the functionality could be emulated elsewhere and the data

generated using it processed on different systems. Nevertheless, Multics is an object lesson in

software engineering (good and bad), and is undoubtedly valuable for future generations of

computing engineers.

Other groups wish to preserve hardware and software as research interests or private

enthusiasms, for example the Computer Conservation Society
15

, a specialist interest group of

the BCS, the Software Preservation Group
16

 supported by the Computer History Museum, or a

number of groups such as the Software Preservation Society
17

 interested in preserving Games

software for obsolete platforms, such as the Sinclair Spectrum, Acorn BBC Micro or Amiga.

In this context, there has been given some consideration of how to preserve software. See for

example Preserving Software: Why and How by Zabolitsky [3], but this is largely limited to

preserving historic software as a unit with the historic hardware, so the major concern is

preserving representation of the code on some physical media, with appropriate backup and

replication strategies. The problem of preserving the usage of the software in a future context

is not considered in detail. The proceedings of the Computer History Museum’s workshop

“The Attic & the Parlor: A Workshop on Software Collection, Preservation & Access”, May 5,

2006
18

 gives an overview of approaches to software preservation being undertaken in museums

and archives. Major concerns are how to collect important software packages, especially with

a variety of licensing constraints, and how to interpret and display them to the public.

9
 http://www.sciencemuseum.org.uk

10
 http://www.msim.org.uk/

11
 http://www.computerhistory.org/

12
 http://www.chilton-computing.org.uk/

13
 http://www.multicians.org/mhp.html

14
 http://www.bitsavers.org

15
 http://www.computerconservationsociety.org/index.htm

16
 http://www.softwarepreservation.org/

17
 http://www.softpres.org/

18
 http://www.softwarepreservation.org/workshop/

http://www.sciencemuseum.org.uk/
http://www.msim.org.uk/
http://www.computerhistory.org/
http://www.chilton-computing.org.uk/
http://www.multicians.org/mhp.html
http://www.bitsavers.org/
http://www.computerconservationsociety.org/index.htm
http://www.softwarepreservation.org/
http://www.softpres.org/
http://www.softwarepreservation.org/workshop/

 Significant Properties of Software

 21

The enthusiasts who would like to preserve games software recognise the problem of

maintaining the usability of the software, which is the point of preserving old games. They also

recognise the problems associated with copyright and copy protection. They adopt

preservation strategies which use software emulation of obsolete platforms, and conversion of

the binary to universal

3.2.2 Preserve a complete record of work

Software is frequently an output of research. This is particularly the case in Computer Science

where the software itself is an important test-bed of the hypothesis of the research - if you can't

implement and demonstrate the advantage of the assertion, in computer science terms the

assertion is not proven. However, this software as an output of research extends beyond

Computer Science as many research projects across all disciplines now frequently have an

aspect of computing and programming to demonstrate the hypothesis of research.

If university archives and libraries are going to maintain a complete record of research, then the

software itself should be preserved. Frequently, in practice, theses do come with appendices of

code listings or with CD-ROM's inserted into the back cover with the supporting software.

However, while the theses are stored on library shelves, software content is not necessarily

preserved against media change (can we read those disks in a few years time?) or change in the

computing environment making the code difficult to run. Research projects again frequently

produce software, or specialist modifications to existing packages to support their claims, or to

carry our special analysis of data, so the results of the project are hard to interpret and evaluate

without the software. However, at the end of the project, unless the software is taken up as a

community effort, or in a subsequent project, there is little incentive or resource to maintain

access to the software in a usable form.

Library preservation strategies should accommodate the preservation of software as well as

other research outputs.

3.2.3 Preserving the data

Related to the previous point, is the reproduction and verification of the results of research

which has generated and analysed data, and published the results. In order to verify the asserted

results of a research project, then it should be reproducible. In many circumstances it may

enough to rerun the analysis on current software if the original data has been preserved. But in

other circumstances, testing accuracy or detecting fraud for example, it may be necessary to

rerun the original software precisely to reproduce the exact result. Scientific reputations may be

at stake here - and they should be judged on the results available to them at the time, using the

software as it was available to them, rather than newer software. Newer software may have

errors corrected, have higher performance or accuracy characteristics, or else have improved

analysis algorithms or visualisation tools. All these factors may lead later analysis of the data

to different conclusions to those originally deduced, but the scientists should nevertheless be

judged on the view they were able to take at the time.

A further issue here is the reuse of data. Data which is collected on sophisticated experimental

equipment or facilities
19

 is expensive; other data which is recording specific events, such as

19

 Such as those operated by the Science and Technologies Facilities Council; the reuse of science data is a prime

motive for the STFC’s interest in data and software preservation.

 Significant Properties of Software

 22

environmental conditions at particular times and places, is non-reproducible. In these

circumstances, it is desirable to allow the data to be preserved and reused in order to maximise

scientific potential of the data. In these circumstances, it is necessary to preserve some

supporting software, to process the data format, and to provide the appropriate data analysis.

This reason, as has already been noted is also relevant to the preservation of other digital

objects. Preservation of document or image formats requires the preservation of format

processing and rendering software in order to content accessible to future users.

Thus it is necessary to preserve software to support the preservation of data and documents, to

keep them live and reusable. In this case, the prime purpose of the preservation is not to

preserve the software per se, so it may be suitable in to not ensure that that software is

reproduced in its exact form, but only sufficient to process the target data. Thus we introduce

the key notion of adequacy, to provide “good enough” preservation” with key properties of the

software preserved and others disregarded.

3.2.4 Handling Legacy

Perhaps the prime motivation to preserve software for most people is to save effort in recoding

Code from the past still needs to be used, due to its specialised function or configuration and it

is frequently seen as more efficient to reuse old code, or keep old code running in the face of

software environment change than to recode. This is certainly the reason for most existing

software repositories, and a significant part of the effort which is undertaken by software

developers both in-house to end-user organisation, and also within software houses. Handling

legacy software is usually seen as a problem, and many strategies are undertaken in order to

rationalise the process, to make it more systematic and more efficient. As a consequence, an

important source of information on significant properties for preservation is the best practice on

software maintenance and reuse, a long recognised part of good software engineering. If you

can find an existing package or library routine, why bother rewriting it? Of course in these

circumstances you need assurance that the software will run in your environment and provide

the correct functionality

3.3 The nature of software artefacts

Software is inherently a complex object, composed of a number of different artefacts. At its

simplest, a piece of software could be a single binary file; however, even in that case, it is

unlikely to be standalone, but accompanied by documentation, such as installation guides, user

manuals and tutorials. Further there may be test suites, specifications, bug-list and FAQs.

More complete software packages will also include source code files, together with build and

configuration scripts, possibly from a number of different systems and packages, with more

complete documentation, including specifications and design documents (including diagrams)

and API descriptions. Software will also have dependencies on a wider environment, including

software libraries, operating system calls, and integration with other software packages, either

for software construction, such as compilers or build management systems, or in the execution

environment, for example web-applications depending on web servers for execution and client

browsers for user interaction. Thus a complete software preservation task may seek to preserve

some or all of these artefacts, and, equally importantly, their dependencies upon each other.

 Significant Properties of Software

 23

Different software artefacts have different significant properties when it comes to preservation.

An archive may in practice want to preserve the software at these different levels, and they

have different consequences when it comes to the application of reuse effort.

 Software Binaries. If software binaries are preserved, then in order to reuse it the precise

software environment needs to be reproduced. Software binaries will only typically only

run in the right configuration of hardware platform and operating system, and sometime

auxiliary libraries and (in the case of byte-code such as Java) run-time interpreters. Thus the

reuse effort is in reproducing this environment, either by preserving the platform

configuration itself (and it is surprising how often in a computing environment a old

machine is maintained with a old software environment just to keep one vital piece of

software running), or by emulating the old environment on a new platform.

 Software Source Code. Software in practice is often maintained at a source-code level.

Thus the source-code as written by the programmer, in a human but not machine readable

code, such as C, Java or Fortran is preserved, and the software reuse effort goes into to

generating machine executable binaries from this code which both execute and maintain the

original functionality. The maintainer must thus adapt and test the code in the face of

change in hardware platform, operating system, programming language and compiler

version, and auxiliary libraries. In this case, supporting items such as test-suites need to be

preserved to ensure that the behaviour of the system in the new environment is maintained.

In the process, the maintainers may have recourse to altering the source code to adapt to a

new environment, and thus we need to consider the question of versioning.

 Software Specification In the minimal case, only the specification of the functionality may

exist, and the reuse effort goes into recoding the system. This is particularly the case when

software algorithms are published for particular tasks, but it could extend to an entire

system, and it is perhaps questionable to how much of the software is really "preserved". In

this case, the adaptation to the new environment is relatively straightforward, as the

recoding itself is in that environment. However, considerable effort must go into the coding

itself - and also the testing to ensure that the behaviour of the new code does indeed respect

the specification.

 Significant Properties of Software

 24

4 Software Engineering

4.1 Introduction

Software engineering provides a substantial body of existing theory and practice on analyzing

and organizing the design, development, structure and lifetime of software.

It can also be observed that there is a large overlap between the requirements for software

preservation and those of software engineering, especially for large software development

which has a long lifetime in production and requires extensive adaptive maintenance. Both

require the high-integrity storage, and replay of software. However, there are also significant

differences.

Software engineers are mainly concerned with maintaining the functionality of current systems

in the face of software and hardware environment change, correcting errors and improving

performance, and in adding additional functionality. They will typically deprecate and

eventually obsolete past versions of the software. They are much less concerned with

maintaining reproducibility of past performance, which may be the concern of software

archivists. So in general, software preservation is not what most software developers and

maintainers do.

Nevertheless, we argue that many of the approaches to software preservation mean in practice

that the practises of software engineers are in fact appropriate to software preservation, many of

the tools, techniques and methodologies of software engineers are useful to software

preservation, and good software preservation practice should adopt, adapt, and integrate these

techniques. Indeed, a conclusion which arises from this study can be summarised as:

Good software preservation arises from good software engineering.

There are a number of specific software engineering techniques which should be considered to

determine their role in software preservation.

Software Development Lifecycle

Software development processes typically have well-defined lifecycle which gives a

framework for describing the nature, role and relationships of the various software artefacts

which form a complete software package. As we shall see later, there is a relationship between

the stage of the software lifecycle and the preservation approach.

Software Documentation

Good software engineering supports good documents, from requirements and design

documents, through installation instructions and change notes, through to manuals and

tutorials, and to issues, errors and bug-tracking lists. Also there are software licences which

give usage conditions on the software. Of particular importance is good systematic

documentation of interfaces and functionality, such as those provided by Unix Man pages,

provided by the NAG documentation (see below) or those supported by JavaDoc. If used

properly, this can give a strong specification of the functional significant properties of modules

or libraries of code and its interface description.

 Significant Properties of Software

 25

Software Version Management

A core part of good modern software development practice is Software Version Management,

otherwise known as source code management. This controls the changes which take place to

the source code of a package, so that conflicting versions of code are avoided and clashes

resolved, and so that via branching, different releases of the code can be supported cleanly by

controlling the structuring and dependencies of different versions of software. Well known

software version management systems include CVS
20

 and Subversion (SVN)
21

. Software

version management systems are important for software preservation as the allow (in a well-

structured development) clean version of the software to be indentified, defining which

components (and versions of the components) form part of which particular release and as they

can cover non-code artefacts, they can also cover documentation, defining which functionality

is supported by which version.

Software Testing

Testing is the process of running the executable code (or part of the code) against

representative sample input data to ensure that the software performs as designed, and thus

provide assurance of the functionality of the data. The sample data should cover the range of

expected inputs, both valid and exceptional input. Testing takes place at different levels, with

unit, integration, acceptance tests. As we shall discuss later, testing has a key role in

establishing the adequacy of preservation when it tests the performance of the preserved system

to ensure that desired significant properties are retained.

Software Reuse

There is a considerable body of research and practical expertise within the Software

Engineering community in Software Reuse. Software reuse initiatives such as NASA ESDS

http://softwarereuse.nasa.gov/ present a software development process which builds reusable

components - a motivation behind Object-Oriented Design frameworks such as J2EE. Asset

library management is considered part of the lifecycle, with a faceted classification of

significant properties forms part of the Software Reuse. The Basic Interoperability Data Model

(BIDM) provides an IEEE standard (1420.1) for interoperable software cataloguing on the

Internet. Other tasks often undertaken in software reuse include also code canonicalization and

generalisation which helps make the components more generic and usable in different

circumstances, as well as more portable for a migration strategy, for example by having less

dependence on non-standard code features.

Although this software reuse expertise is directed at a different aim than software preservation,

it has broadly similar in concerns, and so should be considered as a useful source of experience

for software preservation.

20

 http://www.nongnu.org/cvs/
21

 http://subversion.tigris.org/

http://softwarereuse.nasa.gov/
http://www.nongnu.org/cvs/
http://subversion.tigris.org/

 Significant Properties of Software

 26

5 Frameworks for Software Preservation

In this study we considered a number of different groups engaged in software development and

software repositories which engaged aspects of software preservation. This was carried out by

consulting the literature and/or discussing their experiences with them directly. The groups

were engaged in a range of activities from looking at preservation of digital objects, and thus

needing to consider the function of software in a preservation method, through repositories

which are storing software packages so that they are available to a specific community, to

development projects which have the aim of maintaining and updating a software package over

a long period.

Some of the examples were considering what might be described as general approaches to

repository management and preservation which involve software preservation. In this section,

we describe a number of different frameworks and tools which provide a context for software

preservation, all providing some input to a general conceptual approach, although none of them

providing a comprehensive method.

5.1 The Role of Software in Approaches to Digital Preservation

A number of projects have considered aspects of digital preservation, including Cedars [4],

Chamileon, Planets, Inspect, PREMIS. The Digital Curation Centre has been established to

provide guidance on practical aspects of digital curation and to coordinate efforts from these

and other projects. We will not go through all of these projects in detail– this is covered in for

example [2], [5] and [15]. However, we do consider the role software plays within two

important digital preservation initiatives; the ISO standard OAIS, and the European Integrated

Project CASPAR. Further, the approach of Planets is considered in a later section when we

consider software emulation.

5.1.1 OAIS

The Open Archival Information System (OAIS) reference model is an ISO standard for the

structures and processes required for an archive for the long-term preservation of information,

either physical or digital, but with the emphasis on digital information [10]. While OAIS does

not deal with the preservation of software directly, software does nevertheless play an

important role in the standard, and takes a view on software, which is discussed in this section.

Representation Information is OAIS term for the information that maps a Data Object into

more meaningful concepts. An example of Representation Information for a bit sequence

which is a FITS
22

 file might consist of the FITS standard while defines the format plus a

dictionary which defines the meaning of keywords in the file which are not part of the standard.

The term “Significant Properties” is sometimes used to indicate those properties of a Digital

Object which needs to be preserved, and which often therefore will need to have specific

Representation Information, usually either Structure or Other Representation Information, to

denote how it is encoded.

22

 Flexible Image Transport System is a standard format for astronomical data endorsed by NASA and the

International Astronomical Union. See http://heasarc.nasa.gov/docs/heasarc/fits.html

http://heasarc.nasa.gov/docs/heasarc/fits.html

 Significant Properties of Software

 27

Long term preservation is the act of maintaining information, as authentic and independently

understandable by a Designated Community; by defining it in this way OAIS [10] makes the

statement “we are preserving this digital object” testable. It can be argued that if that statement

is not testable, it is not really meaningful, and also any organisation claiming to be preserving

digital objects could not therefore be tested and validated

The Designated Community is an identified group of potential consumers who should be able

to understand a particular set of information. The Designated Community may be composed of

multiple user communities. A Designated Community is defined by the archive management

and this definition may change/evolve over time. This concept is introduced by OAIS in order

to allow the claim of digital preservation to be tested and also to allow and archive to limit the

amount of Representation Information which it must maintain.

Inf ormation

Object

Representation

Inf ormation

interpreted

using

Data

Object

interpreted using

Phy sical

Object

Digital

Object

Bit

1. .*

*

1

1

Figure 1 OAIS Information Model

Interpreted using

Semantic
information

Structure

Information

Other
Representation

Informationadds meaning to

Representation Information

*

1

*

1

4-11.1

Figure 2 Representation Information Object

Representation Information is an Information Object that may have its own Digital Object and

other Representation Information associated with understanding each Digital Object, as shown

 Significant Properties of Software

 28

in a compact form by the ‘interpreted using’ association, the resulting set of objects can be

referred to as a Representation Network, as shown in Figures 1 and 2 above. Representation

information can take one of a number of forms, including structural or semantic information, or

indeed software.

Take the case of a piece of software, where perhaps the significant property is that when one

clicks on a button a menu appears; let us consider what this might mean in terms of

Representation Information.

In terms of software source code the Representation Network could include the definition of

the text encoding e.g. the bit encoding of Unicode, plus the definition of the coding language

syntax and standard libraries. In addition one would need the descriptions of the additional

library calls that are embedded in the code. If one wishes also to preserve the build system then

details of that build system, e.g. ant, the build libraries and the target machine such as operating

system, hardware, peripherals (mouse, keyboard etc) would be needed. If the software operates

on a Virtual machine, such as JAVA (the JVM), then one would need the version of the JVM,

which in turn relies on a variety of underlying operating system capabilities.

Whether a repository would need to capture all this (and perhaps more) Representation

Information depends on the definition of the Designated Community.

However much (perhaps most) software relies on a variety of other, perhaps remote, resources.

This raises another level of complexity in software systems. This is discussed below.

OAIS specifically discusses Access Service Preservation which includes the following.

 The Dissemination API which is an Application Programming Interface (API) maintained

by the OAIS as Access Software. This allows the Designated Community to use the digital

objects in new ways, not restricted by earlier implementation limitations.

 Preservation of Access look and feel where we assume that the Designated Community

wishes to maintain the original “look and feel” of the Content Information of a set of AIUs

as presented by a specified application or set of applications. Conceptually, the OAIS

provides an environment that allows the Consumer to view the AIUs Content Information

through the application’s transformation and presentation capabilities. For example, there

may be a desire to use a particular application that extracts data from an ISO 9660 CD-

ROM and presents it as a multi-spectral image. This application runs under a particular

operating system, requires a set of control information, requires use of a CD-ROM reading

device, and presents the information to driver software for a particular display device. In

some cases this application may be so pervasive that all members of the Designated

Community have access to the environment and the OAIS merely designates the Content

Data Object to be the bit string used by the application. Alternatively, an OAIS may supply

such an environment, including the Access Software application, when the environment is

less readily available.

 Significant Properties of Software

 29

5.1.2 CASPAR

The European Project “Cultural, Artistic and Scientific knowledge for Preservation, Access

and Retrieval (CASPAR)”
23 is a major integrated project to research, implement, and

disseminate innovative solutions for digital preservation based on the OAIS reference model.

Again, it does not concentrate on the preservation of software per se, but by necessity, software

does play a major role, so the project takes a view on software preservation, as discussed

below.

An approach to software preservation which the CASPAR project is adopting is to take the

view that one would not expect to preserve the whole body of software, but rather the interface,

which can then be re-implemented in future. This requires careful planning of the software

interfaces to try to minimize dependencies on other software systems, for example

communications protocols. This approach attempts to maintain interoperability between

components while freeing future users from any current limitations.

A related way to capture the design of the software is to use a UML tool to produce a PIM

(Platform Independent Model) which can be processed to produce implementations for a

variety of languages and communication protocols. Another approach to free one of

dependence on communication protocols is to use frameworks such as SPRING. These

frameworks generate code, for example from interface definitions, to implement one of a

choice of communication protocols.

Another area that CASPAR is investigating is that of software preservation to support specific

data formats. For example there is proprietary software which processes sound in a workflow

on a MacIntosh. The software has a time expiring licence and a dongle. The issue is to maintain

the timings (which affects the sound) and the specific peripherals (including the dongle), which

respecting or fooling the licensing system. In order to produce the right sounds specialised

software drivers are needed which interact with specialised sound production hardware.

Large scientific data processing systems such as the ESA Multi Mission Facility Infrastructure

(MMFI) linked to Grid systems is at yet another level of complexity being considered. Here

one encounters tightly linked distributed software components in several languages on different

hardware and operating systems, with interactions with large databases and specialised

processing systems.

5.2 Virtualisation and Software Emulation

A number of approaches to preservation used virtualisation and emulation to preserve digital

content. We look at some of the work undertaken in this area and consider the significant

properties involved.

23

 CASPAR - Cultural, Artistic and Scientific knowledge for Preservation, Access and Retrieval - an Integrated

Project co-financed by the European Union within the Sixth Framework Programme (Priority IST-2005-2.5.10).

http://www.casparpreserves.eu/

http://www.casparpreserves.eu/

 Significant Properties of Software

 30

5.2.1 Basic virtualisation

In Computer Science a Virtual Machine
24

 is a software implementation of a machine

(computer) that executes programs like a real machine. Virtual machines are separated into two

major categories, based on their use and degree of correspondence to any real machine. A

system virtual machine provides a complete system platform which supports the execution of a

complete operating system (OS). In contrast, a process virtual machine is designed to run a

single program, which means that it supports a single process – a common example of this

would be the JAVA language JVM. An essential characteristic of a virtual machine is that the

software running inside is limited to the resources and abstractions provided by the virtual

machine - it cannot break out of its virtual world.

System virtualisation is a proven concept that was first developed in the 1960s by IBM as a

way to logically partition large, mainframe computers into separate virtual machines. It was

effectively abandoned during the 1980s and 1990s when client-server applications and

inexpensive x86 servers and desktops established the model of distributed computing. Today,

computers based on x86 architecture are faced with the same problems of rigidity and

underutilization that mainframes faced in the 1960s.

Unlike mainframes, x86 machines were not designed to support full virtualisation
25

. There are

17 specific x86 CPU instructions that create problems when virtualized, causing the operating

system to display a warning, terminate the application, or simply crash altogether. As a result,

these instructions were a significant obstacle to the initial implementation of virtualisation on

x86 computers. In 1999 VMware Inc.
26

 patented an adaptive virtualisation technique that

“traps” these instructions as they are generated and converts them into safe instructions that can

be virtualized, while allowing all other instructions to be executed without intervention. The

result is a high-performance virtual machine that matches the host hardware and maintains total

software compatibility. VMware pioneered this technique and is today still a leader in

virtualisation technology. In 2005 and 2006, extensions to their respective x86 architectures by

Intel and AMD has also finally resolved the technical difficulties inherent in the x86 instruction

set.

Microsoft also offers two Windows-based x86 virtualisation products, Microsoft Virtual PC

and Microsoft Virtual Server, based on technology they acquired from Connectix.

The benefits of virtualisation to the user include:-

 Compatibility: Virtual machines are compatible with all standard x86 computers

 Isolation: Virtual machines are isolated from each other as if physically separated

 Encapsulation: Virtual machines encapsulate a complete computing environment

 Hardware independence: Virtual machines run independently of underlying hardware.

24

 http://en.wikipedia.org/wiki/Virtual_machine
25

 http://www.floobydust.com/virtualization/lawton_1999.txt and http://en.wikipedia.org/wiki/X86_virtualization
26

 http://vmware.com/

http://en.wikipedia.org/wiki/System_platform
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Process_%28computing%29
http://en.wikipedia.org/wiki/Virtual_machine
http://www.floobydust.com/virtualization/lawton_1999.txt
http://en.wikipedia.org/wiki/X86_virtualization
http://vmware.com/

 Significant Properties of Software

 31

5.2.2 Virtualisation and Software Preservation

Today virtualisation allows users to easily run other x86 based operating systems in windows

on their desktop. For example VMware Inc. make available both free
27

 and commercially

supported
28

 versions of their virtualisation technology. These are available for both Windows

and Linux platforms and give a very close approximation to a physical PC – with disks (either

mapped to a file on the host OS or to a physical disk partition), networking (using the host

Ethernet connection) and shared access to peripherals such as CD/DVD drives, USB devices

and even to the host sound card. Other operating systems are installed into instances of the VM

from their installation media and essentially give the ability to run either another copy of the

same or a different version of the host operating system (for example, Windows 98 on

Windows XP) or a different system entirely (for example, Linux under Windows – or vice-

versa).

The UK National Archives
29

 has entered into an interesting partnership with Microsoft
30

 to try

to preserve the exact look and feel of Digital Documents against changes of operating systems

or the application used to render these files over time. Essentially this project uses a series of

historical Microsoft operating systems with each running in their own Microsoft Virtual PC

virtual machine implementation. Installed on these running Virtual Machines are the exact

versions of the applications (such as Microsoft Word, Excel etc.) which would have been in use

at the time the operating systems were current. Thus a very close match of OS and application

can be selected simply by knowing when the digital document of interest was created.
31

32

33

Thus, with some confidence, it is possible to view it almost exactly as its creator did.

5.2.3 Planets and Dioscuri

Preservation and Long-term Access through NETworked Services (PLANETS)
34

 is a European

project under the 6
th

 framework programme looking at developing a practical tools and services

to support long-term preservation of digital content. PLANETS is developing a framework for

preservation planning and for integrating preservation support tools within an OAIS based

framework.

PLANETS aims explicitly to support the preservation of significant characteristics of digital

objects via the addition of appropriate representation information in the OAIS model. In [9],

software is considered as RI for a digital object, and a more detailed breakdown of software

item is given than in the OAIS standard, so that the appropriate software for characterising and

preserving the digital object can be captured. However, there is as yet no consideration of the

problem of preserving the software itself, nor are the specific characteristics of software itself

which need to be preserved defined.

In [7] a number of different scenarios are discussed to support different preservation

approaches, from migration to emulation. However, the project appears in practice to promote

27

 http://www.vmware.com/products/server/
28

 http://www.vmware.com/products/ws/
29

 http://www.nationalarchives.gov.uk
30

 http://www.microsoft.com/en/gb/
31

 http://www.nationalarchives.gov.uk/documents/04july07.pdf
32

 http://news.bbc.co.uk/1/hi/technology/6265976.stm
33

 http://www.nationalarchives.gov.uk/news/stories/164.htm
34

 http://www.planets-project.eu/

http://www.vmware.com/products/server/
http://www.vmware.com/products/ws/
http://www.nationalarchives.gov.uk/
http://www.microsoft.com/en/gb/
http://www.nationalarchives.gov.uk/documents/04july07.pdf
http://news.bbc.co.uk/1/hi/technology/6265976.stm
http://www.nationalarchives.gov.uk/news/stories/164.htm
http://www.planets-project.eu/

 Significant Properties of Software

 32

an emulation based approach, and the project is supporting the ongoing developing of the open

source x86 emulator Dioscuri
35

To quote from Dioscuri’s documentation:

Dioscuri is an X86 computer hardware emulator written in Java. It is designed by the

digital preservation community to make sure that documents and programs from the past

can still be experienced in the future. To do so, this emulator has two key features above

any other emulator: it is durable and flexible. Durable because it can be ported to any

other computer platform which has a Java Virtual Machine (JVM) without any extra effort.

This reduces the risk that the emulator fails to work on one computer system in the future,

because it will continue to work on another. Dioscuri is also flexible because it is

completed component-based, just like a real computer. Each hardware component is

emulated by a software surrogate called a module. Combining all modules allows the user

to configure any computer system (if compatible). Add a new module or upgrade another

one and the emulator is capable of running it.
36

Dioscuri has been developed by the Koninklijke Bibliotheek (KB), National Library of the

Netherlands, and the Nationaal Archief of the Netherlands, and taken up by the PLANETS

project where it is being further developed lead by a software company, Tessella Support

Services plc.

Dioscuri is motivated to support the long-term preservation of document formats, especially

commercial offerings are no longer supported by their vendor and archives are required to

preserve the documents in as unchanged a form as possible, including content, structure and

layout. Migration may alter the original document into a new version, so they advocate

emulation to mimic the environment in which the original document was rendered.

Of particular interest to us are the environmental features which Dioscuri aims to emulate

computer components. The complete list (again from the documentation) is shown below:

 16-bit Intel 8086-based CPU (real-address mode only)

 1 MB RAM (expandable)

 Storage devices: floppy, HDD

 Input devices: XT/AT/PS2 compatible keyboard

 Output devices: virtual screen

 VGA video graphics adapter

 DMA-support

 IRQ-handling based on a Intel 8259 PIC

 Timing mechanism based on an Intel 82C54 PIT and Crystal Clock

 Real-time clock with integrated CMOS

 System BIOS using Plex86/Bochs BIOS

 Video BIOS using VGA LGPl’ed BIOS

Dioscuri provides a library of modules which can be imported to support particular features as

the application software (and indeed the end digital object) requires. Thus we can consider

35

 http://dioscuri.sourceforge.net/index.html

36

 http://dioscuri.sourceforge.net/manual.html

http://dioscuri.sourceforge.net/index.html
http://dioscuri.sourceforge.net/manual.html

 Significant Properties of Software

 33

these to be the significant properties of the application software which the emulator seeks to

preserve.

The developers recognised that for emulation to be an effective preservation strategy, the

emulator itself has to be sustainable in the long-term. Consequently, they adopt the notion of

the Universal Virtual Machine (see for example [9]) , in this case using Java Virtual Machine

(JVM) (while recognising the risk of different behaviour arising from different versions of the

compiler) and use plugabble modules to flexibly support different environmental features, such

as processor, memory, keyboard, etc

5.3 Existing Software Repositories

Current software repositories exist to collect and distribute software. For example, there are

several web-based archives of open-source, shareware or software available to the community

under common licensing agreements, such as Eduserv Chest
37

. In domain specific areas,

repositories have been established which collect and distribute specialised software, including

the US National HPCC Software Exchange for high performance computing
38

, Starlink
39

 for

astronomy, GAMS for mathematical software
40

, OMII for Grid software
41

, CCPForge for

Collaborative Community Projects in computational chemistry (discussed below). The primary

purpose of these repositories is to provide a central point for a community interested in a

particular topic to share and exchange software and also include tools for community software

development; the most well known and most general of these is the SourceForge site for open

source software development, discussed below.

Software characterisation in these repositories varies from using simple alphabetic lists,

through simple categorisation for broad functional areas, through to indexing via detailed

hierarchical thesauri of terms such as the GAMS thesaurus, used by GAMS, NHSE and NAG
42

.

Thus significant properties characterised are typically restricted to discovery terms, together

with programming language and supported operating systems. The quality control on the

software in the repository varies. However, these properties are not considered in the context

of preservation.

5.4 Classification Schemes for Software

Classification schemes for software have been proposed and are used to classify the function

and to some extent the context of software. These schemes provide a functional classification

of software within a controlled vocabulary. They are generally designed to be broadly based

and do not give a lot of detail into the precise functioning of the software package itself. Thus

they are largely useful as a significant property for categorisation, search and discovery rather

than enabling the replay of the software.

Some well-known examples would include the following.

37

 http://www.eduserv.org.uk/chest.aspx
38

 http://www.nhse.org/index.htm
39

 http://www.starlink.rl.ac.uk/
40

 http://www.gams.com/
41

 http://www.omii.ac.uk/
42

 http://gams.nist.gov/,

http://www.eduserv.org.uk/chest.aspx
http://www.nhse.org/index.htm
http://www.starlink.rl.ac.uk/
http://www.gams.com/
http://www.omii.ac.uk/
http://gams.nist.gov/

 Significant Properties of Software

 34

The Computing Classification Scheme of the Association of Computing Machinery

(ACM)
43

 is used usually to classify computer science articles within ACM publications. It

provides a broad view of computing, mixing different facets of computing, such as application

domain (e.g. business applications), computing science area (e.g. Artificial Intelligence), and

hardware platform. While a good starting point for the general aspects of the significant

properties of software, much more work would be required to make this complete.

More domain specific classifications such as the Guide to Available Mathematical Software

(GAMS) Thesaurus
44

, give focussed and detailed information into the functionality supported.

For the functional significant properties of software packages (down to a level of detail of a

library item) in this area, this may be sufficient.

Other thesauri also exist such as INPEC or the USPTO (United States Patent and Trade Office)

classification scheme. Again these are too general to be of great use to specify the significant

properties of software in anything other the most general functional terms.

5.5 SourceForge and CCPForge

Over the last ten years, the notion of a software forge has been developed. A software forge is

a web-site which hosts software development projects which involve developers in highly

distributed locations. These are typically open-source efforts (though there is no reason why

they always should be), with a large number of volunteer developers operating across a number

of countries and organisations. Such community efforts require a common place to lodge and

share their codebase, provide documentation and community communications; the software

forge site provides this functionality.

The most well-known of these sites is SourceForge
45

, which supports 100,000 projects with

1,000,000 users. SourceForge provides a space for source code management using CVS,

documentation, simple web site and community forums for discussion and bug tracking.

Projects in SourceForge are categorised against a fairly crude topic mapping. Other sites

provide similarly functionality, typically for a specialised community, where there is the

opportunity for more specialised support and interaction with a like minded community.

CCPForge
46

 is a software forge which provides a self service space for software from the

Computational Chemistry community. Again, CCPForge provides a CVS repository for source

code management and a number of tools to support community engagement. Unlike

SourceForge this repository is actively managed and users normally need to create an

individual username by self-registration and then have this authorised for individual project

access. CCPForge is modelled on SourceForge principles but also provides some facilities for

building and maintaining binary versions of the code. Projects can provide Bug Tracking,

Support and Feature Request facilities – in addition to the more common Documentation

Management, Mailing Lists and, of course, Platform Specific pre-built binary packages.

CCPForge sees its task as very much to provide a meeting place for developers and a storage

and source code management facility for the projects in the Computational Chemistry. It does

43

 http://www.acm.org/class/

44

 http://gams.nist.gov/
45

 http://sourceforge.net/
46

 http://ccpforge.cse.rl.ac.uk/

http://www.acm.org/class/
http://gams.nist.gov/
http://sourceforge.net/
http://ccpforge.cse.rl.ac.uk/

 Significant Properties of Software

 35

not regard that it has any role of controlling the projects or putting specific requirements on

them - for example for software preservation. It is up to the projects themselves to take what

ever actions they see fit to maintain their documentation and make them suitable for migration.

That is part of the software engineering practice of the project itself.

Nevertheless, providing better facilities to support preservation in software forges could be a

suitable future developement of such systems, to build on the existing good practice in source

code control and documentation to record the significant properties of software for preservation

and thus convert the forges into archiving repositories.

 Significant Properties of Software

 36

6 Case Studies of Software Developments

Another group of case studies were those providing software, either as part of their line of

business in developing and supporting software products over a long period or time, or like the

BADC providing software as an adjunct to data management and distribution services.

It is notable that none of these groups would claim to be doing software preservation, rather

either maintaining currency for a current software package, providing a common holding place

for community development of current software, or else provide additional software to support

the preservation of another digital object type, such as documents or scientific data. Thus it

soon became apparent that it was not necessarily constructive to ask them about the significant

properties of software that they were interested in or they took effort to preserve. They simply

did not think in those terms. Rather the discussion took the direction of how the software they

maintained was adapted and maintained over time and how it could accommodate changes in

environment and external technology as well as the changing functional requirements of the

intended audience.

We give a description of the problems and strategies of maintaining long-term usability of

software for a number of initiatives.

6.1 BADC

The NCAS British Atmospheric Data Centre
47

 (BADC) is a NERC funded centre which has the

role: to assist UK researchers to locate, access and interpret atmospheric data and to ensure

the long-term integrity of atmospheric data produced by Natural Environment Research

Council (NERC) projects.

The BADC has substantial data holdings of its own and also provides information and links to

data held by other data centres. BADC holds Datasets produced by NERC-funded projects,

which are of high priority since the BADC may be the only long-term archive of the data; and

also third party datasets that are required by a large section of the UK atmospheric research

community and are most efficiently made available through one location (e.g. Met Office and

ECMWF datasets). To support this aim BADC develops, supports, supplies and provides

access to a variety of software necessary to locate access and interpret this atmospheric data.

Thus associated with the need to preserve the data is also a need to consider appropriate

preservation actions required for software. In this section we consider a number of the

software tools and their preservation properties
48

.

The BADC would categorise the types of software it interacts into the following classes:

1. Software which it utilises to facilitate the direct discovery, permit remote or local

access to data

47

 http://badc.nerc.ac.uk/home/index.html
48

 This work undertaken in conjunction with the JISC funded SCARP project http://www.dcc.ac.uk/scarp/ which is

conducting a wider study into the preservation needs of BADC.

http://badc.nerc.ac.uk/home/index.html
http://www.dcc.ac.uk/scarp/

 Significant Properties of Software

 37

2. Software which processes archived data for the “on-the-fly” provision of processed

data product

3. Generic Analysis tools

4. Large Scale Modelling specifically the Met Office Unified Model

5. Data Set Specific software tools and scripts which are informally archived

6. Community based models and analysis tools.

The BADC considers the long term archiving of software an impractical option principally due

to the complex dependencies of software. It takes the view that it expects much current

software will be superseded by newer software which will be capable of recreating and

enhancing much of the existing analysis and access functionality. There will however be data

set specific analysis models based in the user community for which it is anticipate this will not

happen. The cost of archiving such models by migrating to new technologies as they evolve is

prohibitive and emulation technologies have not yet matured sufficiently to allow confidence

that storage of binary executables will be sufficient for preservation purposes. The BADC

additionally considers it to be outside their core remit to harvest and archive such models.

We examined key examples from the above categories exploring the functionality the software

provides users, the human/technical dependencies and other issues associated with them.

6.1.1 On the fly provision of processed data

6.1.1.1 Trajectories

Functionality: The BADC trajectory model derives the parcel paths from a set of analysed

winds. These winds are from 40 years of archived data in a mixture grib and pp data formats

held at the BADC. The trajectories software allows you to track a specified wind parcel over

time and project path onto global map. They also allow you to create plots of pressure,

temperature and potential temperature

User and Technical Dependencies. The software is written in IDL with a perl web interface.

User will require some knowledge to use this software but it currently well documented and

supported by the BADC helpdesk.

Versions and Preservation. The BADC has had only one version of the trajectories software

which although the software author has left the BADC it is still capable of maintaining. Again

it anticipated that this software has no real preservation merit in itself.

The ECMWF (European centre for medium range weather forecasts) provides detailed

technical documentation about the Integrated Forecasting System (IFS) used to generate the

data sets held at the BADC. This technical detail regarding the following types of processes

and procedures is however critical data provenance information for any trajectories generated:

Observation processing; Data assimilation; Dynamics and numerical procedures; Physical

processes; The Ensemble Prediction System; Technical and computational procedures.

6.1.1.2 Data Extractor

Functionality: The Data Extractor provides the following functionality to BADC users:

1. Extraction of NetCDF datasets.

2. Differencing between datasets.

3. Browsing and selection of subsets.

4. Selection in space and time.

 Significant Properties of Software

 38

User and Technical Dependencies. Data extractor is written in Python .If a user wishes to

install there own version of Data Extractor it relies on the following software

 A webserver (probably Apache).

 CDAT – Climate Data Analysis Tools (for more detail see below)

 Python – if not installed with CDAT.

Versions and Preservation. Currently on its first version and again no real preservation merit

6.1.1.3 Geosplat

Functionality GeoSPlAT (GeoSpatial Plotting and Animation Tool) was developed to fill a

requirement of both the BADC and the NERC DataGrid. Geosplat is normally used in

conjunction with the Data extractor to provide a data extraction suite providing User-defined

plotting and User-defined animation.

User and Technical Dependencies as with the Data Extractor above

6.1.2 Generic Analysis tools

6.1.2.1 Xconvsh/convsh

Functionality. Xconvsh/convsh are binary utilities developed at the University of Reading

which allow the user to access, subset, interpolate, manipulate, convert and visualise data files

of the following formats:

 NetCDF format

 GRIB format

 GrADS format

 UK Met Office Unified Model Data Output format

 UK Met Office PP format

 DRS format

Xconv is an X windows utility which allows the user to interactively manipulate the data and

produce an on-screen plot of the data field. It has an intuitive, user-friendly interface and is able

to read and write a wide variety of different data formats. Convsh is the command line

equivalent of Xconv, and allows GRIB files to be processed in 'batch' mode. The BADC has

additionally developed some Convsh scripts to batch process files related to individual datasets.

User and Technical Dependencies.

In order to use an older versions of xconv than 1.90, then it is possible that byte swapping of

the input data files may be required before they can be read on your systems using

xconv/convsh. This may be done using a (unix) based byte-swapping utility called swapbytes.

This allows a 4 byte word file to be converted from big to little endian, and vice versa. The tar

file contains the source code and a basic makefile. (Should you require byte-swapping of 8-byte

word files, use this utility instead; usage: swap8 < infile > outfile.)

http://badc.nerc.ac.uk/help/software/xconv/programs/swapbytes-0.1.tar
http://badc.nerc.ac.uk/help/software/xconv/programs/swap.tar

 Significant Properties of Software

 39

Figure 3: Screenshot of XConv

Version and preservation. A number of different binary versions are stored for different

platforms.

Version 1.91 Older Version 1.90 are available for

IBM AIX Powerpc Executables Linux (dynamic library)

Linux ia64 Executables Linux (static library)

Linux x86 Executables Dec Alpha

Linux x86_64 Executables Fujitsu (v1.05)

Mac OS X Power c Aqua Executables HP

Mac OS X Powerpc X11 Executables Linux_ia32

SGI IRIX Mips n32 Executables Linux_ia64

SGI IRIX Mips 64 Executables SGI

Sun Solaris x86 Executables SGI_origin

Windows_x86 xconv Executable SUN

Windows_x86 convsh Executable SUN_static_f77 (v1.05)

Windows_x86 xconv Starkit file

T3E

6.1.2.2 GrADS

Functionality. The Grid Analysis and Display System (GrADS) is used for easy access,

manipulation, and visualization of data. It performs these functions for the GRIB, NetCDF and

HDF-SDS data formats. GrADS has a programmable interface (scripting language) that allows

for sophisticated analysis and display applications GrADS will typically be used for operations

such as:

 Plotting a variable from a file on a shaded plot and overlaying contours from a second

variable.

 Aggregating multiple files into one control file so that slices of data can be read in across

multiple files.

 Significant Properties of Software

 40

 Differencing 2 different datasets.

 Calculating departures from a climatology from a dataset.

 Regridding a dataset.

 Calculating the statistical data from variables.

Data may be displayed using a variety of graphical techniques: line and bar graphs, scatter

plots, smoothed contours, shaded contours, streamlines, wind vectors, grid boxes, shaded grid

boxes, and station model plots. Graphics may be output in PostScript or image formats

User and Technical Dependencies. Operations are executed interactively by entering

FORTRAN-like expressions at the command line. A rich set of built-in functions are provided,

but users may also add their own functions as external routines written in any programming

language. The full GrADS distribution contains pre-compiled binary executables, the source

code, documentation, and the supplementary data sets that are required to run GrADS (fonts

and map files). The binary distribution contains only the suite of executables. Two MS

Windows builds of version 1.8 are available: xwin32 requires an X-window server in order to

display graphics, and win32e uses native windows. The MS windows versions are packaged

with an install script. All other versions, the tar file needs to be uncompressed and unpacked

after download.

Versions and Preservation. GrADS has been implemented for the following operating

systems:

 DEC

 Intel / LINUX

 SUN

 Macintosh OSX

 SGI / IRIX

 SGI / IRIX

 IBM / AIX

 MS Windows

6.1.2.3 CDAT

CDAT (Climate Data Analysis Tools) was developed at the Program for Climate Model

Diagnosis and Intercomparison (PCMDI). It was specifically designed for climate science

data. CDAT makes use of an open-source, object-oriented, easy-to-learn scripting language

(Python) to link together separate software subsystems and packages to form an integrated

environment for data analysis.

 Significant Properties of Software

 41

Figure 4: Dependencies of modules in CDAT

CDAT provides a number of modules, which are illustrated in Figure 4.

 cdms - Climate Data Management System (file I/O, variables, types, metadata, grids)

 cdutil - Climate Data Specific Utilities (spatial and temporal averages, custom seasons,

climatologies)

 genutil - General Utilities (statistical and other convenience functions)

 numPy - Numerical Python (large-array numerical operations)

 vcs - Visualization and Control System (manages graphical window: picture template,

graphical methods, data)

Functionality. BADC users of CDAT will typically be to use it for operations such as:

 Plotting a variable from a file on a polar stereographic projection.

 Aggregating 1000s of files into one XML file so that slices of data can be read in across

multiple files.

 Differencing 2 different datasets (as the Python Numeric package allows array algebra).

 Calculating departures from a climatology from a dataset.

 Regridding a dataset and then calculating a spatial average.

 Calculating the covariance between two variables.

 Calculating the mean and standard deviation of a variable.

http://www2-pcmdi.llnl.gov/software-portal/cdat/manuals/cdms_v4.0_html/ch1_cdms_4.0.html/#1.1_Overview
http://www2-pcmdi.llnl.gov/software-portal/cdat/manuals/cdutil/cdat_utilities.html
http://www2-pcmdi.llnl.gov/software-portal/cdat/manuals/cdutil/cdat_utilities-2.html#pgfId-998200
http://www2-pcmdi.llnl.gov/software-portal/cdat/manuals/cdutil/cdat_utilities-2.html#pgfId-998200
http://numeric.scipy.org/
http://www2-pcmdi.llnl.gov/software/cdat/support/vcs/vcs.html
http://www2-pcmdi.llnl.gov/software/cdat/support/vcs/vcs.html

 Significant Properties of Software

 42

Figure 5: Screenshot of CDAT

Some key features of CDAT for BADC users include:

 a choice of interfaces: command-line, scripting or graphical user-interface (Visual

CDAT (VCDAT)).

 an XML-based format and tools for aggregating large datasets.

 manipulation of large data arrays possible due to use of Python Numeric package.

 interfaces to external packages such as the Live Access Server (LAS) for web-based

access to datasets.

User and Technical Dependencies. A user can potentially utilise CDAT in number of ways

depending on their skill level and scientific objectives CDAT is scriptable along you to perform

bespoke operation or users use VCDAT Graphical User Interface (VCDAT) which is the

graphical user interface for CDAT. It helps users become familiar with CDAT by translating

every button press and keystroke into Python scripts. VCDAT does not require learning Python

and the CDAT software. CDAT possesses a number of predefined analysis, conversion, sub-

setting and array operations. It also has interfaces to FORTRAN and C/C++ allowing it to

interact with user created models and programs.

One factor which has proven to be a barrier to its uptake has been the length of time in effort it

takes to initially install CDAT. CDAT requires a Linux/Unix distribution. There are many

different platform-specific operations that need to be carried out during the installation process,

setting of environment variables, changing shell modes, installing libraries etc
49

. In order to

remove these barriers a CDAT “Lite” is under development.

Versions, Platforms and Preservation. CDAT is fully supported on the following platforms:

 Macintosh OS X 10.4.x/10.3.x/PowerPC

 RedHat Enterprise Linux WS 3.x/i386 and Enterprise Linux WS 4.x/i386

The CDAT team will help port to these platforms, but is not actively supporting them:

 RedHat Linux 8.x and 9.x/i386

 Sun/Solaris 8 and 9

 SuSE Linux 8.x and 9.x/i586

49

 Full details of these complexities can be found at http://www2-pcmdi.llnl.gov/software-

portal/cdat/download/installation-guide

http://www2-pcmdi.llnl.gov/software-portal/cdat/download/installation-guide
http://www2-pcmdi.llnl.gov/software-portal/cdat/download/installation-guide

 Significant Properties of Software

 43

CDAT has also been known to be ported to the following additional platforms:

 Cygwin (Windows) 1.5.x/i386

 RedHat Fedora Core 1, 2, 3, 4/i38

 SGI Altrix (64-bit) running RedHat Linux

 HP-UX 11

 IBM AIX 5L

 Linux flavours not mentioned above (e.g., Mandrake, Caldera, and Debian)

 OSF1 V4.x

 SGI IRIX 6.5

Note this is available for multiple platforms but not Windows

6.1.3 Met Office Ported Unified Model

The Unified Model is the name given to the suite of atmospheric and oceanic numerical

modelling software developed and used at the Met Office. The model supports global and

regional domains and a wide range of temporal and spatial scales that allow it to be used for

numerical weather prediction as well as a variety of related research activities including

climateprediction.net (a distributed project to consider a number of climate models to

investigate the likely effects of climate change) . The Ported Unifies Model software allows the

Unified Model to be run on a user's own system.

Functionality. The main model components are:

 User Interface. An X-Windows application for setting up model integrations. It

comprises over 200 separate windows and may be customised by the user.

 Reconfiguration. A generalised interpolation package used to convert model data files

to new resolutions and areas.

 Atmosphere Model. Grid point split-explicit dynamics and physical parameterizations.

 Ocean Model
 Atmosphere-Ocean Coupling. Software to run atmosphere and ocean models in

coupled mode, including a dynamic sea-ice model.

 Diagnostics and Output. Internal model package to output a range of diagnosed and

derived quantities over arbitrary time periods, sub-areas and levels.

User and Technical Dependencies. The UM is a large and complex software system,

primarily designed for use in a research and operational forecasting environment. According to

the met office anyone wishing to install or use the PUM requires, at least, the following

competencies.

 Have a good working knowledge of:

 Unix

 Fortran77 and Fortran90

 Preferably have experience in:

 Problem solving

 Use of debuggers

 Compiler usage and manipulation

 Have someone available who has:

 C programming experience

 Unix system administration experience

 Significant Properties of Software

 44

 Access to system files

 Data manipulation experience

 Knowledge of visualisation techniques

 Desirable, but not essential to have knowledge of:

 Perl programming language

 Bourne shell script languages

 Tcl/Tk or programming in X

A ported version of the Unified Model, the Ported Unified Model (PUM), has also been

developed suitable for running on workstations, PCs running the Linux Open Source operating

system as well as the massively parallel computer systems used for Operational forecasting at

the Met Office. The focus of most recent, work has been to optimise the Unified Model for use

with vector supercomputers like the Met Office's NEC SX-8. This has been built upon previous

work, including incorporating a non-hydrostatic dynamical core into the PUM. The latest

release of the Ported Unified Model, 6.1, represents a significant upgrade of both the scientific

and technical capabilities of the model. This included significant porting work to support the

use of clusters of commodity-based computers.

Versions and Preservation. A complex model such as the Unified Model is under continuous

development by a large team of scientists and programmers. A code configuration management

system is vital to the successful coordination of these code developments. The Unified Model

is tracked by a version release number in the form X.Y where X denotes major changes and Y

denotes general developments. Source code developments, or modification sets as they are

known are under the overall control of the Unified Model system manager and day-to-day

control of a code librarian. A proprietary source code revision system is used to merge new

code with the development stream, but plans are underway to automate the process further

using modern source code control software tools that will be portable across computer

platforms.

6.1.4 Data Set Specific software tools and scripts

A lot of software is created for specific data sets for a number of reasons the most common

being

 Uncommon data formats which generic analysis tools cannot read

 Skill sets of project scientists

 Specialised requirements for dimensions

 Specific visualization requirements

 Prejudice of scientist or cultural inertia within a scientific field

6.1.4.1 MST data plotting software

Functionality. One example of data set specific plotting and analysis programs is the MST

GNUplot software. This software plots Cartesian product of wind profiles from netCDF data

files. Software needed to developed due to specialised visualization requirements where finer

definition of colour and font was needed than that provided by generic tools.

 Significant Properties of Software

 45

Figure 6: MST plotting software

User and Technical Dependencies. This software requires a Unix or Linux distribution and

Python with python-dev module installed with numpy array package and pycdf (required for

NetCDF files). It also requires GNUplot to be installed to set environmental variables. A

previous version was created using Matlab but due to licensing restrictions it was necessary to

move to GNU plot

6.1.4.2 Scripts in the data collection

Although there is no policy in place to formally archive software specifically associated with

data sets. BADC have “instinctively” stored executables, documentation, and scripts along side

the data in directories. In the ACSOE (Atmospheric Chemistry Studies in the Oceanic

Environment) dataset example below the software directory contains the follow

 Fortran code, executables and documents to check file integrity

 SQL queries to facility data access to ACSOE database

 IDL scripts with documentation

6.2 NAG

The Numerical Algorithms Group (NAG)
50

 is a not-for-profit company limited by guarantee

with long history of providing software for the solution of mathematical, statistical and data

mining problems. It originated out of partnership between a number of universities to develop

a general purpose library of numerical and statistical subroutines. This library was first

released on 1
st
 October 1971, and has been in continuous use since. NAG have since

50

 http://www.nag.co.uk/

http://www.nag.co.uk/

 Significant Properties of Software

 46

diversified into a number of other tools and projects, such as recently being engaged to support

the porting of computational software onto the new HECToR high-end computing resource for

the UK academic sector. However the NAG software library still remains the core of the

business of the company.

As a consequence, with over 35 years of experience in maintaining and developing a software

product, NAG have developed good practice in porting and migrating to keep a software

product alive, although preservation per se is not a prime aim of the company. Over this period

they have had to accommodate an enormous amount of change in the computing environment.

The library was originally designed for ICL 1906A/S machines – and each machine could have

specific performance characteristics. Now they have to accommodate commodity machines

(such as x86 architecture) and languages (C and Java), as well as many specific environments

which have to be tailored for individual customers. Also in that time, there has been a

continual turnover of staff, and many of the original developers are no longer available. So

while not professing to be software preservers, their practice and experience provide important

insights into the processes and tools required for software preservation.

6.2.1 Maintaining the NAG Library

In the face of the large environmental change over the last 35 years, the main effort in

maintaining the relevance and usability of the library has been in migrating the NAG library to

new platforms and software environments and architectures, and what porting has meant to

NAG has varied over time. Initially, the library had to be tailored to specific machines and

compiler, but as over time machine architectures and language compilers, NAG have been able

to provide versions for different classes of architectures and languages. Now, different

versions of software packages which the library works with (e.g. Matlab) are important factors.

In the future, multicore/parallel environments are likely to be important. A refactor of the

codebase a few years ago has been part of an ongoing effort to develop good practices to make

the process of porting as manageable as possible.

The NAG Library is maintained in FORTRAN (F77 with some special in-house extensions for

example to add data types not covered in the standard, such as double precision complex

numbers) with specially marked up in-house documentation files in XML which capture much

additional information about the detailed working of the routines – things such as argument

constraints, output values and even some of the internal working, for example, when arrays (or

sub-arrays) are used internally for workspace. The interface to functions is never changed;

functions maybe deprecated, with suggestions for a newer alternative, but not altered or

removed.

The FORTRAN library is thus “almost single source”. There are special DLLs for reporting

errors via pop-up windows for embedding in Microsoft Windows Programs such as Excel or

Word, but for most purposes the single set of FORTRAN code with its interfaces defined using

the XML format suffices. This facilitates porting to different compilers, and there are currently

over 60 supported platforms,. This approach also keeps the system documented for new

developers to preserve the system as the original developers are no longer available.

There is also a C-release of the NAG library which is machine created from the FORTRAN

master and the specially marked-up documentation, with an interface layer to the C library

routines as a C wrapper to the translated FORTRAN. Other languages had been considered

 Significant Properties of Software

 47

since the NAG library was first issued in 1971 (Algol 60, Pascal and ADA for examples). Java

support is provided through the JNI interface.

Testing is vitally important for a trusted library such as NAG, and correctness is the primary

performance goal. There are published tests that users can run and also ever stricter tests suites

(derived from the XML routine markup) used internally. In the case of test errors, approaches

to handle these have included lowering compiler optimisation for that routine and correcting

the source code. Thus when migration is undertaken, there is an emphasis on the “lots of

testing” approach. With mathematical software, there is a dependency on the environment (e.g.

floating point co-processors, floating point libraries) which can affect the accuracy of the result,

in extreme results quite radically as small variations become amplified. This is complicated in

the case of some mathematical functions which could have multiple “correct” answers to test

cases, and the routine may generate a different one from the one generated in the previous

environment.

6.2.2 Documenting the NAG Library

NAG provides extensive and detailed documentation on its library, which can be found

online
51

. The library is divided functionally into a number of chapters organised into the area

of mathematics covered according to the ACM modified SHARE classification index [11],

although NAG also provide an indexing of their library according to the GAMS classification

[12]. Each routine is then given a code based on its place the classification and its

functionality.

Each function in the library is then given a detailed description. This includes the following:

 Purpose: textual statement of the function, including a mathematical notation.

 Specification: a formal description of the routines form, the number of parameters and

their data types.

 Description: more detailed description of the operation of the function.

 References: References to the literature where a detailed description of the algorithm

can be found.

 Parameters: A detailed description of the role of each of the parameters in turn,

describing the values which they should contain on calling the routine (input) and on

the routines completion (output). FORTRAN is state based, so they are state memory

variables.

 Error indicators and warnings: description of any exceptional or erroneous behaviour

 Accuracy: a description of how to estimate the accuracy of the result – an important

feature of evaluating the efficacy of a floating point routine to approximate a real-

valued operation.

 Further comment: further notes on the behaviour of the routine.

 Example: an example problem, a fragment of sample code to demonstrate how

parameter may be set and the routine called in a typical program, with the expected

results on sample program data. This gives the user the opportunity to test the

performance in a particular installation.

51

 For example, http://www.nag.co.uk/numeric/FL/FLdocumentation.asp documents the

FORTRAN library.

http://www.nag.co.uk/numeric/FL/FLdocumentation.asp

 Significant Properties of Software

 48

Thus these functional descriptions should remain stable over time as the environment of the

library and versions change. Thus for our purposes, these are an important source of

significant properties.

6.2.3 Lessons for Software Preservation

From the experience of NAG we can draw a number of lessons for software preservation.

To keep a long-lasting system usable, preservation means migration in many circumstances, as

it is simply not useful to keep the original environment. A working system is highly-sensitive

to the computing environment and architecture. This migration may not even maintain source

code – refactoring and rewriting the code enhance its preservability.

Preservability in this environment also becomes easier with good software engineering

practice. Well designed and documented interface descriptions which are published and

maintained over time a key feature of allowing good preservability and maintainability. This

provides a stable interface for the user, which can rely on the significant behaviour remaining

constant over time. It also gives a clear description of the system for the software maintenance

team, as the team itself changes as well as when new target environments arise for migration,

describing clearly how the system is intended to perform and how it fits together. NAG has

developed a system with a single abstract XML based interface description, and as much as

possible a single reference implementation in FORTRAN. By maintaining one code base and

generating other versions from the number of variations in the system is controlled.

These functional descriptions also allow good documentation to be produced with functional

descriptions, descriptions of interfaces, and code examples and test cases. This again enhances

the stability for the user and constrains the maintenance task.

A final key observation is the vital importance of testing to ensure that the migration has been

carried out successfully. This gives the validation of the preservation task undertaken in the

migration. That is testing is required to ensure that the significant properties (functional

characteristics and performance) are preserved accurately in the migration. Thus the extent of

the validity of the preservation is constrained by the tests applied.

6.3 Astronomical Analysis Software – Starlink

6.3.1 Astronomical Software

Astronomical Software covers a wide range from supporting purely theoretical research (such

as Cosmology) through observational data in different wavelength ranges to acquisition and

control systems closely associated with an individual observatory or even a single instrument

on a telescope. In observational astronomy the analysis techniques split naturally into

wavelength ranges – with analysis of radio frequency observations being very different from

the group of ultraviolet/optical/infrared data and both the previous types being very different

again from X-Ray astronomy -where data is obtained from satellite missions.

 Significant Properties of Software

 49

Different organisations around the world have attempted to generate frameworks

(“environments”) to make it easier to write new software applications which would both

interwork with existing applications within that particular software suite - which would often

be targeted at the type of astronomy being performed.

Some examples of these environments are:

 AIPS
52

: Developed by NRAO (National Radio Astronomy Observatory
53

) in the USA.

Written in FORTRAN, tailored towards radio-astronomy, freely available.

 AIPS++
54

: A more recent product of NRAO, designed to replace AIPS (but never totally

did!) written in C++, licensed against commercial use – potential users may need to agree to

licence terms before use.

 Starlink: The software system described here. Applications written in FORTRAN, mainly

used with optical/IR/UV data – but had a variant used for X-Ray data as well. Freely

distributed.

 IRAF
55

 : Developed by the National Optical Astronomical Observatory
56

, USA. It is used

for – and gets additional software support from – the Space Telescope Science Institute
57

(NASA – “Hubble Space Telescope”). Applications written in a pre-processed form of

FORTRAN (SPP). Targeted at optical/UV/IR data.

 MIDAS
58

: Former analysis suite from the European Southern Observatory, Munich.

Believed to be mothballed

 The rest of this discussion concentrates on the Starlink Software Collection (SSC).

6.3.2 Introduction to Starlink

This section concentrates on some of the potentially Significant Properties in the context of

preservation of the Starlink Software Collection (SSC) – a diverse suite of applications

software, based around a common framework and used for astronomical data analysis.

The Starlink Project
59

 was SRC/SERC/PPARC funded, ran for an unusually long duration

between about 1980 until 2005 and had the mission of providing general Astronomical

Computing Support to UK based astronomers at both universities and establishments (such as

the Royal Observatory at Edinburgh) This support included computer hardware, site

management effort, central purchasing etc. In addition it had a major software component - the

Starlink Software Collection (SSC) - which was supported by a programming team based

centrally at the Rutherford Appleton Laboratory and at some universities. While the SSC was

52

 http://www.aoc.nrao.edu/aips/
53

 http://www.nrao.edu/
54

 http://aips2.nrao.edu/docs/aips++.html
55

 http://iraf.noao.edu/
56

 http://www.noao.edu/
57

 http://www.stsci.edu
58

 http://www.eso.org/sci/data-processing/software/esomidas//doc/index.html
59

 http://www.starlink.ac.uk and http://en.wikipedia.org/wiki/Starlink_Project

http://www.aoc.nrao.edu/aips/
http://www.nrao.edu/
http://aips2.nrao.edu/docs/aips++.html
http://iraf.noao.edu/
http://www.noao.edu/
http://www.stsci.edu/
http://www.starlink.ac.uk/
http://en.wikipedia.org/wiki/Starlink_Project

 Significant Properties of Software

 50

installed at all Starlink controlled sites there were never any restrictions about local

astronomers requesting other, often American, analysis software systems to be installed in

parallel to the SSC on their Starlink provided hardware. The SSC was made available without

charge and, while it was promoted widely at international conferences, it was mostly popular

outside the UK at observatory sites with major UK participation.

Starlink was originally an exclusively VAX/VMS based project. Starting in about 1992 (after

pilot trials) the increasing price/performance of Unix based systems led to a very major, but

gradual (over about 3 years) adoption of a combination of Sun and DEC hardware (to minimise

use of any propriety features while limiting support issues) and to a corresponding port of the

SSC to these platforms. About 5-years later, after the emergence of Linux on inexpensive PC

hardware, the SSC was further ported to this platform. The adoption of Linux also led to the

distribution mechanisms being significantly modified to allow users to install the software

themselves on personal PCs and laptops from CDs whilst selecting only desired applications

and features.

The SSC was perhaps unusual in that, while it had a well defined Environment (Infrastructure

and support libraries – described later), coding and documentation standards, and a large

documentation collection
60

 defining these in detail, it would also, in general, accept for

distribution most Applications Software developed by astronomers which was thought to be

generally useful – even if this software was not perfect according to these standards. In cases

where this contributed software was used widely central effort was assigned to bring it up to a

supportable level.

PPARC reduced the scope of the Starlink Project from around the turn of the millennium by

eliminating the central support role for both site management and hardware. The central

support of the SSC continued – and, indeed, efforts were made to modernise it by introducing

JAVA applications and experimenting with Web-service wrappers to existing applications in the

hope of interesting the new Astrogrid Project
61

 to help fund it. Finally in 2005 the Project’s

central funding at RAL was curtailed. However the Joint Astronomy Centre (JAC)
62

– the

support base for the two major UK telescopes in Hawaii - had become heavily dependent on

the Starlink Software which used by them in a pipeline-based workflow process (entitled

“ORAC”) which they had developed. They successfully applied for limited PPARC funding to

allow them to continue to maintain the Starlink Software until the end of their development

cycle. To this date JAC still make periodic pre-built stable and tested versions of the SSC

available
63

, without guaranteed support, to a wider community. The work required to automate

the build systems and testing such that now only the very limited residual effort at JAC can

build such a complex system reliably will also be discussed.

6.3.3 Principle Features

We consider some of the principle features of Starlink and discuss their relevance to significant

properties for preservation.

60

 http://www.starlink.ac.uk/Documentation/
61

 http://www.astrogrid.org
62

 http://jach.hawaii.edu
63

 http://starlink.jach.hawaii.edu/

http://www.starlink.ac.uk/Documentation/
http://www.astrogrid.org/
http://jach.hawaii.edu/
http://starlink.jach.hawaii.edu/

 Significant Properties of Software

 51

Functionality

The first aspect to be considered is the functionality of the software. In the case of the Starlink

SSC this could be categorised as the processing (for example to remove some known

instrumental effect) or display (for example for editing or visualisation) of astronomical data.

An important property of applications in such a suite is that software components should

cooperate – for example an application to edit the data should output its results in a form which

the succeeding display application could interpret. This lead to the concept of an Environment

within which the software exists rather than the simple API commonly found with a single

software library.

Software Environment – the Composite Object

Starlink Environment MAIN Program and initialisation,

error trapping etc. (“Fixed Part”) - also includes support for

task remote control

Starlink Application – FORTRAN SUBROUTINE(S)

HDS,

SUBPAR and

other

infrastructure

libraries

Astronomical

utility

libraries

Starlink graphics libraries

System X11 graphics library

FORTRAN runtime support

C API to Unix Kernel

Figure 7: Starlink Software Architecture

In a system such as the Starlink SSC applications do not exist in isolation. They are written to

conform to a complex external software system (the Environment) which can be thought of as a

well-defined means of allowing a new application to slot-in to the existing suite. In practice this

meant both adhering to well defined rules and using common subroutine library APIs to

perform standard operations – some of these operations would be related to the environment

while others would give astronomical functionality. The components of this environment are

shown in Figure 7. Examples of the benefits of this approach for the Starlink SSC were:

 The ability to process and display data through a chain of applications written over time by

many different astronomers or programmers. In fact, as part of the SSC Infrastructure was

derived from an earlier online observatory system (called ADAM) it was possible to extend

this manual control of disparate applications into the concept of a data pipeline at a higher

level. Starlink provided a scripting language (ICL) to do this and this was the basis for the,

much improved and extended, system developed at JAC, Hawaii which used extension

libraries to the Perl language to control applications – both for data acquisition from the

telescope and for further offline analysis by astronomers (ORAC-OT and ORAC-DR

 Significant Properties of Software

 52

respectively). For astronomers ORAC-DR
64

 further abstracts their control of the overall

analysis process into recipes which drive the pipeline processing at a more conceptual level.

 A common look and feel. As all applications were using common library APIs for input,

output and data display.

 A single format for data files. All Starlink applications stored their results in a unique data

system known as the Hierarchical Data System (HDS)
65

. HDS files were single files on-

disk with a top-level structure record internally (with ASCII names for components) and

then, at lower levels but still within the same file, further structure or data records –

arranged in a hierarchal format. To further constrain application programmers inventing

different names for the same standard astronomical data type HDS data was most often

accessed via a higher-level access library API (NDF – the n-Dimensional Data Format)

which imposed agreed data naming conventions.

The principal programming rules to make applications conformant to the SSC Environment

were:

1. Applications would be written in FORTRAN BUT there could be NO Main Program.

Applications were written as Subroutines – taking and return an INTEGER status value.

These subroutines would be called by Environment code and could be grouped into

composite systems (called monoliths) – a system developed to cope with slow executable

loading on early VAX/VMS systems.

2. The environment would initially pass a success status value into the top-level subroutine.

Thereafter all lower-level routines would both inherit and return this argument through their

API. In addition, every subroutine should immediately return upon entry with a non-

success status. Any failure within a called subroutine would be indicated by that routine

setting this common inherited status to a non-zero failure code – as subsequent routines

would inspect this before any action they would simply return. If not reset the failure error

code would, as a last resort, be returned to the environment at the end of the top-level

application subroutine and reported by it.

3. There could be no direct use of FORTRAN input or output to the user. Prompting for user

input would be done via Parameter System API calls – this gave a uniform appearance to

prompts for user input but also provided additional functionality – such as input value

persistence, defaulting, limit checking etc.

Output to the user was similarly performed using either the Message System (for normal

progress reports) or the Error System (which could interpret and report on the meaning of

the inherited status error code) APIs. A secondary feature of this error system was its

ability to stack potential errors and to annul these if a possible error condition could be

recovered.

4. While application data could be read from and written to any form of external data files any

data designed to be used subsequently by other applications within the environment was to

64

 http://www.starlink.rl.ac.uk/cgi-bin/htxserver/sun230.htx/sun230.html
65

 http://www.starlink.rl.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html

http://www.starlink.rl.ac.uk/cgi-bin/htxserver/sun92.htx/sun92.html

 Significant Properties of Software

 53

be stored (using its API calls) within the Hierarchical Data System (HDS). This HDS data

system was a proprietary record based single binary file on disk.

5. Graphical display capabilities would be performed by dedicated libraries based mainly on

the GKS 2-dimensional graphics API. Use of graphics through APIs at this level gave,

along with the advantages of use of new devices when a device driver was added to the

GKS system, additional functionality such as storing and recalling the layout of multiple

plots on the same surface.

Building and testing the SSC

Obviously in a complex system such as the Starlink SSC a successful build and deployment of

the Core Infrastructure (environment and astronomical utility libraries), the applications and

the numerous supporting data and configuration files to exact locations was a continual

challenge. The interdependencies were very complex and obtaining the correct build order for a

given component or application was never simple. Another challenge was making the software

updates simple and reliable for the site mangers – particularly when early slower network links

made complete updates totally impractical except at infrequent intervals. A later challenge for

Linux was making simple and, optionally, partial installations from CD easy to do on a self-

service basis.

Another issue was that, while the SSC only migrated once between dissimilar operating

systems (VAX/VMS to Unix) the various Unix systems it was supported on were not totally

identical to each other at the fine-grain level.

 To automate the building of such a large software system – given limited effort (typically, only

a single Software Librarian) and support on a number of hardware platforms, a number of

different approaches were explored during the life of this Project. All were designed to capture

or include the build dependencies and to be as automatic as possible.

In rough chronological order the following techniques were employed and refined.

 Build scripts for VAX/VMS.

 Makefiles were introduced for Unix but needed slight adjustments for the supported Unix

variants (SunOS, OSF1/DEC Unix and, later Linux). Pre and post-processing scripts were

added to cope with these differences.

 On early slow networks only partial incremental releases were feasible. There was

continual debate over the merits of these as opposed to less frequent complete releases.

 Finally, as the Project came close to losing its permanent central support team, considerable

work was put into making the build process compatible with the GNU autoconf system
66

.

Specialised macros had to be added to this system to cope with the FORTRAN code in the

SSC but the end result was that it was possible to build anything between a single

application (together with just those parts of the infrastructure and other utility libraries

that it needed) through to the entire SSC for a particular hardware platform. The strength of

66

 http://www.gnu.org/software/autoconf

http://www.gnu.org/software/autoconf

 Significant Properties of Software

 54

this approach was demonstrated by the fairly straightforward port of the entire SSC to

Macintosh hardware using appropriate autoconf macros.

 The source code was placed into cvs
67

68

 and, later, svn
69

70

 repositories, and an automated

nightly build system was created. Any regression caused by the check-in of faulty code

should become apparent almost immediately.

 The principal benefit of BOTH cvs and svn was that the SSC was now, for the first time in

its history, truly single source – rather than a number of slightly different versions being

needed for various architectures (leading to the possibility of regression if not kept in step).

Versions

Software typically goes through many versions, as errors are corrected, functionality changed,

and the environment (hardware, operating system, software libraries) evolves. Earlier versions

may need to be recalled to reproduce particular behaviour.

The Starlink SSC was an unusually long lasting Software System and some history of its

evolution process may be instructive and relevant to other such systems. At every stage there

was very limited effort to make changes so, while decisions were not being made explicitly in

the context of preservation, they were being considered in the, possibly related, contexts of

both simplifying the build process (reducing the complexity of the inter-dependencies,

automating builds and testing further etc.) or in terms of ease of future maintenance. As well a

number of obvious changes (such as those caused by new hardware) there were also changes

driven by outside technologies (for example the rapidly increasingly large pixel counts of the

CCD detectors being currently installed on telescopes - relative to the norms of just a few years

ago)

Operating system and hardware changes

Starlink started in 1982 with a network of 6 DEC VAX 11/780 computers connected by (slow)

DECNET communications links.

Properties of such a system related to the build and maintenance of the SSC might include

 A single platform of a vendor supported operating system and compilers with excellent

documentation

 A common executable format – only complied binaries needed to be sent to remote sites

Updates to the SSC could be built and tested at RAL then, when necessary, one or more

updates to various applications or other core components would be assembled into a

single VMS BACKUP format package – together with a command procedure for

installation - the site managers would then be instructed to collect this.

67

 http://en.wikipedia.org/wiki/Concurrent_Versions_System
68

 http://www.nongnu.org/cvs/
69

 http://en.wikipedia.org/wiki/Subversion_%28software%29
70

 http://subversion.tigris.org/

http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://www.nongnu.org/cvs/
http://en.wikipedia.org/wiki/Subversion_%28software%29
http://subversion.tigris.org/

 Significant Properties of Software

 55

 The use of VAX/VMS sharable libraries meant that infrastructure libraries could be

updated without a requirement to install new versions of all the applications using these

libraries.

Later, from about 1990, the price/performance benefits of alternative hardware could no longer

be ignored. These alternative hardware platforms all ran some variant of the Unix
71

operating

system. The decision to gradually change to this platform led to the most significant change in

the Starlink SSC – the Port to Unix

 Two versions of Unix on different hardware (DEC/OSF and Sun/SunOS) were

deliberately targeted to avoid any accidental lock-in to specific vendor features. Both had

FORTRAN compilers which were highly compatible with VAX/VMS extensions...

 Sharable libraries (as had been used on VAX/VMS) were supported on SunOS – but not

on DEC/OSF – thus on this Unix variant a change to a low level library DID require a

rebuilt and re-installation of all applications.

 VAX/VMS FORTRAN extensions had allowed API calls through to the full functionality

of the underlying operating system and use of this feature had enabled much of even the

lowest level Environment related code to be written in this language. This was replaced

by C-language code (with a FORTRAN callable API) which was developed over time to

give as exactly as possible the same features. This C-code had to, in time, also emulate

some intrinsic VAX/VMS features (such as command line recall). The user experience on

Unix was thus, initially, significantly poorer – and expectations had to be managed!

Later, around 1995, the emergence of the popular public domain Linux
72

 Unix variant was

again a Significant External Event which the Project was forced to react to. It appeared at the

time that this gave the prospect of even lower cost hardware and also, for the first time, the

potential for astronomers to run the SSC on their home system or their laptop.

Changes to the SSC caused by Linux included

 For the first time compilation of the entire FORTRAN applications suite was attempted

by public-domain compilers (initially GNU f2c and then GNU g77
73

). Differences in such

things as FORTRAN common block naming, mechanisms for calling C-language routines

and even such, apparently simple, things as undeclared variables (which were no longer

being automatically initialised to zero) led to significant porting effort.

 As astronomers were now expected to be able to install the SSC by themselves parallel

changes to the distribution systems – especially the creation of CDs with simplified

automatic installation scripts were required.

The final port of the Starlink SSC was much more recent when the decision by Apple to replace

the heart of MacOS by a Unix variant (Darwin) increased enormously the popularity of MacOS

laptops with astronomers. This change coincided with the change of the SSC build system to

using GNU autoconfigure - and, indeed, was its first major success.

71

 http://en.wikipedia.org/wiki/Unix
72

 http://en.wikipedia.org/wiki/Linux
73

 http://www.gnu.org/software/fortran/fortran.html

 Significant Properties of Software

 56

External technology events

As an example of the Starlink SSC having to respond to external technology changes the

example of the Hierarchical Data System (HDS) will be considered. This is a crucial subsystem

within the SSC which facilitates applications written for the Starlink Environment in

cooperating in the storage and shared processing of data.

HDS is a file-based hierarchical data system designed for the storage of a wide variety of

information and is particularly suited to the storage of large multi-dimensional arrays together

with their ancillary data. HDS organises data into hierarchies, broadly comparable with a

hierarchical file system, but contained within a single HDS Container File. The structures

stored in these file are self-describing and flexible; HDS supports modification and extension

of structures previously created, as well as deletion, copying, renaming etc. All information

stored in HDS files is portable between the machines HDS is implemented upon – the

implementation transparently takes care of format and endian conversion problems when data

is accessed via the API.

HDS is probably the single most important component underpinning the SSC. It is also the

most complex and, to further increase the maintenance challenge, the original programming

expertise which created HDS had all long-since left the Project! Less than perfect limited

design documentation remains – together with the source code (with limited comments!)

When HDS was designed in the early 1990s one of its key record size pointers was

dimensioned at 20-bits – a consequence of defining the API for the HDS routines to use

standard INTEGER FORTRAN values. This restriction led, internally, to a size limit for a

single structure (but not the file itself) of an HDS file of ~500Mbyes. From around the year

2000 onwards it was clear that current and future enhancements of telescope detector sizes

made this limit untenable and, unless it could be removed, it would effectively curtail the life of

the entire SSC. The data-reduction pipeline system (ORAC) used on the UK Telescopes in

Hawaii was used in data acquisition from telescope and was in the front-line for this problem.

HDS was, with some difficulty (and considerable effort!), modified to use 64-bit pointers

internally while, at the same time, allowing it to continue to read and write all of the vast

number of existing data files. Any typical application will have several concurrent HDS files

open (as subsystems such as the Parameter System also use these) and, as the HDS code is

single-threaded, the library has to adapt to its use of each file.

Look and feel

While, for many complex software systems, the exact look-and–feel may be an important

aspect of its long term preservation, this is perhaps less true of the Starlink SSC. Astronomers

generally use reasonably simple 2-dimensional plots or 2-d false colour imaging of

astronomical objects.

An underlying property of the various Starlink graphics libraries were, however, their reliance

on its various lower-level graphics systems (including GKS, IDI and PGPLOT). It was

important to continue to develop device-drivers for these systems to keep them in step with

those sorts of displays and other output devices that astronomers wished to use. While X11

output on workstations became dominant this was not always the case. Even then the detailed

properties of X11 displays could have unexpected impacts. Early 8-bit graphics cards were

 Significant Properties of Software

 57

typically used by their X11 device driver in PseudoColor mode - which gave the side-effect of

easy manipulation of the colour lookup-table for dynamic image visualisation. Later, higher

performance, graphics cards lost this simple ability and applications had to be recoded to

redraw images in order to modify the colour representation to the user.

Software architecture

The architecture of the Starlink SSC depends crucially on the continuing existence of

components such as compilers for the FORTRAN and C languages. In addition it is currently a

Unix-based software system and relies heavily on X11 graphics.

Licensing

In common with the other Astronomical Environments describe earlier (AIPS, MIDAS, IRAF

etc.) licensing has never been a major issue for the Starlink SSC. Rather belatedly a license was

developed to attempt to limit any commercial use of the software but, apart from that, CDs

were being distributed at meetings wherever possible and pre-build systems were downloadable

from the Web.

 Significant Properties of Software

 58

7 Conceptual Framework

In order to express the significant properties of software, we need to develop a conceptual

framework to capture the approach taken to software preservation and the structuring of the

software artefact and the significant properties of software for preservation.

7.1 Software Preservation Approach

Various approaches to digital preservation have been proposed and implemented, usually as

applied to data and documents, but they do usually apply to the means of preserving the

underlying software used to process or render the data or document. Thus these preservation

approaches directly relate to the preservation of software.

The Cedars Guide to Digital Preservation Strategies [3] defines three main strategies, which we

give here, and consider how they are applicable to software.

 Technical Preservation. (techno-centric). Maintaining the original software (binary),

and sometimes hardware, of the original operating environment. Thus this is similar to

the use case for software preservation arising from the museums and archives where the

original computing hardware is also preserved and as much of the original situation is

maintained as is possible. This is also an approach which is taken in many legacy

situations; otherwise obsolete hardware is maintained to keep vital software in

operation.

 Emulation (data-centric). Re-creating the original operating environment by

programming future platforms and operating systems to emulate the original operating

environment, so that software can be preserved in binary and run "as is". This is a

common approach, undertaken in for example the PLANETS project, and also by

groups such as the Software Preservation Society.

 Migration (process-centric). Transferring digital information to new platforms before

the earlier one becomes obsolete. As applied to software, this means recompiling and

reconfiguring the software source code to generate new binaries, apply to a new

software environment, with updated operating system languages, libraries etc.

In practice, software migration is a continuum. The minimal change scenario is that the

source code is recompiled and rebuilt unchanged from the original source. However in

practice, the configuration scripts, or the code itself may require updating to

accommodate differences in build systems, system libraries, or programming language

(compiler) version. An extreme version of migration may involve rewriting the original

code from the specification, possibly in a different language. However, there is not

necessarily an exact correlation between the extent of the change and the

Software migration (or “porting” or “adaptive maintenance”) is in practice how

software which is supported over a long period of time is preserved. Long term projects

such as StarLink, or software houses such as NAG spend much of their effort

maintaining (or improving) the functionality of their system in the face of environment

change.

 Significant Properties of Software

 59

These three approaches have their advantages and disadvantages, which have been debated in

the preservation literature.

Technical (hardware) preservation has the minimal level of intervention and minimal deviation

from the original properties of the software. However, in the long-term this approach is

difficult to sustain as the expertise and spare components for the hardware become harder to

obtain.

The emulation approach for preserving application software is widespread, and is particularly

suited to those situations where the properties of the original software are required to be

preserved as exactly as possible. For example, in document rendering where the exact

pagination and fonts are required to reproduce the original appearance of the document; or in

games software where the graphics, user controls and performance (it should not perform too

quickly for a human player on more up to date hardware) are required to be replicated.

Emulation is also an important approach when the source code is not available, either having

been lost or not available through licensing or commercial restriction. However, a problem of

emulation is that it transfers the problem to the (hopefully lesser) one of preserving the

emulator. As the platform the emulator is designed for becomes obsolete, the emulator has to

be rebuilt or emulated on another emulator. Thus a potentially growing stack of emulation

software is required.

The migration approach does not seek to preserve all the properties of the original, or at least

not exactly, but as observed in the CASPAR project, only those up to the API – which we

could perhaps generalise to those properties which have been identified as being of significant

for the preservation task in hand. Migration then can take the original source and adapt to the

best performance and capabilities of the modern environment, while still preserving the

significant functionality required. This is thus perhaps the most suited where the exact (in

some respects) characteristics of the original are not required – there may be for example

difference in user interaction or processing performance, or even software architecture – but

core functionality is maintained. For example, for most scientific software the accurate

processing of the original data is of key importance, but there is a tolerance to change of other

characteristics.

These three different preservation strategies thus require different levels of detail of significant

property for the software artefacts. In this report, we are neutral to the preservation approach,

but consider how the preservation of the key properties can be identified and checked.

7.2 Performance Model and Adequacy

Closely related to the preservation approach is the notion of how sufficient level of

performance to adequately preserve required characteristics of software. Performance as a

model for the preservation of digital objects was defined by the National Archives of Australia

in [6] to measure the effectiveness of a digital preservation strategy. Noting that for digital

content, technology (e.g. media, hardware, software) has to be applied to data to render it

intelligible to a user, they define a model as in Figure 8. Here Source data has a Process

applied to it, in the case of digital data some application of hardware and software, to generate

a Performance, where meaning is extracted by a user. Different processes applied to a source

may produce different performances. However, it is the properties of the performance which

need to be taken into account when the value of a preservation action. Thus the properties can

 Significant Properties of Software

 60

arise from a combination of the properties of the source with the technology applied in the

processing.

Figure 8: NAA Performance Model

The notion of performance has been developed in the context of traditional archival records,

and has been adopted in other studies into the significant properties of different media types

(see [5], [2]), which considers comparing the performance created by the original process of

rendering with that created by a later rendering processes on new hardware and software. The

question which arises is how this model applies to software.

In the case of software, the performance is the execution of software binary files on some

hardware platform configured in some architecture to provide the end experience for the user.

However, the process stage depends on the nature of the source used. This is illustrated in

Figure 9.

 In the case where binary is preserved, the process to generate the performance is one of

preserving the original operating software environment and possibly the hardware too,

or else emulating that software environment on a new platform. In this case, the

emphasis is usually on performing as closely as possible to the original system.

 When source code and configuration and build scripts are preserved, then a rebuild

process can be undertaken, using later compilers and linkers on new a new platform,

with new versions of libraries and operating systems. In this case, we would expect that

the performance would not necessarily preserve all the properties of the original (e.g.

systems performance, or exact look and feel of the user interface), but have some

deviations from the original.

 In an extreme case, only the specification of the software may be preserved. In this

case, a performance could be replicated by recoding the original specification. In this

case, we would expect significant deviation from the original and perhaps only core

functionality to be preserved. This case would seem to be exceptional, however, it is

less unusual in coding practice, as packages are often migrated into a different

language; for example the NAG library originated in FORTRAN, but later produced a

C version. In some circumstances, this is a result of reverse engineering where source

code (or even in extreme cases binary code) is analysed to determine its function and

recoded.

Source Performance Process User

 Significant Properties of Software

 61

Figure 9: Software Performance models from different sources

Software performance can thus result in some properties being preserved, and others deviating

from the original or even being disregarded altogether. Thus in order to determine the value of

a particular performance, in addition to the established notion of Authenticity of preservation

(i.e. that the digital object can be identified and assured to be the object as originally archived)

we define an additional notion of Adequacy.

A software package (or indeed any digital object) can be said to perform adequately

relative to a particular set of significant properties, if in a particular performance (that

is after it has been subjected to a particular process) it preserves that set of significant

properties to an acceptable tolerance.

By measuring the adequacy of the performance, we can thus determine how well the software

has been preserved and replayed.

7.2.1 Performance of software and data

A further refinement of the performance model for software is that the measure of adequacy of

the software is closely tied to the performance of the input data. The purpose of software is

(usually) to process data, so the performance of a software package is processing of its input

data. This relationship is illustrated in Figure 10.

Specification Binary Source
Code

+ configure
and build

Rewrite into
new code

Rebuild from
source code

Preserve or emulate
environment

Perform only
core functionality

Perform with small
deviations from

original

Perform “exactly”
as original

 Significant Properties of Software

 62

Figure 10: Performance models of software its input data

So for example, in the case of for example, a word processing package which is preserved in a

binary format, which is processed via operating system emulation, the performance of the

package is the processing and rendering of word processing file format data into a performance

which a (human) user can experience via reading it off a display. Thus for many functional

properties of software, the measure of adequacy of the software is the measure of the adequacy

of the performance when it is used to process input data and how well it preserves the

significant properties of its input data.

This can be applied recursively to software which processes other software, for example

software used for emulation or compilers to build software binaries, which also needs to be

preserved. In this case, the performance of software is the processing of the application

binaries or source code, which in turn is measured by its adequacy in processing its intended

input data.

Thus different preservation approaches require different significant properties, and the

adequacy of the preservation is dependent upon the performance of the end result on the end

use on data. The adequacy can be established by performing trial executions against test data.

Thus, the adequacy of preservation of a particular significant property can be established by

testing against pre-arranged suites of test cases with the expected behaviour.

7.3 A Conceptual Model for Software

As in the InSPECT work on developing a framework for significant properties for digital

objects in general [5], we recognise that a conceptual data model is required to capture the

digital object (i.e. software) under consideration. This data model will guide us on the level of

granularity at which significant properties can be identified, and provide an understanding of

the relationship between digital objects, thus giving traction on handling the complexity of the

objects, a particularly important aspect in handling software. InSPECT considered a number

of conceptual models which have been proposed for digital objects, including FRBR [13],

PREMIS [14] and the National Archives data model, and based on these develop a model for

associating significant properties at different levels of granularity.

We propose to develop a similar conceptual data model for software. However, there are a

number of factors which need to be taken into account for developing a model for software.

Software
Source

Software
Performance/

Data
Processing

Software
Processing

User
Data

Source

Data
Performance

 Significant Properties of Software

 63

 Software is a composite object. Typically software is composed of several items.

Normally these would include binary files, source code files, installation scripts, usage

documentation, and user manuals and tutorials. A more complete record may include

requirements and design documentation, in a variety of software engineering notations

(for example, UML), test cases and harnesses, prototypes, even in some cases, formal

proofs. These items each have their own significant properties, some of which are the

properties of their own digital object type, e.g. of documents or of data for test data. The

relationships between these items need to be maintained.

 Versioning. Software typically goes through many versions, as errors are corrected,

functionality changed, and the environment (hardware, operating system, software

libraries) evolves. Earlier versions may need to be recalled to reproduce particular

behaviour. Again the complex relationships need to be maintained.

 Adaptation to operating environment. Each version itself may be provided for a

number of different platforms, operating systems and wider environments. In extreme

cases, there may be different variants provided for specific machines (this was

particularly the case in the past, and still applies when codes are tailored for high-

performance systems where the performance is sensitive to the specific architecture of

the target machine). Thus each version, while having essentially the same code base,

may have variations, which may also vary in functional characteristics as different

environments provide different features.

We provide a general model of software digital objects, which has a parallel with the FRBR

model. We will go on to relate each concept in the model with a set of significant properties.

7.3.1 The Software System

We define a four layer model for software, given schematically and with its correspondence to

the major entities of the FRBR model in Figure 11.

This model has four major conceptual entities, which together describe a complete Software

System. These are Package, Version, Variant and Download. This is in analogy with the

FRBR model. The four levels roughly correspond to Work / Expression / Manifestation / Item,

although we would warn against taking this analogy too far.

We consider each of these in turn, noting the types of significant properties we would typically

associate with each level. Note at this level we also do not distinguish between source code,

binaries and other supporting digital objects; these are considered below as the components of

the software system, which is discussed in a later section.

 Significant Properties of Software

 64

Work Package

Item

Download

Manifestation

Variant

Expression

Version

Software

System

Figure 11: Conceptual model for Software and relationship to FRBR

Package. The package
74

 is the whole top-level conceptual entity of the system, and is how the

system may be commonly or informally referred to. Packages can vary in size and could range

from a single library function (e.g. a function in the NAG library), to a very large system which

has multiple sub-packages, with independent provenances (e.g. Linux). Thus examples would

be “Windows”, “Word”, “Starlink”, “Xerces”. Packages themselves can be composite objects

(a software library or framework) and may have a number of other sub-packages within them.

Packages are characterised by the following main features.

 A package has a single functional purpose, the overall gross goal of the software for

example

o “Word Processor” for Word;

o “Framework to support astronomical software” for StarLink;

o “Gram–Schmidt orthogonalisation of n vectors of order m” for function identifier

F05AAF in the NAG library. This function can be regarded as a package in its own

right, but it also a sub-package of the whole NAG library (which is also a package).

 A package has an "owner” responsible for developing, distributing and supporting the

software and also having rights to control the usage of the software, although not always of

the sub-packages within the package. Software often changes ownership, but then it should

74

 Not to be confused with the notion of information package as used in OAIS.

 Significant Properties of Software

 65

change as a package - the function and the way the function is delivered is likely to change

as well as the authorising body. Typically, there might be a software licence associated

with a software package as a whole. However, licences may also vary according to the

version of the software, so we also allow the possibility of assigning licences to particular

version. Software owners are not always straightforward to establish, particularly in the

case of open-source software, although primary individuals responsible for the developing

and maintaining a particularly coherent code-base can usually be identified. Thus:

o Word is owned by Microsoft (www.microsoft.com)

o Apache is owned by the Apache Software Foundation (www.apache.org)

 A coherent history and provenance associated with its responsible authority.

 Overall conceptual architecture of the system. This is likely to be stable for the whole

package, though for long-lasting software, a major refactor of the software may result in

different conceptual software architecture, as in the case of StarLink. In those cases, it may

be considered as a new (but related) package entirely, although maintaining many of the

same components and sub-packages.

Version. A version of a software package is expression of the package which provides a single

coherent presentation of the package with a well defined functionality and behaviour and

usually in environmental features. Differences in versions are characterised by changes to its

functionality and also potentially performance. Typically for publically available software,

versions are associated with the notion of a software release, which is a version which is made

publically available, but in a development system, there are likely to be other versions in the

system. Versions are also captured in version control systems such as CVS and Subversion by

the branches of the development. Release branches represent snapshots over time of the

development, and can reflect the relationships between the various releases.

Note also that in composite packages, the sub-packages will themselves have a number of

versions which will be related to versions of the complete package. These releases will not

necessarily be synchronised, so the relationship will need to be captured.

The properties which characterise the difference between versions would include:

 Changes in detailed functionality, e.g. presence of commenting in Word, coverage of XML

standard versions in Xerces.

 Corrections to previous version’s buggy behaviour.

 Changes in behaviour in error conditions.

 Changes to user interaction.

Variant. Versions may have a number of different variations to accommodate a number of

different operating environments, thus we define a Variant of the package to be a manifestation

of the system which changes in the software operating environment, for example target

hardware platform, target operating system, library, programming language version. In this

case, the functionality of the version is maintained as much as is practical; however, due to

different behaviour supported by different platforms, there may be variations in behaviour, in

error conditions and user interaction (e.g. the look and feel of a graphical user interface).

The properties which characterise the difference between variants would include:

 Changes in operating environment, including hardware platform, operating system and

programming language version, auxiliary libraries, and peripheral devices.

http://www.microsoft.com/
http://www.apache.org/

 Significant Properties of Software

 66

 Changes in functional behaviour as a result of change in software environment.

 Different operating performance characteristics (e.g. speed of execution, memory usage).

In practice, Version and Variant may be very difficult to distinguish: changes in environment

are likely to change the functionality; new versions of software are brought out to cope with

new environments. It may be arguable in some circumstances that Versions are subordinate to

Variants, and in others we may wish to omit one of these stages (software which is only ever

targeted at one platform). But it is worth distinguishing the two levels here, as it makes a

distinction between adaptations of the system largely to accommodate change in functional

properties (versions), with those which are largely to accommodate change in properties of the

operating environment.

Download. An actual physical instance of a software package which is to be found on a

particular machine is known as a Download. It may be also referred to as an installation,

although there is no necessity for the package to be installed; a master copy of stored at a

repository under a source-code management system may well not be executable within its own

environment.

The properties which characterise the difference between variants would include:

• Ownership – that is the user of the software (licensee), rather than the owner of rights in the

system (the licensor).

• An individual licence tailored the use of the particular download and user.

• A particular MAC or IP address, URLs etc identifying particular locations or machines.

• Usage of particular hardware and peripheral devices as appropriate.

7.3.2 Software Components

All of the entities in the above conceptual model of software which form a software system are

composite. Some of them may be subsystems, with sub-packages. All systems however, will

be constructed out of many individual components
75

. A component is a storable unit of

software which when aggregated and processed appropriately, forms the software system as a

whole. Components can thus represent the following software artefacts:

 either, a part of its code base; or

 an executable machine readable binary; or

 a configuration or installation file capturing dependencies; or

 documentation and other ancillary material which while not forming a direct part of the

machine execution process, nevertheless forms an important part of the whole system so

that it is (re-)usable.

Components typically (but not necessarily always) roughly corresponds with a file (a unit of

storage on an operating system’s memory management system). However, multiple

75

 Note that this use of the term Component contrasts with the use of the term in the InSPECT project, given in [4].

Component entities in [4] are described as “the method in which manifestations are stored physically”, and thus

correspond more closely to Downloads in our model. We make the distinction to handle the inherently composite

nature of software.

 Significant Properties of Software

 67

components can be stored within in one file (e.g. a number of subroutines within one file) or

across a number of files (e.g. help system or tutorial stored within a number of HTML files).

Components may also be formed of a number of different digital objects, (e.g. text files,

diagrams, sample data) which themselves would have significant properties associated with

their data format. A comprehensive preservation strategy for the full software system would

have to consider those significant properties as well, but we do not consider these significant

properties further in this report, but refer to the literature on the significant properties of those

digital objects as appropriate.

Software components are thus associated with a package, version or variant in the conceptual

model of software as in Figure 12.

Figure 12: The Software Component Conceptual Model

In this model, we give a number of different kinds of software component. Note that this list is

not exhaustive, and additional kinds of component may be identified. We give here the most

common.

 Source. A unit of formal code written in human readable and machine processable

programming language. Source code would normally need to be compiled into machine

readable code, or else interpreted via an interpreter in order to execute. Source code

components come under a variety of different names in different programming

languages, such as “module”, “method”, “subroutine”, “class” or “function”.

Theoretically, we could break down source components into individual statements or

instructions; however, we do not consider that level of detail as essential to capture

significant properties.

Version

Variant

Component

Source Binary Config Test Doc

Download File

Package

 Significant Properties of Software

 68

 Binary. An software artefact in machine processable code, not usually human readable,

which is either directly executable on some target operating environment, or else

executable by some virtual machine (e.g. a Java Virtual Machine). Binaries are usually

standalone, or may require to be linked to dynamically linkable library binaries to

execute.

 Configuration. A component which describes the configuration of the components to

generate a working version of the code and captures dependencies between

components. Three notable types would include: Build scripts, which capture the

dependencies between source code to build an executable; Installation scripts, which

control the installation of a package, including setting environmental dependencies and

variables; Configuration scripts which set a number of environment specific variables.

 Documentation. Human readable text-based artefacts which do not form part of the

execution process of the system, but provide supplementary information on the

software. There are a number of different documents which may be typically associated

with software, of which we distinguish: Requirements definitions; Specifications; User

Guides (manual, tutorials); Installation Guides; Version Notes; Error Lists; Licences.

 Test Suite. Representative examples of operation of the package and expected

behaviour arising from operation of the package. Produced to test the conformance of

the package to expected behaviour in a particular installation environment.

Components have dependencies between them, which is often captured in the configuration

files. For preservation, we may not need to explicitly model the dependencies, but need to be

aware that they are captured and maintained. Significant properties can also be associated with

components as well as on the package/version/variant and as noted the significant properties of

a component may be of a different digital object type.

 Significant Properties of Software

 69

8 Significant Properties of Software

8.1 Categories of Significant Properties

Significant properties are defined as “those characteristics of digital objects that must be

preserved over time in order to ensure the continued accessibility, usability, and meaning of

the objects” [15]. In considering what significant properties would apply to software, we need

consider the following seven general categories of features which characterise software.

 Functionality Software is typically characterised by what it does. This may be in terms of

its input and outputs, a description of its operation and algorithm, or a more semantic-based

description of its functionality in terms of the domain it addresses. All these levels may be

significant and should be considered for preservation.

 Software Composition. Typically software is composed of several components. Normally

these would include binary files, source code modules and subroutines, installation scripts,

usage documentation, and user manuals and tutorials. A more complete record may include

requirements and design documentation, in a variety of software engineering notations (for

example UML), test cases and harnesses, prototypes, even in some cases, formal proofs.

These items each have their own significant properties, some of which are the properties of

their own digital object type, e.g. of documents or of data for test data. The relationships

between these items need to be maintained. Further, software typically goes through many

versions, as errors are corrected, functionality changed, and the environment (hardware,

operating system, software libraries) evolves. Earlier versions may need to be recalled to

reproduce particular behaviour. Again the complex relationships need to be maintained.

 Provenance and Ownership. The provenance and ownership of the software should be

recorded. Different software components have different and complex licensing conditions.

In order to maintain the usability of software, these need to be considered in the

preservation planning.

 User Interaction. If complete applications are preserved, there is also the question of the

human-computer interaction, including the inputs which a user enters through a keyboard,

pointing device or other input devices, such as web cameras or speech devices, and the

outputs to screens, plotters, sound processors or other output devices. The Look and Feel

and the model of user interaction can play a significant factor in the usability of the

software and therefore should be considered amongst its significant properties. If using a

tool such as a Web browser or a Java platform to provide an interface, then client libraries

need to be taken into account.

 Software Environment. The correct operation of the software is dependent on a wider

environment including; hardware platform, operating system, programming languages and

compilers, software libraries, other software packages, and access to peripherals (e.g. a

high-definition graphics system may run differently according to the resolution of the

display). Each of these factors is not in the direct control of the software developer, and

each also goes through a series of versions. Such dependencies must be recorded. Further,

artefacts have different requirements on their environments. Binaries usually require an

 Significant Properties of Software

 70

exact match of the environment to function; source code may function with a different

environment, given a compatible compiler and libraries; while designs may be reproducible

even with different programming language, given sufficient effort to recode.

 Software Architecture. The software architecture can play a significant part in the

reproducibility of the function of the software. For example, client/server, peer-to-peer, and

Grid systems all require different forms of distributed system interaction which would

require the configuration of hardware and software to be reproduced to reproduce the

correct behaviour.

 Operating Performance. The performance of the software with respect to its use of

resources (as opposed to its performance in replaying its content) may play a significant

part of the reproducible behaviour of software. For example, speed of execution, data

storage requirements, response time of input and output devices, characteristics of

specialised peripheral devices (e.g. resolution of plotters, screens or scanners), colour

resolution capability may all be important. Note that in some circumstances, we may wish

to replay the software at the original operating performance rather than a later improved

performance. A notable example of this is games software, which if reproduced at a

modern processor’s speed would be too fast for a human user to play.

The InSPECT project proposes a taxonomy of properties into five categories [5]:

1. Content. The abstract content of an expression of an intellectual work; thus the

components of the work according to the digital object’s abstract data model.

2. Context. The environment in which the content was created or that affects it intended

meaning. InSPECT also uses this term to capture the provenance of an object, in terms

of its creators and source.

3. Rendering. Information which contributes to the recreation of the message.

4. Structure. Relationship between two of more types of content; in practice this seems

to reflect the physical components of the object.

5. Behaviour. Information which describes interaction with external stimuli.

A possible mapping of these categories onto the InSPECT categories is given in the following

table.

InSPECT Category Software Property Comments

 Content. The

abstract content of an

expression of an

intellectual work.

 Software Composition. The abstract content of the

intellectual work is reflected in the

code modules and their

relationships, build and

configuration, and in the resulting

binaries and associated

documentation.

 Context. The

environment in which

the content was

created or that affects

it intended meaning.

 Functional Description

 Provenance and

Ownership

 Software Environment

 Software Architecture

 Operating Performance

The context of the operation of the

software is described by the inputs

and outputs of the software, and

the computing environment and

architecture in which the software

operates to a desired operating

performance. Context also

 Significant Properties of Software

 71

includes provenance and

ownership

 Rendering.

Information which

contributes to the

recreation of the

message.

 Software Composition,

especially build and

installation components

 Software Environment

 Software Architecture

Rendering are those factors which

determine the recreation of the

“message”, which in the case of

software is how the software is

executed, via the combination of

the capabilities of the software

architecture and environment,

together with (for source code at

least) the source code components,

their dependencies and their

compilation within a particular

environment.

 Structure.

Relationship between

two of more types of

content.

 Software Composition

into a number of

components and files.

InSPECT’s Structure category are

those properties which physically

reconstruct the object, which in the

case of software is the components

of the software and their

distribution into files.

 Behaviour.

Information which

describes interaction

with external stimuli.

 Functional Description

 User Interaction

Software’s interaction with

external stimuli is determined by

the functional behaviour of the

software to inputs and outputs

together with the user interaction

model.

The InSPECT categories were defined with data objects in mind, and they do not necessarily

map well to software objects, with several categories of software properties contributing to a

single InSPECT category, and also categories of software categories contributing to more than

one InSPECT category. Also note that some of the mappings do not quite match expectations;

“Rendering”, which for most data object describes the “appearance” of the object on an output

device, for software becomes instead how the software is compiled and executed in a specific

environment, while the user interaction (which includes layout and appearance on an output

device – usually thought of as “rendering” - actually fits better into the category of

“Behaviour”. More clarification may be needed here to reconcile the InSPECT approach to

software, but it would seem appropriate at present to leave these categories to one side and

concentrate on the categories identified for software.

Note that one of the categories of properties is encapsulated in the conceptual model of

software itself; that is the breakdown of the software structure into sub-entities, versions and

entities, and into components with dependencies between components. For the other six

categories, we can give different significant properties for different entities in the model. We

consider each in turn. Note that as specified earlier, we do not give details on the significant

properties of the user interaction.

 Significant Properties of Software

 72

8.1.1 Package Properties

Packages properties provide general and provenance information on the system, including

general descriptions of functionality and architecture, ownership of the system, overall licence,

tutorial material, requirements and purpose of the package. We would also expect a general

classification of the system within a controlled vocabulary to refer to a package. The following

properties are associated with a Package.

Property Category Software Property

Functionality purpose Description of overall functionality

of software system

keyword Classification of software under a

specified controlled vocabulary

Provenance and Ownership package_name Name of the package

owner Owner of the package, with contact

details

licence Overall licensing agreement

location URL of website of software

Software Environment -

Software Architecture overview Overview of software architecture

Operating Performance -

Software Composition software overview Documentation on the overview of

the software

tutorials Teaching material on the system.

requirements requirements of package

8.1.2 Version Properties

Versions are associated with a release with specific functionality, and would typically provide

access to source code modules within specific programming languages, which would be

provided with a build and install instructions to establish the version on a specific machine.

Thus the properties associated with a version would describe the function of the version in

detail, dependencies on architecture, device types and programming languages, and provide

installation and manual material. The following properties are associated with a software

version:

Property Category Software Property

Functionality functional_description Description of relationship of

between inputs and outputs of the

version.

release_notes Description of changes of this

version from other versions.

algorithm Description of the algorithm used.

input_parameter Details of names and formats of

inputs

output_parameter Details of names and formats of

outputs

 Significant Properties of Software

 73

interface API description

error_handling Description of how errors are

handled.

Provenance and Ownership version_identifier Identifier for this particular

version

licence Licence specific to this version.

Software Environment programming_language Programming language used for

this version.

hardware_device Category of hardware device

which the software version

depends upon.

Software Architecture detailed_architecture Detailed description of

architectural dependencies of the

version.

dependent_package Dependency on another software

package being installed.

Operating Performance -

Software Composition source Source code modules for this

version.

manual Usage instructions for this version

installation Installation, build and

configuration instructions for this

version.

test_cases Test suite for this version.

specification Specification of this version

8.1.3 Variant Properties

A variant is associated with an adaptation of a version for a specific target environment.

Usually it would be associated with an executable binary, but also could provide addition

source modules which are tailored to the target environment. Thus we would expect details of

the environment, with specific dependencies,, and also the expected operating characteristics in

such an environment. The following properties are associated with a software variant:

Property Category Software Property

Functionality variant_notes Description of the variations in

behaviour specific to this variant.

Provenance and Ownership licence Licence specific to this variant.

Software Environment platform Target hardware machine

architecture of version.

operating_system Version of operating system

compiler Version of compiler used to

construct this variant.

dependent_library Version of dependent software

libraries used.

hardware_device Specific auxiliary hardware

devices supported by the variant.

 Significant Properties of Software

 74

Software Architecture dependent_package Dependency on another software

package being installed.

Operating Performance processor_performance A specification that a specific

speed of processor is required.

memory_usage Minimal/typical memory usage

for RAM and disk of the variant.

peripheral_performance Performance of specific

peripheral hardware, for example

screen or colour resolution, audio

range.

Software Composition binary Machine executable code for this

version.

source variants of source modules for

this version

configuration installation and configuration

instructions for this variant

8.1.4 Download Properties

A download is associated with a number of different files stored at specific locations on a

specific machine. Thus we would expect to find properties identifying the components. The

following properties are associated with a software download:

Property Category Software Property

Functionality -

Provenance and Ownership licensee Named licensee of the download

 conditions Local conditions of use of this

download.

 licence_code Licence key value

Software Environment environment_variable Specific settings for environmental

variables.

 IP_address Specific IP address

 hardware_address Specific MAC address (or

equivalent) identifying a specific

machine.

Software Architecture -

Operating Performance -

Software Composition file Names and addresses of specific

files in the download.

8.2 Component Properties

Components can also have properties associated with them, which can overlap with the

properties of the version or variant they are in, depending on the detail required. They could

 Significant Properties of Software

 75

have most of the functional and environmental properties associated with versions or variants,

so the following table is a selection of the properties available.

Property Category Software Property

Functionality functional_description Description of relationship of

between inputs and outputs of the

version.

release_notes Description of changes of this

version from other versions.

algorithm Description of the algorithm used.

input_parameter Details of names and formats of

inputs

output_parameter Details of names and formats of

outputs

interface API description

error_handling Description of how errors are

handled.

Provenance and Ownership licence Licence specific to this version.

Software Environment programming_language Programming language used for

this component.

hardware_device Category of hardware device

which the software version

depends upon.

dependent_library Version of dependent software

libraries used.

Software Architecture detailed_architecture Detailed description of

architectural dependencies of the

version.

dependent_package Dependency on another software

package being installed.

Operating Performance -

8.3 An example of Significant Properties: Xerces

As an example of assigning significant properties, we consider Xerces
76

. Xerces is a

“collaborative software development project dedicated to providing robust, full-featured,

commercial-quality, and freely available XML parsers”. The main product is a robust reliable

and memory efficient XML parser which takes a XML document (usually from a text file or

input stream), and provides machine access to the structured content of the XML file via one of

a number of supported APIs. It is an established product which has been available for a

number of years, is supported in three major languages (Java, C++, Perl) and has gone through

a number of versions. Being an open source product with a community development, the

details of the system are easily available, and being a commonly used XML format processor, it

provides a useful example of the kind of tool which needs to be preserved in many software

contexts, as a sub-package of scientific software, or for document processing. Thus for our

76

 http://xerces.apache.org/

http://xerces.apache.org/

 Significant Properties of Software

 76

purposes, it provides an example of a relatively simple software package which we can assign

significant properties to.

Even in this case of a relatively self-contained system which has had most of its development

and documentation in public, raises issues and problems. For example, it is not entirely clear

what constitutes the package. There are several developments in different languages (Java, C,

Perl), so should we treat this as one package with several language versions, or as a separate

package for each development. This is a judgement; for Xerces we can say that each language

version has an different team with a separate development programme, so it may make sense to

treat them as separate packages,

Thus for Xerces C (the C language version) we break the system down in conceptual model

and assign properties as follows. Note that in many cases we refer to a file or URL which give

further details associated with the property.

Package Properties

Property

Category

Software Property

Functionality purpose XML Parser

keyword D.3.4 Processors: Parsing

(ACM Computing Classification System)

Provenance and

Ownership

package_name Xerces C

owner Apache Software Foundation

licence Apache Software Licence v. 2.0

http://www.apache.org/licenses/LICENSE-

2.0.html

location http://xerces.apache.org/xerces-c/

Software

Environment

-

Software

Architecture

overview Module to convert input text files into machine

processable data structures

http://xerces.apache.org/xerces-c/index.html

Operating

Performance

-

Software

Composition

software overview http://xerces.apache.org/xerces-c/index.html

tutorials http://xerces.apache.org/xerces-c/program.html

requirements

Version Properties

If we chose version 2.8.0 we can get the following properties.

Property

Category

Software Property

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://xerces.apache.org/xerces-c/
http://xerces.apache.org/xerces-c/index.html
http://xerces.apache.org/xerces-c/index.html
http://xerces.apache.org/xerces-c/program.html

 Significant Properties of Software

 77

Functionality functional_description as package

release_notes Description of changes of this version from

other versions.

algorithm Description of the algorithm used.

input_parameter files using XML 1.0, XML 1.1, XML

Namespaces, XML Schema 1.0

output_parameter DOM level 1 & 2, SAX 1 & 2

interface API description at

http://xerces.apache.org/xerces-

c/apiDocs/index.html

error_handling FAQ at http://xerces.apache.org/xerces-

c/faqs.html

Bug reports at

http://xerces.apache.org/xerces-c/bug-

report.html

Provenance and

Ownership

version_identifier Version 2.8.0

licence as package

Software

Environment

programming_language C++

hardware_device -

Software

Architecture

detailed_architecture -

dependent_package -

Operating

Performance

-

Software

Composition

source Source code modules for this version at

http://xerces.apache.org/xerces-

c/download.cgi

manual Manual at http://xerces.apache.org/xerces-

c/program.html

installation Installation, at :

http://xerces.apache.org/xerces-c/install.html

Build at:http://xerces.apache.org/xerces-

c/build.html

test_cases samples at http://xerces.apache.org/xerces-

c/samples.html

specification Specification of this version

Variant properties

If we then chose the variant Xerces-C++ Version 2.8.0 for Linux x86-64, we can give the

following properties.

Property

Category

Software Property

Functionality variant_notes http://xerces.apache.org/xerces-c/build-

winunix.html#UNIX .

http://xerces.apache.org/xerces-c/apiDocs/index.html
http://xerces.apache.org/xerces-c/apiDocs/index.html
http://xerces.apache.org/xerces-c/faqs.html
http://xerces.apache.org/xerces-c/faqs.html
http://xerces.apache.org/xerces-c/bug-report.html
http://xerces.apache.org/xerces-c/bug-report.html
http://xerces.apache.org/xerces-c/download.cgi
http://xerces.apache.org/xerces-c/download.cgi
http://xerces.apache.org/xerces-c/program.html
http://xerces.apache.org/xerces-c/program.html
http://xerces.apache.org/xerces-c/install.html
http://xerces.apache.org/xerces-c/build.html
http://xerces.apache.org/xerces-c/build.html
http://xerces.apache.org/xerces-c/samples.html
http://xerces.apache.org/xerces-c/samples.html
http://xerces.apache.org/xerces-c/build-winunix.html#UNIX
http://xerces.apache.org/xerces-c/build-winunix.html#UNIX

 Significant Properties of Software

 78

Provenance and

Ownership

licence as package

Software

Environment

platform x86 architecture

operating_system Linux x86-64

compiler GCC 3.4.x or later

dependent_library -

hardware_device -

Software

Architecture

dependent_package GZIP, TAR, GNU Make (for source)

Operating

Performance

processor_performance -

memory_usage -

peripheral_performance -

Software

Composition

binary xerces-c_2_8_0-x86_64-linux-

gcc_3_4.tar.gz

source -

configuration http://xerces.apache.org/xerces-c/build-

winunix.html#UNIX

Download properties

We then assume for a specific installation we would give the following information.

Property

Category

Software Property

Functionality -

Provenance and

Ownership

licensee user x

 conditions see licence

 licence_code none

Software

Environment

environment_variable XERCESROOT set to a specific

path

 IP_address -

 hardware_address -

Software

Architecture

-

Operating

Performance

-

Software

Composition

file location of executable on machine.

http://mirror.fubra.com/ftp.apache.org/xerces/c/binaries/xerces-c_2_8_0-x86_64-linux-gcc_3_4.tar.gz
http://mirror.fubra.com/ftp.apache.org/xerces/c/binaries/xerces-c_2_8_0-x86_64-linux-gcc_3_4.tar.gz
http://xerces.apache.org/xerces-c/build-winunix.html#UNIX
http://xerces.apache.org/xerces-c/build-winunix.html#UNIX

 Significant Properties of Software

 79

9 Conclusions and Recommendations

9.1 Conclusions of Study

Software preservation is a relatively new topic of research and there is little practical

experience in the field of software preservation per se.

 As we have already noted, although there are many groups who are holding software to

support archives, or to support a community, and many others who are maintaining a

usable software package for a long time, these groups do not consider themselves to be

doing software preservation and have other priorities.

 Those that do carry out software preservation are often amateur or specialised in science

museums or special interest groups; these are often ad hoc and small scale and do not

tackle the systematic problems of keeping software replayable in a broad context for the

long term.

 Other projects are looking more systematically at digital preservation and tend to rely

on the persistence of software, or at least access to software with similar functionality to

the original. However, they also tend not to concentrate on the problem of how to

preserve the software itself.

Thus the area of software preservation is relatively open, which lead us to consider why

software might need to be preserved in the first place, and if it was preserved, what this would

mean.

 There are good reasons of preserving research effort in software.

 Preserving software is a vital adjunct for preserving other digital objects.

 Preserving software essentially means that software can be reconstructed and replayed

to behave sufficiently closely to the original.

 Software is inherently complex with a large number of components related in a

dependency graph, and with specification, source and binary components, and a highly

sensitive dependency on the operating environment. Handling this complexity is a

major barrier to the preservation of software.

 Different preservation approaches can be adopted which can execute binaries directly,

can emulate the software, or carry out software migration by recompiling source code,

or even recoding. All can in different circumstances support good preservation.

Adopting the notion of performance from the NAA and InSPECT, we developed a notion of

performance of software which is closely related to the adequacy of the performance on the

target data. The adequacy of the software can therefore be established via testing.

 Significant Properties of Software

 80

 Establishment and preservation of test cases for expected behaviour of end software on

test data is a key feature for assessing the adequacy of performance of software

preservation on specific chosen significant properties.

 Good software engineering practice to support software version control, software

maintenance, migration and especially software testing can also support software

preservation. Groups which have successfully maintained software over a long period,

such a NAG or StarLink have developed rigorous software engineering practice and

developed techniques to support software migration in particular.

 Software reuse, via code classification and libraries, and also code canonicalization and

generalisation can also assist good software preservation.

To capture and control the inherent complexity of software, we have developed a conceptual

model for software which is more complex than that of InSPECT, although it does have some

parallels. Many of the structuring significant properties of software are thus captured in this

model. Significant properties of software are then categorised according to this model and also

according to their role:

 The InSPECT categorisation of significant properties does not match comfortably with

the significant properties of software. This is probably because of the indirect

performance model of software, which is tested by the performance of the end data.

 Contextual significant properties play a key role and software is dependent upon them

being satisfied for satisfactory reconstruction and replay.

 Behavioural significant properties determine the performance of the software on end

data.

Given the relatively immature state of the art in software preservation, we consider our

definition of a conceptual model of software and the associated identification and classification

of significant properties to be a proposal, which needs to be evaluated further in practice to

judge its value and effectiveness in practice.

The significant properties identified in this study are still relatively general and do not go into

the detail of other significant studies. For example, we decided that we would stop at the level

of granularity of code represented by the common coding concept represented by a public class

or module or subroutine (terminology varies between programming language) and it would not

be worthwhile detailing any further. Other significant properties also stop at a high level, and

do not for example enumerate the possible values which they could take
77

. Further testing and

evaluation is required to see if this is sufficient and whether the significant properties are

always appropriate and whether they can be extracted and used in practice.

Tools support should be eventually forthcoming to support the significant properties of

software; however, we feel that the above development of the methodology needs to be

investigated further before rushing into tool support.

77

 As an example of how this may be undertaken, see the example of licensing in Appendix C.

 Significant Properties of Software

 81

9.2 Recommendations

We conclude the report with a set of recommendations for JISC.

 Raising awareness of the software preservation within the JISC community.

 Further consideration should be given to the justification and role of software

preservation within a broader digital preservation strategy.

 Specific consideration should be given to the role of software preservation in

preservation processes which are conformant to OAIS.

 Further studies should be undertaken to test and extend the notion the conceptual model

of software and its significant properties. Studies and test cases should be undertaken

specifically in areas which were seen as outside the scope of this study, in particular:

o Database software

o Commercial software

o Business and office software

o Software which supports the performance of other key digital objects (e.g.

documents, vector images, science data).

o Systems and networking software.

 Studies and practice of software preservation should involve experience software

engineers to introduce best practice in code development, testing maintenance and

reuse.

 Specialist consideration should be given to the problem of preserving the user

interaction model of a software package.

 Guidance developed on the relative value of adopting an emulation or a migration

strategy to support the preservation of software.

 Reconsideration of the categories of significant properties identified in InSPECT and

those appropriate for software.

 Development of methodologies to exploit software testing as a measure of adequacy of

performance.

 Significant Properties of Software

 82

Acknowledgements

This project was funded by the JISC Digital Preservation Programme and the copyright of this

document is the property of JISC. We would like to thank the programme managers Helen

Hockx-Yu and Neil Grindley for their support. We would like to thank the following for

contributing with discussions and visits during this study: Chris Greenhough and David Worth

(CCPForge); Mike Dewar and Jeremy Walton (NAG Ltd), Sam Pepler (BADC); Mike Coyne,

David Duce and Bob Hopgood (JISC Significant Properties of Vector Graphics Project),

Gareth Knight (InSpect), and the CASPAR, SCARP and DCC projects for their collaboration.

The moral rights of the study remain with the authors.

 Significant Properties of Software

 83

References

[1] Margaret Hedstrom, Christopher A. Lee, Significant properties of digital objects:

definitions, applications, implications, Proceedings of the DLM-Forum 2002.

http://www.ils.unc.edu/callee/sigprops_dlm2002.pdf.

[2] M. Coyne, D. Duce, B. Hopgood, G. Mallen, M. Stapleton. The Significant Properties of

Vector Images. Report of JISC Digital Preservation Programme Study, November 2007.

[3] John G. Zabolitzky Preserving Software: Why and How. Iterations: An Interdisciplinary

Journal of Software History, vol. 1, 13 September 2002.

http://www.cbi.umn.edu/iterations/zabolitzky.html

[4] The Cedars Guide to Digital Preservation Strategies

http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dpstrategies.html (2002)

[5] Gareth Knight, Inspect Project Report, draft, King’s College London, October 2007.

[6] H Heslop, S. Davis, A. Wilson. An Approach to the Preservation of Digital Records,

National Archives of Australia, 2002. http://www.naa.gov.au/Images/An-approach-

Green-Paper_tcm2-888.pdf

[7] Adam Farquhar, Helen Hockx-Yu. Planets: Integrated Services for Digital Preservation.

The International Journal of Digital Curation, 2(2), 2007.

http://www.ijdc.net/ijdc/article/view/46/59

[8] Lorie, R. A. 2001. Long term preservation of digital information. In Proceedings of the 1st

ACM/IEEE-CS Joint Conference on Digital Libraries (Roanoke, Virginia, United States).

JCDL '01. ACM, New York, NY, 346-352. DOI=

http://doi.acm.org/10.1145/379437.379726

[9] A. Brown. Representation Information Registries, Planets project white paper, March

2008. http://www.planets-project.eu/docs/reports/Planets_PC3-

D7_RepInformationRegistries.pdf

[10] ISO 14721:2003: Space data and information transfer systems -- Open archival

information system -- Reference model

http://public.ccsds.org/publications/archive/650x0b1.pdf

[11] ACM Collected algorithms from ACM index by subject to algorithms (1960–1976)

[12] Boisvert R F, Howe S E and Kahaner D K GAMS – a framework for the management of

scientific software. ACM Trans. Math. Software 11 313–355 (1985).

[13] IFLA Study Group. Functional Requirements for Bibliographic Records, 1998.

http://www.ifla.org/VII/s13/frbr/frbr.pdf

[14] PREMIS Working Group. Data Dictionary for Preservation Metadata

http://www.oclc.org/research/projects/pmwg/premis-final.pdf

[15] Andrew Wilson Significant Properties Report InSPECT Work Package 2.2, April 2007.

http://www.ils.unc.edu/callee/sigprops_dlm2002.pdf
http://www.cbi.umn.edu/iterations/zabolitzky.html
http://www.leeds.ac.uk/cedars/guideto/dpstrategies/dpstrategies.html
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://www.naa.gov.au/Images/An-approach-Green-Paper_tcm2-888.pdf
http://www.ijdc.net/ijdc/article/view/46/59
http://doi.acm.org/10.1145/379437.379726
http://www.planets-project.eu/docs/reports/Planets_PC3-D7_RepInformationRegistries.pdf
http://www.planets-project.eu/docs/reports/Planets_PC3-D7_RepInformationRegistries.pdf
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://www.ifla.org/VII/s13/frbr/frbr.pdf
http://www.oclc.org/research/projects/pmwg/premis-final.pdf

 Significant Properties of Software

 84

Appendix A: An OWL Ontology for Significant Properties of
Software

<?xml version="1.0"?>

<rdf:RDF

 xmlns="http://www.owl-ontologies.com/Ontology1206345526.owl#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="http://www.owl-ontologies.com/Ontology1206345526.owl">

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="File">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A physical unit of storage on a particular machine.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="UserGuide">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Guidance to the intended end user of the operation of the software

package.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Document"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Specification">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A design document whch provides a definitive description of the

functional and performance characteristics of a software

package.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Document"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Package">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Represents the whole conceptual entity of an identifiable software

system, with a unity of functioanal putpose, comon overall name and

responsible "owner".</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="System"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Manual">

 <rdfs:subClassOf rdf:resource="#UserGuide"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A description of the operation of the package of particular features

and functions providied in the package. Intended as reference

material.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:about="#Document">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A component which provides human readable documentation of the

package.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Component"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Source">

 Significant Properties of Software

 85

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A component contaning human readable source code written in a formal

machine programming language. Requires a compilation or interpretation

phase to be executed.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Component"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="OtherComponent">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Component"/>

 </rdfs:subClassOf>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Any other software artifact not covered by the other sub-classes of

component.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Licence">

 <rdfs:subClassOf rdf:resource="#Document"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Document stating the legal ownership of the package and the

condiitiions of use under which it is provided to the user and the user can

operate the software.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Requirements">

 <rdfs:subClassOf rdf:resource="#Document"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A description of the requirements of the systems, the behavioural and

performance characteristics which the package is intended to

satisfy.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="InstallationGuide">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Provide instructions on the correct configuration and installaion of

the package in a particular environment,</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Document"/>

 </owl:Class>

 <owl:Class rdf:ID="Installation">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A configuration which controls the installation of a package.

Typically will check environmental dependencies (e.g. the existance and

version of dependent external packages or hardware), set environmental

variables, set code variables and alternate code block choices, invoke build

scripts.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="Configuration"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="TestSuite">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Representative examples of operation of the package and expected

behaviour arising from operatioin of the package. Prodiced to test the

conformance of the package to expected behaviour in a particular

installation environment.</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Component"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="ErrorList">

 <rdfs:subClassOf rdf:resource="#Document"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 Significant Properties of Software

 86

 >List of known errors, issues, and warnings associated with a version or

variant of the software.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:about="#Configuration">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A component which describes the configuration of the components to

generate a working dependencies between components and</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Component"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Version">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#System"/>

 </rdfs:subClassOf>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >expression of the system which has variations in the functionality of

the system</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Binary">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#Component"/>

 </rdfs:subClassOf>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A component which is in a machine readable encoding which can be

executed directly by the compujter hardware, or via a Virtual

Machine.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:about="#Component">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >An identifiable item which forms a part of a complete software

package</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Download">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >An instance of the system on a particular machine</rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:about="#System"/>

 </rdfs:subClassOf>

 </owl:Class>

 <owl:Class rdf:ID="Variant">

 <rdfs:subClassOf>

 <owl:Class rdf:about="#System"/>

 </rdfs:subClassOf>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >a manifestation of the system which changes in environment (e.g.

operating system, hardware platform, library, programming language

version)</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Tutorial">

 <rdfs:subClassOf rdf:resource="#UserGuide"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >Instructional material provided to the user to enable the end user to

learn the correct operation of the package, typically providing an overview

of the package and a staged introduction to its features. Will also usually

provide examples and walkthroughs.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="VersionNotes">

 <rdfs:subClassOf rdf:resource="#Document"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 Significant Properties of Software

 87

 >Provides a description on the particular features of a version,

outlining it functional differences and environemntal dependencies which

differ from a previous version.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Config">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A configuration component with typically a number of system internal

and environmental variables set to configure the system in a particular

operating environment.</rdfs:comment>

 <rdfs:subClassOf rdf:resource="#Configuration"/>

 </owl:Class>

 <owl:Class rdf:about="#System">

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A package is a collection of components which are treated together to

provide an item of software.</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:ID="Build">

 <rdfs:subClassOf rdf:resource="#Configuration"/>

 <rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

 >A congiguration of the source files, with the dependencies of the

source code, typically to control the compilation order and dependencies

between them.</rdfs:comment>

 </owl:Class>

 <owl:ObjectProperty rdf:ID="versionIdentifier">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="provenanceProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="errorHandling">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="functionalProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="source">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="compositionProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="significantProperty">

 <rdfs:domain rdf:resource="#System"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="subVariantDownloadOf">

 <rdfs:domain rdf:resource="#Download"/>

 <rdfs:range rdf:resource="#Download"/>

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="modelProperties"/>

 </rdfs:subPropertyOf>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasSubVariantDownload"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="programmingLanguage">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="environmentalProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="devicePerformance">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="performanceProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 Significant Properties of Software

 88

 <owl:ObjectProperty rdf:ID="specification">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:about="#compositionProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#environmentalProperty">

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="platform">

 <rdfs:subPropertyOf rdf:resource="#environmentalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="processorPerformance">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:about="#performanceProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="operatingSystem">

 <rdfs:subPropertyOf rdf:resource="#environmentalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#functionalProperty">

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="manual">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:about="#compositionProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="variantNotes">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasSubPackageVersion">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="subPackageVersionOf"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#Version"/>

 <rdfs:range rdf:resource="#Version"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#performanceProperty">

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="keyword">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="outputParameter">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#provenanceProperty">

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="subPackageOf">

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasSubPackage"/>

 </owl:inverseOf>

 <rdfs:range rdf:resource="#Package"/>

 <rdfs:domain rdf:resource="#Package"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="algorithm">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 Significant Properties of Software

 89

 <owl:ObjectProperty rdf:ID="memoryPerformance">

 <rdfs:subPropertyOf rdf:resource="#performanceProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasSubPackage">

 <rdfs:domain rdf:resource="#Package"/>

 <rdfs:range rdf:resource="#Package"/>

 <owl:inverseOf rdf:resource="#subPackageOf"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="releaseNotes">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasSubVariantDownload">

 <owl:inverseOf rdf:resource="#subVariantDownloadOf"/>

 <rdfs:range rdf:resource="#Download"/>

 <rdfs:domain rdf:resource="#Download"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="owner">

 <rdfs:subPropertyOf rdf:resource="#provenanceProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="dependentPackage">

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:ID="architectureProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="softwareOverview">

 <rdfs:range rdf:resource="#Component"/>

 <rdfs:subPropertyOf>

 <owl:ObjectProperty rdf:about="#compositionProperty"/>

 </rdfs:subPropertyOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="inputParameter">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="purpose">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="fileOfComponent">

 <rdfs:range rdf:resource="#Component"/>

 <rdfs:domain rdf:resource="#File"/>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="componentInFile"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#compositionProperty">

 <rdfs:range rdf:resource="#Component"/>

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="licence">

 <rdfs:subPropertyOf rdf:resource="#provenanceProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="interface">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="homeLocation">

 <rdfs:subPropertyOf rdf:resource="#provenanceProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#architectureProperty">

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 Significant Properties of Software

 90

 <owl:ObjectProperty rdf:ID="detailedArchitecture">

 <rdfs:subPropertyOf rdf:resource="#architectureProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hardwareDeviceType">

 <rdfs:subPropertyOf rdf:resource="#environmentalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="functionalDescription">

 <rdfs:subPropertyOf rdf:resource="#functionalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="installation">

 <rdfs:subPropertyOf rdf:resource="#compositionProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="tutorial">

 <rdfs:subPropertyOf rdf:resource="#compositionProperty"/>

 <rdfs:range rdf:resource="#Component"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="configuration">

 <rdfs:subPropertyOf rdf:resource="#compositionProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hardwareDevice">

 <rdfs:subPropertyOf rdf:resource="#environmentalProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="binary">

 <rdfs:subPropertyOf rdf:resource="#compositionProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="testCases">

 <rdfs:subPropertyOf rdf:resource="#compositionProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="requirements">

 <rdfs:subPropertyOf rdf:resource="#compositionProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#componentInFile">

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <owl:inverseOf rdf:resource="#fileOfComponent"/>

 <rdfs:domain rdf:resource="#Component"/>

 <rdfs:range rdf:resource="#File"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="userInteractionProperty">

 <rdfs:subPropertyOf rdf:resource="#significantProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="package_name">

 <rdfs:domain rdf:resource="#Package"/>

 <rdfs:subPropertyOf rdf:resource="#provenanceProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="architectureOverview">

 <rdfs:subPropertyOf rdf:resource="#architectureProperty"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#subPackageVersionOf">

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <owl:inverseOf rdf:resource="#hasSubPackageVersion"/>

 <rdfs:range rdf:resource="#Version"/>

 <rdfs:domain rdf:resource="#Version"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="subVersionVariantOf">

 <rdfs:domain rdf:resource="#Variant"/>

 <rdfs:range rdf:resource="#Variant"/>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasSubVersionVariant"/>

 </owl:inverseOf>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:ObjectProperty>

 Significant Properties of Software

 91

 <owl:ObjectProperty rdf:about="#hasSubVersionVariant">

 <owl:inverseOf rdf:resource="#subVersionVariantOf"/>

 <rdfs:domain rdf:resource="#Variant"/>

 <rdfs:range rdf:resource="#Variant"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:ObjectProperty>

 <owl:TransitiveProperty rdf:ID="childVersion">

 <rdfs:range rdf:resource="#Version"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#Version"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <owl:inverseOf>

 <owl:TransitiveProperty rdf:ID="parentVersion"/>

 </owl:inverseOf>

 </owl:TransitiveProperty>

 <owl:TransitiveProperty rdf:about="#parentVersion">

 <owl:inverseOf rdf:resource="#childVersion"/>

 <rdfs:range rdf:resource="#Version"/>

 <rdfs:domain rdf:resource="#Version"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 </owl:TransitiveProperty>

 <owl:FunctionalProperty rdf:ID="versionOf">

 <owl:inverseOf>

 <owl:InverseFunctionalProperty rdf:ID="hasVersion"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#Version"/>

 <rdfs:range rdf:resource="#Package"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="componentOf">

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <owl:inverseOf>

 <owl:InverseFunctionalProperty rdf:ID="hasComponent"/>

 </owl:inverseOf>

 <rdfs:range rdf:resource="#System"/>

 <rdfs:domain rdf:resource="#Component"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="variantOf">

 <owl:inverseOf>

 <owl:InverseFunctionalProperty rdf:ID="hasVariant"/>

 </owl:inverseOf>

 <rdfs:domain rdf:resource="#Variant"/>

 <rdfs:range rdf:resource="#Version"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="fileInDownload">

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#File"/>

 <rdfs:range rdf:resource="#Download"/>

 <owl:inverseOf>

 <owl:InverseFunctionalProperty rdf:ID="downloadIncludesFile"/>

 </owl:inverseOf>

 </owl:FunctionalProperty>

 <owl:FunctionalProperty rdf:ID="downloadOf">

 <owl:inverseOf>

 <owl:InverseFunctionalProperty rdf:ID="hasDownload"/>

 Significant Properties of Software

 92

 </owl:inverseOf>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:domain rdf:resource="#Download"/>

 <rdfs:range rdf:resource="#Variant"/>

 </owl:FunctionalProperty>

 <owl:InverseFunctionalProperty rdf:about="#hasVariant">

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <rdfs:domain rdf:resource="#Version"/>

 <rdfs:range rdf:resource="#Variant"/>

 <owl:inverseOf rdf:resource="#variantOf"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 </owl:InverseFunctionalProperty>

 <owl:InverseFunctionalProperty rdf:about="#downloadIncludesFile">

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:range rdf:resource="#File"/>

 <rdfs:domain rdf:resource="#Download"/>

 <owl:inverseOf rdf:resource="#fileInDownload"/>

 </owl:InverseFunctionalProperty>

 <owl:InverseFunctionalProperty rdf:about="#hasVersion">

 <rdfs:domain rdf:resource="#Package"/>

 <rdfs:range rdf:resource="#Version"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <owl:inverseOf rdf:resource="#versionOf"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 </owl:InverseFunctionalProperty>

 <owl:InverseFunctionalProperty rdf:about="#hasDownload">

 <rdfs:domain rdf:resource="#Variant"/>

 <rdfs:range rdf:resource="#Download"/>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <owl:inverseOf rdf:resource="#downloadOf"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 </owl:InverseFunctionalProperty>

 <owl:InverseFunctionalProperty rdf:about="#hasComponent">

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#ObjectProperty"/>

 <rdfs:subPropertyOf rdf:resource="#modelProperties"/>

 <rdfs:domain rdf:resource="#System"/>

 <rdfs:range rdf:resource="#Component"/>

 <owl:inverseOf rdf:resource="#componentOf"/>

 </owl:InverseFunctionalProperty>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.3.1, Build 430)

http://protege.stanford.edu -->

 Significant Properties of Software

 93

Appendix B: Questions to Analyse Software Preservation
Practices

Significant Properties of Software

Significant properties, also referred to as “significant characteristics” or “essence”, are

essential attributes of a digital object which affect its appearance, behaviour, quality and

usability. They can be grouped into categories such as content, context (metadata), appearance

(e.g. layout, colour), behaviour (e.g. interaction, functionality) and structure (e.g. pagination,

sections). This is defined within the context of preservation; significant properties must be

preserved over time for the digital object to remain accessible and meaningful.

Significant properties have been considered in for a number of digital objects, such as text

documents and raster images. However, to date there has been no substantial study specifically

into software. In this study, we are considering how this concept might apply to software and

develop a basic framework for capturing the significant properties of software.

We recognise that we cannot consider the whole of software - this is a very large topic in itself.

But we would like to consider a number of examples within the scientific and mathematical

domain. In order to develop this framework, we would like to consider a number of scenarios

where software is developed and stored for a significant period of time, such as long term

development projects or software libraries and repositories.

Within each scenario, we would like to consider for each software "object": (taken from

CASPAR requirements capture process):

 conceptual purpose of software items (community, domain of interest, algorithms)

 knowledge/behaviour encoded within the software

 encodings, programming languages, input/outputs data formats.

 supporting documentation objects.

 relationships and dependencies between software items

 relationships and dependencies to the s/w environment

 storage mechanisms

and additional information about:

 production - description of the way in which the software is written and used and

maintained, and how it gets to the repository

 current use:

o software used to manage the digital encodings

o software/mechanisms to use/perform the software (emulation, configurations,

build scripts, manuals)

For each of these broad headings we include some guidance of the intention and also some

questions which are relevant.

 Significant Properties of Software

 94

Outline Questions
Each repository is characterised at the outset by the following basic features.

1. Holdings: overview of the type of software held, and a list of software as much as

practical.

2. Software: For a selection of the software in the repository, offering a variety of

challenges, provide a description of the digitally encoded information to be preserved,

from the bit level to the knowledge it conveys to its user community. We do not at this

stage need very detailed descriptions. In addition we need a brief descriptions of

o any special importance, or special unique quality

o access restrictions and controls

o what behaviour the software supports

 how are inputs and outputs (data types) to data recorded

 Controlled vocabulary to encapsulate functionality

o how the required software is located and retrieved

o what additional environmental knowledge is employed to characterise the

software

 hardware, software, versions, library conditions

o Software usage process - how is the software meant to be used? Interaction with

a (business) process? Software architecture it supports.

3. Software Producer: A brief description of the group, individual or institution that

produced the software.

4. User Community: A description of the current user community and the characteristics

of the designated community for whom this software might be preserved.

5. Current plans/approaches for:

o cataloguing s/w

o maintenance of s/w versions

o software reuse

o software preservation

More detailed questions

1 What Performance/Behaviour does your current user(s) expect
from this software and what needs preserving?

This is quite an open ended question but it is essential to establish the nature of the information

being are attempted to be preserved as this helps to define what needs to be preserved. This

definition does not limit the potential information the archive is capable of providing, but rather

helps define a minimum level of information to be preserved.

Some possible example of types of software and supported behaviour.

1. Library routine which has a number of inputs in particular formats, produces a number

of outputs in particular formats, implementing a particular algorithm

o e.g. fast-fourier transform,

o e.g. data format conversion,

o e.g. compiler (?)

 Significant Properties of Software

 95

2. software package to support particular set of functions and user interactions on a class

of data object

o e.g. text editor, takes a text file in a particular format, allows the user to perform

a set of edit actions via some interface, and save object.

o e.g. eclipse s/w editor and builder (?)

o e.g. software visualisation package NAG IRIS Explorer ?

3. software framework for linking and integrating a series of different functions and

applications together upon a common data format/storage system.

o e.g. Starlink

o e.g. CDAT (BADC) - (?)

2 What information do you provide to a new user, and what support
do you give them during their use of the software?

This is to ascertain if there is any useful information would be given to a new user to help them

get started using the software. Including manuals, installation scripts and guides, tutorial

material. More importantly, it is also intended to "get at" the types of information that are not

written down but are typically asked for and are needed by users to produce results.

Inevitably there will always be information in the heads of the people that run the software

archive that is not written down, but would be useful to some users both now and in the future.

This is also assuming that the people that created and run the software archive are not around to

help the "unborn users", so in future they will not have the support.

Typical Questions:

 Do you give out any training material that informs a new user about using the software?

 Do you provide any training days for new users that inform users about the software?

 Do you log support queries and answers?

 Can you think of any information that you or your colleagues know that would be

useful to new users that is not written down?

3 How is the software provenance captured?

 Who/where does it come from?

 How is it verified (e.g. any checksums or signatures)?

 How is it packaged (e.g. Zipped , Linux RPM etc) ?

 For one software "object", how many "files" does it consist of? How are they related?

 Is the software regularised to conform to coding or API standards in any way?

 Is information added (e.g. additional metadata, references etc)?

4 How is the software currently catalogued?

 What information do current users need/possess that allows them to locate the software

that they are seeking?

 Does the access software utilise any supplementary metadata, e.g. an index database, a

thesaurus, a catalogue?

http://www.nag.co.uk/Welcome_IEC.asp

 Significant Properties of Software

 96

5 Are there any access restrictions?

 Are there any restrictions on whom or how you can access or use the software?

 What are there reasons for these restrictions?

 Who or what imposes them?

 Are these restrictions likely to change over time?

6 Identify common "domain objects" currently used .

Can you provide a listing and definition of all separate data entities (most granular type of data

held within file) contained within the software "object"? Can you fully describe any entity

relationships?

 e.g. source files, compiled object files, library objects, configuration files, build scripts,

documentation files, test cases, examples.

 How do you currently extract and instantiate these entities and their relationships ?

7 What information is required to reconstruct the software objects or
reproduce the performance or duplicate the required behaviour?

If the software were to become unusable, could its functions be reconstructed from the

technical specifications of the file format, the data entity definitions and their relationships? If

not, what further information would be required to do this?

 What external digital resources does the user refer to (specifications, requirements,

pseudo-code, tutorial) ?

 What external non digital resources (i.e. books/microfilm) refer to?

 What external bodies/organisation does a user refer to?

 What is the knowledge base and skill set of current user that allows them to use the

software effectively?

 How do your current users acquire the knowledge base and skill set which allows them

to use the software effectively and what are these?

 What knowledge or skills gap might arise between the current user group and the

designated user community?

 What effect would such a gap have upon the usability of the software and on the ability

to process it further?

 Is anyone identified as responsible for monitoring the community knowledge base and

initiating changes as needed?

 What effect would the permanent loss of such representation have upon the

interpretation of the stored data?

8 Structural Representation Information – (non media dependent
encoding)

Closely connected with single file formats, but also includes complex inter-related collections

of files.

 Provide a list of file format(s) in which the software processes

 Provide a list file format the software artifacts are represented in (e.g. programming

language, interpreted bytecode (JVM), processor specific binary).

 Significant Properties of Software

 97

 What are the technical specifications of this/these file format(s)? The information

derived from the technical specification should be sufficient to extract to reassemble

and run the software given the appropriate environment.

 Specify any packaging connecting various separate components together

 How do you manage versioning and source control?

 How do you manage providing versions for different software environments (operating

system versions, compiler versions, library versions etc)?

9. How is the software physically stored?

 How many independent off-site copies are there?

 What is the physical media upon which the software is stored e.g. CD, SDLT tape (if

any)?

o Can you provide any relevant technical specification and physical description of

how the software is mechanically transferred onto the storage media?

 Was there any media specific encoding employed in writing to the physical media?

o Can you provide decoding instruction which allow the file to be reconstructed?

o Has any integrity checking mechanism been allowed which will assist in file

reconstruction?

o Is any metadata physically recorded along with the files e.g. time stamps or id of

machine writing to the media

 How will the integrity of the software store be maintained?

 What disaster recovery procedures need to be put in place?

 What is the storage medium current lifetime?

 Significant Properties of Software

 98

Appendix C: A possible categorisation of software licensing

One issue which may need to be addressed is how to provide more specific detail of specific

properties, by via for example providing sub-categories or enumerations of possible values for

specific properties. Detailing this may be a direction of research.

As an example of this may be achieved, we give here an extract from Lee Courtney's

presentation “Organizing the Attic, Furnishing the Parlor - Considerations for Moving

Forward”, from presentations from the Computer History Museum workshop “The Attic & the

Parlor: A Workshop on Software Collection, Preservation & Access”, May 5, 2006.

http://www.softwarepreservation.org/workshop/courtney_Organizing%20the%20Attic%20V1.

0.ppt/view. This presentation gives a categorisation of a number of different types of software

licence.

Closed proprietary Source code not released because of proprietary, competitive, or

marketplace concerns. (eg: Windows XP)

Available strictly

encumbered

Source code released thru agreement strictly restricting use or redistribution

of the source code. (Example: HP MPE-V source code available under

source code non-disclosure agreement)

Available loosely

encumbered

Source code released after signed agreement loosely restricting use or

redistribution. (Example: Educational institution or development

consortium software. Precedes contemporary open source)

Available

unencumbered

Source code released source code into the public domain with no copyright

or other licensing burden. (Example: IBM OS/360?)

Open Source Source code for the system under any of the open source licenses (GPL,

LGPL, BSD, Artistic, etc.).

Closed Classified System owned by government organization for which source code is not

available due to security concerns. (Example: DoD AWACS)

Unknown Unknown IP encumbrance on original source code.

Further, he gives the status of a number of well known software packages. In practice, the

significant property would also have to give access to the specific licencing conditions so that

software preservers can undertaken preservation actions which respect the licence.

Software Name IP Owner Source State

Fortran IBM Available unencumbered

Unix (AT&T and

Berkeley) ATT & U. of California Available strictly encumbered

Multics Bull Closed proprietary

VisiCalc unknown Closed proprietary

Smalltalk-72 Xerox? Available loosely encumbered

OS/360 IBM Available unencumbered

Mosaic U. of Illinois Available loosely encumbered

Algol-60

compiler unknown Available unencumbered

Lisp 1.5 unknown Available unencumbered

http://www.softwarepreservation.org/workshop/courtney_Organizing%20the%20Attic%20V1.0.ppt/view
http://www.softwarepreservation.org/workshop/courtney_Organizing%20the%20Attic%20V1.0.ppt/view

 Significant Properties of Software

 99

Pascal unknown Available unencumbered

C ATT Available loosely encumbered

TeX SRI Available loosely encumbered

DOS Microsoft Closed proprietary

Emacs unknown Available loosely encumbered

troff unknown Available loosely encumbered

APL IBM Closed proprietary

Bravo Xerox? Closed proprietary

COBOL IBM Closed proprietary

Mac OS Apple Closed proprietary

Pong unknown Closed proprietary

