

# A robust limited-memory incomplete Cholesky factorization

#### Jennifer Scott

#### STFC Rutherford Appleton Laboratory

#### Miroslav Tůma

#### Institute of Computer Science Academy of Sciences of the Czech Republic

Sparse Days at CERFACS, 17th June 2013

#### Introduction

Consider the large sparse symmetric linear system

```
Ax = b, A \in R^{n \times n}
```

An ideal preconditioner should be:

- cheap to compute
- sparse and fast to apply
- provide sufficient approximation of the algebraic problem
- result in rapidly converging preconditioned iterative method

Key target for library software is robustness

#### Introduction

Incomplete Cholesky factorization

#### $A\simeq LL^T$

Some entries that occur in complete factorization are ignored.

Long history (> 50 years) and many possible variants:

- Structure-based IC(ℓ): potential fill entries allowed only if their level of fill is less than ℓ.
- Threshold-based  $IC(\tau)$ : entries greater than  $\tau$  dropped.
- Memory-based IC(p): dropping of entries based on memory available.

 $IC(\ell)$ 

- Location of permissible fill entries using sparsity pattern of A prescribed in advance.
- ► Aim to mimic how pattern of *A* is developed during complete factorization.
- ► But although entries of E = A LL<sup>T</sup> are zero inside prescribed sparsity pattern, outside can be large.
- ► Increasing l can be prohibitive (storage requirements and time to compute and apply the preconditioner).

 $IC(\tau)$ 

- Entries of computed factors or intermediate quantities that exceed drop tolerance τ discarded.
- Success depends on suitable  $\tau$ : highly problem dependent.
- Trade-off between sparsity and quality.
- Memory not predictable.

IC(p)

- Prescribe maximum number of entries allowed in each column of L and retain only largest entries.
- Memory predictable.
- Example is widely-used dual threshold  $ILUT(p, \tau)$  (Saad '94).
  - Designed for non symmetric problems.
  - Combines use of drop tolerance τ with prescribed maximum column and row counts.
  - ► Ignores symmetry in A (if A symmetric, patterns of L and U<sup>T</sup> normally different).

# ICFS

ICFS code of Lin and Moré '99:

- Given p, retains  $n_j + p$  largest entries in the lower triangular part of  $L_j$ , where  $n_j$  is number of entries in lower triangular part of  $A_j$ .
- Incorporates *l*<sub>2</sub>-norm based scaling.
- In the event of breakdown, uses global diagonal shift (A + αI factorized for some α > 0 (Manteuffel '80)).
- ► Widely used for large-scale trust region subproblems.

But, as we will see, efficiency of resulting preconditioner not very sensitive to choice of p.

So how to improve preconditioner quality?

### Positive semi-definite modifications I

Alternative way to prevent breakdown:

- Diagonal modification scheme first introduced by Jennings and Malik '77,'78 (also Ajiz and Jennings '84).
- Every time off-diagonal entry discarded, corresponding diagonal entries modified by adding SPSD matrix

#### Jennings-Malik approach

#### Breakdown-free factorization that can be expressed as

#### $A = LL^T + E$

where error matrix E is sum of SPSD matrices.

- But modifications to A can be significant.
- Popular in some engineering applications.

# Positive semi-definite modifications II

- More sophisticated modification scheme due to Tismenetsky '91 (and Kaporin '98).
- Introduces use of intermediate memory that is employed during construction of *L* but then discarded.
- Shown to be very robust but it "has unfortunately attracted surprisingly little attention" (Benzi '02).
- Suffers from a serious drawback: memory requirements can be prohibitively high.

## Our aims

- Develop generalisation of ICFS such that efficiency of preconditioner improves with prescribed memory.
- Develop memory-efficient variant of Tismenetsky-Kaporin approach using global shifts to avoid breakdown.
- Combine in "black-box" *IC* factorization code that is demonstratively robust, efficient and flexible.

New package is HSL\_MI28.

## Tismenetsky approach

Based on matrix decomposition of form

```
A = LL^T + LR^T + RL^T + \hat{E}
```

- L is lower triangular with positive diagonal entries used for preconditioning,
- *R* is strictly lower triangular with small entries that is used to stabilise the factorization process, and
- Ê has the structure

 $\hat{E} = RR^T$ .

# Tismenetsky approach

► On *j*-th step, decompose col. 1 of Schur complement *S* into

$$I_j + r_j$$
 with  $|I_j|^T |r_j| = 0$ ,

where entries of  $l_j$  are retained in incomplete factorization and those in  $r_j$  are discarded.

On next step, S updated by subtracting

$$(l_j+r_j)(l_j+r_j)^T$$

Tismenetsky omits the term

$$\hat{\mathsf{E}}_j = \mathsf{r}_j \mathsf{r}_j^{\mathsf{T}}. \tag{1}$$

• Thus, SPSD matrix implicitly added to A.

# Kaporin's use of drop tolerances

- Obvious choice for  $r_j$  are smallest off-diagonal entries in col j.
- ► Controls size of *L* but not memory required to compute it.
- Kaporin '98: entries of magnitude at least τ<sub>1</sub> kept in L and those smaller than τ<sub>2</sub> are dropped from R.
- Now Ê has structure

$$\hat{E} = RR^T + F + F^T,$$

F strictly lower triangular matrix that is not computed; R used in computation of L but discarded.

#### Problems of Tismenetsky-Kaporin approach

- How to choose tolerances  $\tau_1$  and  $\tau_2$ ? Problem dependent.
- Method not guaranteed breakdown free ... combine with diagonal compensation or global shift.
- With no restriction on size of L and R, can achieve high quality preconditioner but memory demands high.
- Also too expensive. Impractical for the very large problems iterative methods designed for.

**Remedy:** impose memory limit on *L* and *R*.

## Limited memory Tismenetsky-Kaporin approach

lsize: max. number of fill entries in each col. of L

$$nz(L) \le nz(A) + \texttt{lsize} * (n-1)$$

- rsize: max. number of entries in each col. of R. Amount of intermediate memory and work involved in computing preconditioner depends on rsize. Note: if rsize = 0, R not used.
- Retain largest entries in *l<sub>j</sub>*, provided at least *τ*<sub>1</sub> in magnitude; then retain next largest entries in *r<sub>j</sub>*, provided at least *τ*<sub>2</sub> in magnitude.

#### Left-looking algorithm outline

```
Input: A, 1size, rsize, \tau_1, \tau_2
Set w(1:n) = 0
for i = 1 : n do
    Scatter col. A_i into w
    Apply LL^T + RL^T + LR^T updates from columns 1: i - 1 to w
    (Partially) sort entries in w by magnitude
    Keep n_i + lsize entries of largest magnitude in l_i provided
        they are at least \tau_1
    Keep rsize additional entries that are next largest in magnitude
            in r_i provided they are at least \tau_2
    Reset entries of w to zero
    end do
end do
```

Output: L

## Coping with breakdown

- When using limited memory (and/or dropping), factorization may breakdown.
- We hold a copy of diagonal entries and, at each step j, keep them updated. If any becomes zero or negative, restart factorization with

$$A \leftarrow A + \alpha I$$

for some positive  $\alpha$ .

More than one restart may be required.

#### Test environment

- Problems from University of Florida Collection.
- Selected all non-diagonal SPD matrices with n > 1000.
- Removed those with duplicate sparsity patterns.
- Following initial experiments, 8 problems discarded as unable to achieve convergence without large amount of fill.
- Test set of 145 problems.
- ► CG used with x<sub>0</sub> = 0, b computed so that x = 1, and stopping criteria

$$\|Ax_k - b\| \le 10^{-10} \|b\|$$

with limit of 2000 iterations.

# Test environment (continued)

- ▶ What to measure? iteration counts? timings? sparsity of L?
- We define the efficiency of preconditioner to be

iter  $\times$  nz(L)

- Performance profiles (Moré, Dolan '02) used to assess performance.
- All software written in Fortran.

## Efficiency performance profile, rsize=0



Note: rather insensitive to choice of lsize (ICFS).

# Efficiency (= iteration) performance profile, lsize=5



rsize=-1 is unlimited memory for *R* (not practical).

# Efficiency performance profile lsize+rsize constant



Pairs (lsize,rsize) Intermediate memory (rsize > 0) can compensate for lsize.

Jennifer Scott

# Effect of scaling on efficiency (lsize = rsize = 5)



HSL\_MI28 default is  $l_2$  scaling.

# Effect of dropping on efficiency (lsize = rsize = 5)



Often advantageous to use small drop tolerance. Default  $\tau_1 = 0.001$ .

Jennifer Scott

## Effect of ordering on efficiency



Sloan profile-reduction ordering is the winner.

# Comparison with level-based approach (IC(3))Efficiency (left) and iterations (right).



#### Comparison with direct solver HSL\_MA97

Total time: all problems (left) and large problems (right).



HSL\_MI28 can sometimes compete with direct solver (and succeeds when HSL\_MA97 runs out of memory).

# Concluding remarks

- ► We have developed a new *IC* code HSL\_MI28 that may be used as a "black box" or tuned for a particular problem.
- Memory usage is under the user's control.
- Using restricted intermediate memory improves efficiency.
- The intermediate memory can compensate for the preconditioner size.
- Based on extensive experimentation, HSL\_MI28 appears robust and efficient.

**Note:** at the Preconditioning Conference, my talk will focus more on the use of positive semidefinite modification schemes.



# Thank you!

HSL\_MI28 is available (without charge) as part of HSL 2013.

Technical Reports RAL-P-2013-004 and RAL-P-2013-005.

Supported by EPSRC grant EP/I013067/1 Grant Agency of the Czech Republic Project No. P201/13-06684