
A robust limited-memory incomplete
Cholesky factorization

Jennifer Scott

STFC Rutherford Appleton Laboratory

Miroslav Tůma

Institute of Computer Science
Academy of Sciences of the Czech Republic

Sparse Days at CERFACS, 17th June 2013

Robust limited-memory IC Jennifer Scott

Introduction

Consider the large sparse symmetric linear system

Ax = b, A ∈ Rn×n

An ideal preconditioner should be:

I cheap to compute

I sparse and fast to apply

I provide sufficient approximation of the algebraic problem

I result in rapidly converging preconditioned iterative method

Key target for library software is robustness

Robust limited-memory IC Jennifer Scott

Introduction

Incomplete Cholesky factorization

A ' LLT

Some entries that occur in complete factorization are ignored.

Long history (> 50 years) and many possible variants:

I Structure-based IC (`): potential fill entries allowed only if
their level of fill is less than `.

I Threshold-based IC (τ): entries greater than τ dropped.

I Memory-based IC (p): dropping of entries based on memory
available.

Robust limited-memory IC Jennifer Scott

IC (`)

I Location of permissible fill entries using sparsity pattern of A
prescribed in advance.

I Aim to mimic how pattern of A is developed during complete
factorization.

I But although entries of E = A− LLT are zero inside
prescribed sparsity pattern, outside can be large.

I Increasing ` can be prohibitive (storage requirements and
time to compute and apply the preconditioner).

Robust limited-memory IC Jennifer Scott

IC (τ)

I Entries of computed factors or intermediate quantities that
exceed drop tolerance τ discarded.

I Success depends on suitable τ : highly problem dependent.

I Trade-off between sparsity and quality.

I Memory not predictable.

Robust limited-memory IC Jennifer Scott

IC (p)

I Prescribe maximum number of entries allowed in each column
of L and retain only largest entries.

I Memory predictable.

I Example is widely-used dual threshold ILUT (p, τ) (Saad ’94).
I Designed for non symmetric problems.

I Combines use of drop tolerance τ with prescribed maximum
column and row counts.

I Ignores symmetry in A (if A symmetric, patterns of L and UT

normally different).

Robust limited-memory IC Jennifer Scott

ICFS

ICFS code of Lin and Moré ’99:

I Given p, retains nj + p largest entries in the lower triangular
part of Lj , where nj is number of entries in lower triangular
part of Aj .

I Incorporates l2-norm based scaling.

I In the event of breakdown, uses global diagonal shift
(A + αI factorized for some α > 0 (Manteuffel ’80)).

I Widely used for large-scale trust region subproblems.

But, as we will see, efficiency of resulting preconditioner not very
sensitive to choice of p.
So how to improve preconditioner quality?

Robust limited-memory IC Jennifer Scott

Positive semi-definite modifications I

Alternative way to prevent breakdown:

I Diagonal modification scheme first introduced by
Jennings and Malik ’77,’78 (also Ajiz and Jennings ’84).

I Every time off-diagonal entry discarded, corresponding
diagonal entries modified by adding SPSD matrix

i j

i

j

. . .

|aij | −|aij |
. . .

−|aij | |aij |
. . .

Robust limited-memory IC Jennifer Scott

Jennings-Malik approach

I Breakdown-free factorization that can be expressed as

A = LLT + E

where error matrix E is sum of SPSD matrices.

I But modifications to A can be significant.

I Popular in some engineering applications.

Robust limited-memory IC Jennifer Scott

Positive semi-definite modifications II

I More sophisticated modification scheme due to
Tismenetsky ’91 (and Kaporin ’98).

I Introduces use of intermediate memory that is employed
during construction of L but then discarded.

I Shown to be very robust but it “has unfortunately attracted
surprisingly little attention” (Benzi ’02).

I Suffers from a serious drawback: memory requirements can be
prohibitively high.

Robust limited-memory IC Jennifer Scott

Our aims

I Develop generalisation of ICFS such that efficiency of
preconditioner improves with prescribed memory.

I Develop memory-efficient variant of Tismenetsky-
Kaporin approach using global shifts to avoid breakdown.

I Combine in “black-box” IC factorization code that is
demonstratively robust, efficient and flexible.

New package is HSL MI28.

Robust limited-memory IC Jennifer Scott

Tismenetsky approach

Based on matrix decomposition of form

A = LLT + LRT + RLT + Ê

I L is lower triangular with positive diagonal entries used for
preconditioning,

I R is strictly lower triangular with small entries that is used to
stabilise the factorization process, and

I Ê has the structure
Ê = RRT .

Robust limited-memory IC Jennifer Scott

Tismenetsky approach

I On j-th step, decompose col. 1 of Schur complement S into

lj + rj with |lj |T |rj | = 0,

where entries of lj are retained in incomplete factorization and
those in rj are discarded.

I On next step, S updated by subtracting

(lj + rj)(lj + rj)
T .

I Tismenetsky omits the term

Êj = rj r
T
j . (1)

I Thus, SPSD matrix implicitly added to A.

Robust limited-memory IC Jennifer Scott

Kaporin’s use of drop tolerances

I Obvious choice for rj are smallest off-diagonal entries in col j .

I Controls size of L but not memory required to compute it.

I Kaporin ’98: entries of magnitude at least τ1 kept in L and
those smaller than τ2 are dropped from R.

I Now Ê has structure

Ê = RRT + F + FT ,

F strictly lower triangular matrix that is not computed;
R used in computation of L but discarded.

Robust limited-memory IC Jennifer Scott

Problems of Tismenetsky-Kaporin approach

I How to choose tolerances τ1 and τ2? Problem dependent.

I Method not guaranteed breakdown free ... combine with
diagonal compensation or global shift.

I With no restriction on size of L and R, can achieve high
quality preconditioner but memory demands high.

I Also too expensive. Impractical for the very large problems
iterative methods designed for.

Remedy: impose memory limit on L and R .

Robust limited-memory IC Jennifer Scott

Limited memory Tismenetsky-Kaporin approach

I lsize: max. number of fill entries in each col. of L

nz(L) ≤ nz(A) + lsize ∗ (n − 1)

I rsize: max. number of entries in each col. of R.
Amount of intermediate memory and work involved in
computing preconditioner depends on rsize.
Note: if rsize = 0, R not used.

I Retain largest entries in lj , provided at least τ1 in magnitude;
then retain next largest entries in rj , provided at least τ2 in
magnitude.

Robust limited-memory IC Jennifer Scott

Left-looking algorithm outline

Input: A, lsize, rsize, τ1, τ2

Set w(1 : n) = 0
for j = 1 : n do

Scatter col. Aj into w
Apply LLT + RLT + LRT updates from columns 1 : j − 1 to w
(Partially) sort entries in w by magnitude
Keep nj + lsize entries of largest magnitude in lj provided

they are at least τ1
Keep rsize additional entries that are next largest in magnitude

in rj provided they are at least τ2
Reset entries of w to zero
end do

end do

Output: L

Robust limited-memory IC Jennifer Scott

Coping with breakdown

I When using limited memory (and/or dropping),
factorization may breakdown.

I We hold a copy of diagonal entries and, at each step j , keep
them updated. If any becomes zero or negative, restart
factorization with

A← A + αI

for some positive α.

I More than one restart may be required.

Robust limited-memory IC Jennifer Scott

Test environment

I Problems from University of Florida Collection.

I Selected all non-diagonal SPD matrices with n > 1000.

I Removed those with duplicate sparsity patterns.

I Following initial experiments, 8 problems discarded as unable
to achieve convergence without large amount of fill.

I Test set of 145 problems.

I CG used with x0 = 0, b computed so that x = 1, and
stopping criteria

‖Axk − b‖ ≤ 10−10‖b‖

with limit of 2000 iterations.

Robust limited-memory IC Jennifer Scott

Test environment (continued)

I What to measure? iteration counts? timings? sparsity of L?

I We define the efficiency of preconditioner to be

iter × nz(L)

I Performance profiles (Moré, Dolan ’02) used to assess
performance.

I All software written in Fortran.

Robust limited-memory IC Jennifer Scott

Efficiency performance profile, rsize=0

1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lsize = 5

lsize = 8

lsize = 10

lsize = 12

lsize = 15

Note: rather insensitive to choice of lsize (ICFS).

Robust limited-memory IC Jennifer Scott

Efficiency (= iteration) performance profile, lsize=5

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rsize = 0

rsize = 2

rsize= 5

rsize = 10

rsize = −1

rsize=-1 is unlimited memory for R (not practical).

Robust limited-memory IC Jennifer Scott

Efficiency performance profile lsize+rsize constant

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(4,6)

(5,5)

(6,4)

(8,2)

(10,0)

Pairs (lsize,rsize)
Intermediate memory (rsize > 0) can compensate for lsize.

Robust limited-memory IC Jennifer Scott

Effect of scaling on efficiency (lsize = rsize = 5)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l2

mc77

mc64

diagonal

None

HSL MI28 default is l2 scaling.

Robust limited-memory IC Jennifer Scott

Effect of dropping on efficiency (lsize = rsize = 5)

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01

0.005

0.001

0.0005

0.0

Often advantageous to use small drop tolerance.
Default τ1 = 0.001.

Robust limited-memory IC Jennifer Scott

Effect of ordering on efficiency

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RCM

Sloan

AMD

Ascend

None

METIS

Sloan profile-reduction ordering is the winner.

Robust limited-memory IC Jennifer Scott

Comparison with level-based approach (IC (3))
Efficiency (left) and iterations (right).

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IC(3)
MI28, lsize=rsize=5
MI28, lsize=20, rsize=10
MI28, lsize=40, rsize=20

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IC(3)
MI28, lsize=rsize=5
MI28, lsize=20, rsize=10
MI28, lsize=40, rsize=20

HSL MI28 solved all problems; IC (3) failed to give convergence for
19 problems

Robust limited-memory IC Jennifer Scott

Comparison with direct solver HSL MA97

Total time: all problems (left) and large problems (right).

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ICFS (p=5)

MI28 (lsize=rsize=5)

MA97

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ICFS (p=5)

MI28 (lsize=rsize=5)

MA97

HSL MI28 can sometimes compete with direct solver
(and succeeds when HSL MA97 runs out of memory).

Robust limited-memory IC Jennifer Scott

Concluding remarks

I We have developed a new IC code HSL MI28 that may be
used as a “black box” or tuned for a particular problem.

I Memory usage is under the user’s control.

I Using restricted intermediate memory improves efficiency.

I The intermediate memory can compensate for the
preconditioner size.

I Based on extensive experimentation, HSL MI28 appears
robust and efficient.

Note: at the Preconditioning Conference, my talk will focus more
on the use of positive semidefinite modification schemes.

Thank you!

HSL MI28 is available (without charge) as part of HSL 2013.

Technical Reports RAL-P-2013-004 and RAL-P-2013-005.

Supported by EPSRC grant EP/I013067/1

Grant Agency of the Czech Republic Project No. P201/13-06684

