
A fast triangular solve on GPUs

Jonathan Hogg

STFC Rutherford Appleton Laboratory

28th January 2012, Bath/RAL Numerical Analysis Day

1 / 27



A fast triangular solve on GPUs Jonathan Hogg

GPUs and manycore programming

Nomenclature

Multicore Handful of big heavyweight cores. Most desktop
machines.

Manycore Hundreds of lightweight cores. Many competing
models.

Manycore architectures

I NVIDIA GPUs

I AMD GPUs

I Intel MIC (Xeon Phi/Knights Corner)

Lots of functional units that can be repeated ad infinitum.

2 / 27



A fast triangular solve on GPUs Jonathan Hogg

What specs are we talking?

Chip Cores GB/ TFLOP/ GFLOPS/
sec sec Watt

NVIDIA K20X 13× 64 250 1.31 5.6
AMD FirePro S10000 2× 56× 32∗ 480 1.48 3.9
Intel Xeon Phi 60× 8 320 1.00 4.5
Intel Desktop E5-2687W 16× 4 50 0.20 1.3

∗ single precision cores. double precision is 1/4.

⇒ Definitely worth using.

Note: GPU single precision performance much more than twice double.

3 / 27



A fast triangular solve on GPUs Jonathan Hogg

Example: Triangular solve on a GPU

I A Level 2 BLAS operation, solves Lx = b.
trsv — triangular solve.

I ...or LT x = b or Ux = b or UT x = b.

L

x = b

I Unusual GPU application: Memory bandwidth bound.
Latency sensitive.

4 / 27



A fast triangular solve on GPUs Jonathan Hogg

Usage

Direct solvers A = LU, or A = LDLT ,A = QR.

I Solve Ax = b as Ly = b, Ux = y .

I Sparse solvers use many smaller matrices rather than one
large dense one.

Often require 10s or 100s of solves per factorization

I Preconditioning, iterative refinement, FGMRES.

I Interior Point Methods perform multiple solves.

5 / 27



A fast triangular solve on GPUs Jonathan Hogg

Current libraries

0

5

10

15

20

25

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv
GPU MAGMA trsm

I Beaten by CPU for n < 10, 000.

I Achieves < 20% of peak.

6 / 27



A fast triangular solve on GPUs Jonathan Hogg

Basic (in-place) Algorithm

Input: Lower-triangular n× n matrix L, right-hand-side vector x .
for i = 1, n do

x(i + 1 : n) = x(i + 1 : n) − L(i + 1 : n, i) ∗ x(i)

end for
Output: solution vector x .

1

l21 1

l31 l32 1

l41 l42 l43 1




x1

x2

x3

x4





7 / 27



A fast triangular solve on GPUs Jonathan Hogg

Performance programming in one slide

All about chasing bottlenecks

Aim: Perform as many operations as we can.
Constraints:

I How many operations I can perform simultaneously
(processor width × clock speed). “Compute bound”

I Whether the data is ready. “Memory bound”

Data may not be ready because:

I Waiting for previous operation to finish (instruction latency)

I Data transfer rate from memory (memory bandwidth)

I Round-trip time following request (memory latency)

Complicated by multiple hierarchical levels of memory.

8 / 27



A fast triangular solve on GPUs Jonathan Hogg

Performance programming in one slide

All about chasing bottlenecks
Aim: Perform as many operations as we can.
Constraints:

I How many operations I can perform simultaneously
(processor width × clock speed). “Compute bound”

I Whether the data is ready. “Memory bound”

Data may not be ready because:

I Waiting for previous operation to finish (instruction latency)

I Data transfer rate from memory (memory bandwidth)

I Round-trip time following request (memory latency)

Complicated by multiple hierarchical levels of memory.

8 / 27



A fast triangular solve on GPUs Jonathan Hogg

Performance programming in one slide

All about chasing bottlenecks
Aim: Perform as many operations as we can.
Constraints:

I How many operations I can perform simultaneously
(processor width × clock speed). “Compute bound”

I Whether the data is ready. “Memory bound”

Data may not be ready because:

I Waiting for previous operation to finish (instruction latency)

I Data transfer rate from memory (memory bandwidth)

I Round-trip time following request (memory latency)

Complicated by multiple hierarchical levels of memory.

8 / 27



A fast triangular solve on GPUs Jonathan Hogg

C2050 Memory layout (previous generation)

GPU DRAM 3GB

Level 2 Cache 769KB

L1 Cache /
Shmem 64KB

SM 63 registers

144GB/s
200+ clocks

14 SMs total

16.4GB/s
˜100 clocks

73.6GB/s
˜30 clocks

SM = Symmetric Multiprocessor

9 / 27



A fast triangular solve on GPUs Jonathan Hogg

Theoretical bounds

I Number of entries is 1
2n(n + 1)

I Single SM: Main memory 2 doubles for every 32 ops.

I Entire GPU: Main Memory 16 doubles for every 448 ops.

I Incur latency n times. Can only treat one column at a time.

I Global memory latency: 200 cycles (optimistic?)

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000

cl
o

ck
s

n

Bandwidth
Latency

Take highest curve.
Small matrices:

Latency bound
Large matrices:

Bandwidth bound

10 / 27



A fast triangular solve on GPUs Jonathan Hogg

Theoretical bounds

I Number of entries is 1
2n(n + 1)

I Single SM: Main memory 2 doubles for every 32 ops.

I Entire GPU: Main Memory 16 doubles for every 448 ops.

I Incur latency n times. Can only treat one column at a time.

I Global memory latency: 200 cycles (optimistic?)

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000

cl
o

ck
s

n

Bandwidth
Latency

Take highest curve.
Small matrices:

Latency bound
Large matrices:

Bandwidth bound

10 / 27



A fast triangular solve on GPUs Jonathan Hogg

Theoretical bounds

I Number of entries is 1
2n(n + 1)

I Single SM: Main memory 2 doubles for every 32 ops.

I Entire GPU: Main Memory 16 doubles for every 448 ops.

I Incur latency n times. Can only treat one column at a time.

I Global memory latency: 200 cycles (optimistic?)

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000

cl
o

ck
s

n

Bandwidth
Latency

Take highest curve.
Small matrices:

Latency bound
Large matrices:

Bandwidth bound

10 / 27



A fast triangular solve on GPUs Jonathan Hogg

2-kernel solution

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44




I Apply our own tuned kernel to diagonal block .

I Apply CUBLAS gemv kernel to off-diagonal blocks .

I Repeat for next block column.

I NVIDIA Driver enforces ordering for us.

11 / 27



A fast triangular solve on GPUs Jonathan Hogg

Kernel-synchronized results

0

10

20

30

40

50

60

70

80

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv
GPU MAGMA trsm

GPU ksync

12 / 27



A fast triangular solve on GPUs Jonathan Hogg

We can do better!

n = 512 1024 4096

blkSolve() (µs) 108 217 905
dgemv() (µs) 38 95 842
Execution time (µs) 171 371 2007

Launch overhead 17% 19% 15%
Work in blkSolve() 18% 9% 2%

I Substantial overheads from using kernel launches for
synchronization

I Amount of time in blkSolve() — Amdahl strikes again!

13 / 27



A fast triangular solve on GPUs Jonathan Hogg

Global-memory synchronized

Aim: Single kernel-launch

I Use global memory for synchronization — much cheaper than
using the NVIDIA driver

I Fine grained synchronization...

I ...hence matrix-vector product runs concurrently with solve.

14 / 27



A fast triangular solve on GPUs Jonathan Hogg

Thread block ⇒ block row

Thread block 2

Thread block 1

Thread block 0

Thread block 4

CAUTION
Thread blocks are not

scheduled in order!

Dynamically pick row to
avoid deadlock

Only need two scalars for synchronization:

I Row for next thread block

I Latest column for which solution is available

15 / 27



A fast triangular solve on GPUs Jonathan Hogg

Thread block ⇒ block row

Thread block 2

Thread block 1

Thread block 0

Thread block 4

CAUTION
Thread blocks are not

scheduled in order!

Dynamically pick row to
avoid deadlock

Only need two scalars for synchronization:

I Row for next thread block

I Latest column for which solution is available

15 / 27



A fast triangular solve on GPUs Jonathan Hogg

Thread block ⇒ block row

Thread block 2

Thread block 1

Thread block 0

Thread block 4

CAUTION
Thread blocks are not

scheduled in order!

Dynamically pick row to
avoid deadlock

Only need two scalars for synchronization:

I Row for next thread block

I Latest column for which solution is available

15 / 27



A fast triangular solve on GPUs Jonathan Hogg

Execution trace

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

16 / 27



A fast triangular solve on GPUs Jonathan Hogg

Execution trace

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.

16 / 27



A fast triangular solve on GPUs Jonathan Hogg

Performance model

Only really interested in when it finishes.

I Each SM has 4 ‘slots’.

I Look at slot that executes the final block row k .

I Same slot executes k, k − 56, k − 2 ∗ 56, . . ..

I Calculate execution time for each of these blocks and add
them together.

First few blocks are latency bound

I Model as tinit + nblk × tlatency .

Subsequent blocks are bandwidth bound

I Model as tinit + nblk × tbandwidth.

17 / 27



A fast triangular solve on GPUs Jonathan Hogg

Performance model (cont.)

0

20

40

60

80

100

120

140

32 64 128 256 512 1024 2048 4096 8192 16384

G
B

/s

n

actual
model

18 / 27



A fast triangular solve on GPUs Jonathan Hogg

Performance model (cont.)

Performance model

t = tsetup + nrow × tinit + nblklatency × tlatency +

nblkbandwidth × tbandwidth

I Can’t improve tbandwidth: physical limitation.

I Aim to reduce tlatency .

19 / 27



A fast triangular solve on GPUs Jonathan Hogg

Latency Critical path

Critical path is coloured;
Executes serially

20 / 27



A fast triangular solve on GPUs Jonathan Hogg

Latency Critical path

Critical path is coloured;
Executes serially

Use standard tricks:
pre-cache values

20 / 27



A fast triangular solve on GPUs Jonathan Hogg

Latency Critical path

48k shmem ⇒ At most 5
32× 32 tiles
Want 4 thread blocks/SM!

I Use shared memory
for diagonal tiles.

I Use registers for
subdiagonal tiles.

20 / 27



A fast triangular solve on GPUs Jonathan Hogg

Global-memory synchronization results

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv

GPU kernel sync
GPU gmem sync

21 / 27



A fast triangular solve on GPUs Jonathan Hogg

Better yet!

Memory-bound ⇒ spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks

I Diagonal solve → Matrix-vector multiply

I Same number of memory accesses, less communication!

22 / 27



A fast triangular solve on GPUs Jonathan Hogg

Better yet!

Memory-bound ⇒ spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks

I Diagonal solve → Matrix-vector multiply

I Same number of memory accesses, less communication!

22 / 27



A fast triangular solve on GPUs Jonathan Hogg

Explicit inversion

(
L11
L21 L22

)(
X11

X21 X22

)
=

(
L11X11

L21X11 + L22X21 L22X22

)
Equate to identity.

X11 = L−1
11 by recursion

X22 = L−1
22 by recursion

L22X21 = −L21X11 solve is stable - Higham 1995

Doesn’t require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.

23 / 27



A fast triangular solve on GPUs Jonathan Hogg

Explicit inversion

(
L11
L21 L22

)(
X11

X21 X22

)
=

(
L11X11

L21X11 + L22X21 L22X22

)
Equate to identity.

X11 = L−1
11 by recursion

X22 = L−1
22 by recursion

L22X21 = −L21X11 solve is stable - Higham 1995

Doesn’t require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.

23 / 27



A fast triangular solve on GPUs Jonathan Hogg

Speedup over previous version

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
p

ee
d

u
p

n

Small matrices: slower
than straightforward solve

Medium matrices:
faster critical path

Large matrices:
too few threads

24 / 27



A fast triangular solve on GPUs Jonathan Hogg

Overall best performance

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv
GPU Best w/o invert

GPU Best

25 / 27



A fast triangular solve on GPUs Jonathan Hogg

Overall best performance (zoomed)

0

5

10

15

20

0 200 400 600 800 1000

G
B

/s

n

Host MKL trsv
GPU CUBLAS trsv
GPU MAGMA trsm

GPU Best

26 / 27



A fast triangular solve on GPUs Jonathan Hogg

Conclusions and Lessons

We’ve beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.
Code will be in next version of CUBLAS.

Lessons

I Its all about the memory.

I Spending extra ops to reduce memory latency or bandwidth
can be worthwhile.

I CUDA is nice: we get explicit control over memory
movements.

I (CUDA is horrible: we need to explicitly control memory
movements).

27 / 27


	Introduction
	Example: Triangular Solve on a GPU
	Explicit inversion
	Lessons




