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GPUs and manycore programming

Nomenclature

Multicore Handful of big heavyweight cores. Most desktop
machines.

Manycore Hundreds of lightweight cores. Many competing
models.

Manycore architectures

I NVIDIA GPUs

I AMD GPUs

I Intel MIC (Xeon Phi/Knights Corner)

Lots of functional units that can be repeated ad infinitum.
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What specs are we talking?

Chip Cores GB/ TFLOP/ GFLOPS/
sec sec Watt

NVIDIA K20X 13× 64 250 1.31 5.6
AMD FirePro S10000 2× 56× 32∗ 480 1.48 3.9
Intel Xeon Phi 60× 8 320 1.00 4.5
Intel Desktop E5-2687W 16× 4 50 0.20 1.3

∗ single precision cores. double precision is 1/4.

⇒ Definitely worth using.

Note: GPU single precision performance much more than twice double.
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Example: Triangular solve on a GPU

I A Level 2 BLAS operation, solves Lx = b.
trsv — triangular solve.

I ...or LT x = b or Ux = b or UT x = b.

L

x = b

I Unusual GPU application: Memory bandwidth bound.
Latency sensitive.
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Usage

Direct solvers A = LU, or A = LDLT ,A = QR.

I Solve Ax = b as Ly = b, Ux = y .

I Sparse solvers use many smaller matrices rather than one
large dense one.

Often require 10s or 100s of solves per factorization

I Preconditioning, iterative refinement, FGMRES.

I Interior Point Methods perform multiple solves.
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Current libraries
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I Beaten by CPU for n < 10, 000.

I Achieves < 20% of peak.
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Basic (in-place) Algorithm

Input: Lower-triangular n× n matrix L, right-hand-side vector x .
for i = 1, n do

x(i + 1 : n) = x(i + 1 : n) − L(i + 1 : n, i) ∗ x(i)

end for
Output: solution vector x .
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Performance programming in one slide

All about chasing bottlenecks

Aim: Perform as many operations as we can.
Constraints:

I How many operations I can perform simultaneously
(processor width × clock speed). “Compute bound”

I Whether the data is ready. “Memory bound”

Data may not be ready because:

I Waiting for previous operation to finish (instruction latency)

I Data transfer rate from memory (memory bandwidth)

I Round-trip time following request (memory latency)

Complicated by multiple hierarchical levels of memory.
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C2050 Memory layout (previous generation)

GPU DRAM 3GB

Level 2 Cache 769KB

L1 Cache /
Shmem 64KB

SM 63 registers

144GB/s
200+ clocks

14 SMs total

16.4GB/s
˜100 clocks

73.6GB/s
˜30 clocks

SM = Symmetric Multiprocessor
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Theoretical bounds

I Number of entries is 1
2n(n + 1)

I Single SM: Main memory 2 doubles for every 32 ops.

I Entire GPU: Main Memory 16 doubles for every 448 ops.

I Incur latency n times. Can only treat one column at a time.

I Global memory latency: 200 cycles (optimistic?)

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000

cl
o

ck
s

n

Bandwidth
Latency

Take highest curve.
Small matrices:

Latency bound
Large matrices:

Bandwidth bound

10 / 27



A fast triangular solve on GPUs Jonathan Hogg

Theoretical bounds

I Number of entries is 1
2n(n + 1)

I Single SM: Main memory 2 doubles for every 32 ops.

I Entire GPU: Main Memory 16 doubles for every 448 ops.

I Incur latency n times. Can only treat one column at a time.

I Global memory latency: 200 cycles (optimistic?)

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000

cl
o

ck
s

n

Bandwidth
Latency

Take highest curve.
Small matrices:

Latency bound
Large matrices:

Bandwidth bound

10 / 27



A fast triangular solve on GPUs Jonathan Hogg

Theoretical bounds

I Number of entries is 1
2n(n + 1)

I Single SM: Main memory 2 doubles for every 32 ops.

I Entire GPU: Main Memory 16 doubles for every 448 ops.

I Incur latency n times. Can only treat one column at a time.

I Global memory latency: 200 cycles (optimistic?)

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000

cl
o

ck
s

n

Bandwidth
Latency

Take highest curve.
Small matrices:

Latency bound
Large matrices:

Bandwidth bound

10 / 27



A fast triangular solve on GPUs Jonathan Hogg

2-kernel solution

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44




I Apply our own tuned kernel to diagonal block .

I Apply CUBLAS gemv kernel to off-diagonal blocks .

I Repeat for next block column.

I NVIDIA Driver enforces ordering for us.
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Kernel-synchronized results
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We can do better!

n = 512 1024 4096

blkSolve() (µs) 108 217 905
dgemv() (µs) 38 95 842
Execution time (µs) 171 371 2007

Launch overhead 17% 19% 15%
Work in blkSolve() 18% 9% 2%

I Substantial overheads from using kernel launches for
synchronization

I Amount of time in blkSolve() — Amdahl strikes again!
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Global-memory synchronized

Aim: Single kernel-launch

I Use global memory for synchronization — much cheaper than
using the NVIDIA driver

I Fine grained synchronization...

I ...hence matrix-vector product runs concurrently with solve.
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Thread block ⇒ block row

Thread block 2

Thread block 1

Thread block 0

Thread block 4

CAUTION
Thread blocks are not

scheduled in order!

Dynamically pick row to
avoid deadlock

Only need two scalars for synchronization:

I Row for next thread block

I Latest column for which solution is available
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Execution trace

Mode 1 Not waiting on data, constant computation.

Mode 2 Stops and starts as each column completes.
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Performance model

Only really interested in when it finishes.

I Each SM has 4 ‘slots’.

I Look at slot that executes the final block row k .

I Same slot executes k, k − 56, k − 2 ∗ 56, . . ..

I Calculate execution time for each of these blocks and add
them together.

First few blocks are latency bound

I Model as tinit + nblk × tlatency .

Subsequent blocks are bandwidth bound

I Model as tinit + nblk × tbandwidth.
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Performance model (cont.)
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Performance model (cont.)

Performance model

t = tsetup + nrow × tinit + nblklatency × tlatency +

nblkbandwidth × tbandwidth

I Can’t improve tbandwidth: physical limitation.

I Aim to reduce tlatency .
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Latency Critical path

Critical path is coloured;
Executes serially
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Latency Critical path

Critical path is coloured;
Executes serially

Use standard tricks:
pre-cache values
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Latency Critical path

48k shmem ⇒ At most 5
32× 32 tiles
Want 4 thread blocks/SM!

I Use shared memory
for diagonal tiles.

I Use registers for
subdiagonal tiles.
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Global-memory synchronization results
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Better yet!

Memory-bound ⇒ spare flops
Can we do redundant computation to speed the critical path?

YES

Explicit inversion of diagonal blocks

I Diagonal solve → Matrix-vector multiply

I Same number of memory accesses, less communication!
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Explicit inversion

(
L11
L21 L22

)(
X11

X21 X22

)
=

(
L11X11

L21X11 + L22X21 L22X22

)
Equate to identity.

X11 = L−1
11 by recursion

X22 = L−1
22 by recursion

L22X21 = −L21X11 solve is stable - Higham 1995

Doesn’t require right-hand-side — can be done before needed

BUT: takes considerably longer than a solve: useless for small n.
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Speedup over previous version

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
p

ee
d

u
p

n

Small matrices: slower
than straightforward solve

Medium matrices:
faster critical path

Large matrices:
too few threads

24 / 27



A fast triangular solve on GPUs Jonathan Hogg

Overall best performance
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Overall best performance (zoomed)
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Conclusions and Lessons

We’ve beaten CUBLAS soundly.
Achieved 75% of peak bandwidth.
Code will be in next version of CUBLAS.

Lessons

I Its all about the memory.

I Spending extra ops to reduce memory latency or bandwidth
can be worthwhile.

I CUDA is nice: we get explicit control over memory
movements.

I (CUDA is horrible: we need to explicitly control memory
movements).
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