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Symmetric Quasi-Definite Systems

R RIS

v

Interior-point methods for LP, QP, NLP, SOCP, SDP, ...
Regularized/stabilized PDE problems

v

v

Regularized least squares

v

How to best take advantage of the structure?
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Main Property

Theorem (Vanderbei, 1995)
If K is SQD, it is strongly factorizable, i.e., for any permutation

matrix P, there exists a unit lower triangular L and a diagonal D
such that PTKP = LDL".

» Cholesky-factorizable
> Used to speed up factorization in regularized least-squares
(Saunders) and interior-point methods (Friedlander and O.)

» Stability analysis by Gill, Saunders, Shinnerl (1996).
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Centered preconditioning

M2 M A
N-:| |[AT —N

which is equivalent to

(@)

N-ZATM 2 1,
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Centered preconditioning

M~ 2 M A][M:
N-:| |[AT —N
which is equivalent to
C
I, M-2AN"z
N-ZATM2 1,

Theorem (Saunders (1995))

Mario Arioli, Dominique Orban

&1 [M72f
N—z| ] |N“ig
m IR LY
y N %g

Suppose A = M~2AN"2 has rank p < m with nonzero singular

values o1, ...

+V1+ok k=1,...,p.

5 / 44

,0p. The eigenvalues of C are +1,=1 and

Science & Technology
@ Facilities Council



Purdue University 15 April 2013

Mario Arioli, Dominique Orban

Symmetric spectrum and lIterative methods

6 / 44

A symmetric matrix with a symmetric spectrum can be transform
preserving the symmetry of the spectrum in a SQD one.

Moreover, Fischer (Theorem 6.9.9 in “Polynomial based iteration
methods for symmetric linear systems”) Freund (1983), Freund
Golub Nachtigal (1992), and Ramage Silvester Wathen (1995) give
different poofs that MINRES and CG perform redundant iterations.
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.
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Facts: SQD systems are symmetric, non-singular, square and
indefinite.

» MINRES

> SYMMLQ

> (F)GMRES??
> QMRS??7?
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Iterative Methods |

Facts: SQD systems are symmetric, non-singular, square and
indefinite.

» MINRES

> SYMMLQ

> (F)GMRES??
> QMRS??7?

Fact: ... none exploits the SQD structure and they are doing
redundant iterations
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Related Problems: an example
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Related Problems: an example

M Al [x] [b

AT —N y| |0
are the optimality conditions of
o[- 3
yeR™ 2|1 0

= minm%
et yeR
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Related Problems: an example

|

are the optimality conditions of

M
AT

ally

2
min % [A] y — [b] = min %
yeR"™ I 0 Et yeR"
or of

Mario Arioli, Dominique Orban

minimize 1(|[x|lf + [lyll§) subject to Mx + Ay = b.
x'/y

8 /44
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Some properties of SQD matrices

Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

M R'R ~r=
S R PR
We observe that

M Al RT 0][lm AT[R 0] s7xg
c=lar A -1o wrllar A0 o -ReR
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Some properties of SQD matrices

Let us denote the Cholesky factors of M and N by R and U (upper
triangular matrices).

M RTR ~ o
i M =T g R

We observe that

M A7 [RT 0][lm A][R 0] 575
C_[AT N]_[o UT} [Z\T —|,,] [0 u}_R R,

H'C=R7ICR
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Some properties of SQD matrices

By direct computation it is easy to prove that

E2 o |m+AAT 61

I
O

|,,+ATA:| 62
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Some properties of SQD matrices

By direct computation it is easy to prove that

~ I, + AAT D ~
2 m 1
= ~ ~ = ~ = D
c [ I,,+ATA] D>
¢l - BlE—cp
b — =BG
_ ~r~~ M+ AN—IAT
1 _ T N
CH 'C = RDR_D_[ N+ATM1A}
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Some properties of SQD matrices
By direct computation it is easy to prove that

~> [, +AAT D, 8
= ~ o~ | = ~ =D.

¢ [ l, +ATA D,

C! = D!C=CcD};

CD = C*=DC;

_ g M+ ANIAT

Ic - RTDR-_D —

CH 'C = RDR—D—[ N+ ATM-

(H'C)>=R!C?’R=R'DR=H"'D,
(H'C)’ =R !C*R=H!CH'D = H'DH'C
C'=D'CH!'=H'CDs"

A
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Some properties of SQD matrices
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D and C commute.
Both matrices can be simultaneously diagonalized by the
generalized eigenvalues of

Cz= AJ'HZ,

where the ), j =1,..., p = rank(A) are the same eigenvalues of
C
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Krylov subspaces

Hereafter we will denote by
R,-(E, z) = Range{z, Cz,C%z,...,C" 'z, Eiz}

the Krylov subspace generated by C and a vector z. We point out
that K;(C, z) are also the Krylov subspaces used to define the
Lanczos algorithm applied to C symmetrically preconditioned by R.

Ki(H™'C,w) = R!K;(C,z), where w = Rz.
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Krylov subspaces

C2k = Dk
C2k+1 CDk ch
Therefore,
Kk(C,2z) = K4 /2 (D, 2) + Kpy/21-1(D, C2)
= K|k/2)(D,2z) + CKiy/21-1(D, 2).
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Krylov subspaces

Finally, denoting by 61 and 62 the diagonal blocks of D, ie we

have: . o
>~ |2 K,'(Dl z ) 0
K;(D, = ’ ~
( [22]) [ 0 } N [Kf(|32722)
and
~~ ~ [Z! K;(D1,2}) AK;(Dy,2?)
CK;(D, = LN N2
( {22}) ATK,-(Dl,zl) @ —K;(D2,Z2)
| Ki(Dy,2Y) o Ki(D1,Az?)
~ |K;(D2,ATZY) —K;(Da, z%)
Science & Technology
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Intermezzo
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Intermezzo

A personal point of view on
preconditioning
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Hilbert Space Setting

Let H € R¥*% be a SPD non singular matrix. We have that R¥
with the scalar product defined by u” Hv is an Hilbert space.
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Hilbert Space Setting
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Let H € R**K be a SPD non singular matrix. We have that R¥
with the scalar product defined by u” Hv is an Hilbert space.

Vice versa, every finite dimensional Hilbert space $ of dimension k
and scalar product (u, v)g is isometric to R with a scalar product
defined by the matrix H that is the Gramian matrix (non singular
symmetric and positive definite) associated to the basis

{&j}j=1,..k of H:
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Let H € R¥*% be a SPD non singular matrix. We have that R¥
with the scalar product defined by u” Hv is an Hilbert space.

Vice versa, every finite dimensional Hilbert space $) of dimension k
and scalar product (u, v)g is isometric to R with a scalar product
defined by the matrix H that is the Gramian matrix (non singular
symmetric and positive definite) associated to the basis
{oj}j=1,. .k of 9

Let u,v € §) be such that u =}, uj¢; and v =}, v;$;, and

H;;j = (¢i, j)s be the corresponding Gramian, then we have
(u,v)5 = u’ Hv.
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Let H € R¥*% be a SPD non singular matrix. We have that R¥
with the scalar product defined by u” Hv is an Hilbert space.

Vice versa, every finite dimensional Hilbert space $ of dimension k
and scalar product (u, v)g is isometric to R with a scalar product
defined by the matrix H that is the Gramian matrix (non singular
symmetric and positive definite) associated to the basis
{0j}j=1,...k of H:

Let u,v € §) be such that u =}, uj¢; and v =} v;$;, and

H;; = (¢i, j)s be the corresponding Gramian, then we have
(u,v)s = u"Hv.

The dual space $H* of § is itself an Hilbert space with a scalar
product induced by H™!,
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Let H € R“*% be a SPD non singular matrix. We have that R
with the scalar product defined by u” Hv is an Hilbert space.

Vice versa, every finite dimensional Hilbert space $ of dimension k
and scalar product (u, v)g is isometric to R with a scalar product
defined by the matrix H that is the Gramian matrix (non singular
symmetric and positive definite) associated to the basis
{&j}j=1,. k of H:

Let u,v € $ be such that u =}, uj¢; and v =3, v;$;, and

H;;j = (¢i, ;)5 be the corresponding Gramian, then we have
(u,v)s = u"Hv.

The dual space H* of §) is itself an Hilbert space with a scalar
product induced by H1.

Furthermore, we have that the {¢;} basis is made by the columns
of H and the corresponding {1} basis for $* is made by.the
columns of H™1,
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Hilbert Space Setting: duality and adjoint.

Given z € $*, we have
(z,)ge55 =2 u=2"H 'Hu = (u,H '2)y,

w = H™ 1z Riesz vector corresponding to w = Zj wjp; € 5.
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Hilbert Space Setting: duality and adjoint.

Given z € $*, we have
(z,u)s- s =2"u=2"H 'Hu = (u,H '2)y,
w = H™1z Riesz vector corresponding to w = > wigj € 9.

Llet¥ :H—F
¢* . § — H* (adjoint operator)

(€*v,u)ge 5 = (v, Cu)ze5 Vv EF,u€ESN.
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Hilbert Space Setting: duality and adjoint.

Given z € $*, we have
(z,u)+ 5 =2 u=2"H 'Hu = (u,H '2)y,

Let € :H—F

w = H™ 1z Riesz vector corresponding to w = Zj wjp; € 9
¢* . § — H* (adjoint operator)

(v, U5 = (v, Cu)z- 5 Vv ET,u€ESH.
Therefore, we have

(€*v,u)g0 5 = (Cu, Flv)p =u’C'v

17 / 44

Science & Technology
@ Facilities Council



Purdue University 15 April 2013 Mario Arioli, Dominique Orban

Hilbert Space Setting: normal equations.

If we assume that § = $* then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C oM LoC H— N,
and it is represented by the matrix

C’HlC.
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Hilbert Space Setting: normal equations.

If we assume that § = $* then we have that the “normal
equations operator” in the Hilbert space is an operator such that

C oM LoC H— N,
and it is represented by the matrix
C'H'c.

If CT = C then the corresponding operator % is self-adjoint.
Moreover, we have that the operator

H o€ H—H

maps §) into itself.

-1 A g-leyi
(% © (g) . (H C) N Science & Technology
@ Facilities Council
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Linear operators

Let us consider now the Hilbert spaces
M= (R [m), 9= (R™ |- n),
and their dual spaces

M= (R Iws), 0= (R ),
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Linear operators

Let us consider now the Hilbert spaces
Mm = (Rn7 H : ||M)7 N:= (Rm7 H : ”N)7
and their dual spaces

m* = (Rna || : ”M*l)a m* = (Rm7 || : HN71)7

N — M-
<”Q{yv u>9ﬂ*,9ﬁ = (U, M_lAy)M = UTAY7 VS mv\v/u € mv
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Linear operators
Let us consider now the Hilbert spaces
Mm = (Rn’ H ) ||M)7 N = (Rm7 H ) ”N)7
and their dual spaces

m* = (Rna || : ”M*l)a N = (Rma || : HN*1)7

o N — M
<%yv u>9ﬂ*,9ﬁ £ (U, M_lAy)M = uTAY7 y € M, Vu € M,

(@ u, y) o m = (Y, NIATu)y =y ATu, veMVyen,

Science & Technology
@ Facilities Council

19 / 44



Purdue University 15 April 2013 Mario Arioli, Dominique Orban

Linear operators

A
A
N
X
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Linear operators

M A
e A

E M X D — M x M.

The scalar product in 9t x D1 is represented by the matrix

n="
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Generalized SVD

Given q € M and v € N, the critical points for the functional
viAq
alln [[v]im

are the “elliptic singular values and singular vectors” of A.
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Generalized SVD

Given q € M and v € N, the critical points for the functional
viAq
lalln [viim

are the “elliptic singular values and singular vectors” of A.
The saddle-point conditions are

)

{ Aq,- = O‘,'MV,' V-TMVj = 5ij
ATV,' = o0;Nq; qI-Tqu:(SI-J-

012022 -2>20,>0

Science & Technology
@ Facilities Council

22 / 44



Purdue University 15 April 2013 Mario Arioli, Dominique Orban
Generalized SVD

Given q € M and v € N, the critical points for the functional

viAq
[lalln ([v]m

are the “elliptic singular values and singular vectors” of A.
The saddle-point conditions are

{ Aq,- = U,'MV,' V,-TMVJ' = 5ij
ATV,' = a,-Nq,- q,Tquzé,-j

012>202>-2>20,>0

The elliptic singular values are the standard singular values of
A = M~2AN-1/2_ The elliptic singular vectors q; and v;, i=1,...,n

are the transformation by M~1/2 and N—1/2 respectively of-the"left and

right standard singular vector of A.
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Generalized Golub-Kahan bidiagonalization

23 / 44

In Golub Kahan (1965), Paige Saunders (1982), several algorithms
for the bidiagonalization of a m X n matrix are presented. All of
them can be theoretically applied to A and their generalization to
A is straightforward as shown by Benbow (1999). Here, we want
specifically to analyse one of the variants known as the

" Craig"-variant (see Paige Saunders (1982), Saunders
(1995,1997)).
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Generalized Golub-Kahan bidiagonalization

AQ = M\"/[g’] VIMV =1,
ATV = NQ [BT;O} QNG =1,
where
a1 O 0 0
Ba 0 0
0 /anl &nfl 0
0 0 Bn Qi
L 0 0 0 ﬁnJrl
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Generalized Golub-Kahan bidiagonalization

AQ = MV[E’ VIMV =1,
ATV = NQ[B';0] Q'NQ =1,
where
[ a1 /1 O 0
0 a B 0
B=| . - - - y
o - 0 ap-1 B
| 0 -~ 0 0 an |
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Algorithm

Thus, we can compute the first column of B and of V:
a1Mv; = Aqq, such as

w = M_lAql
a1 = VwTMw = /wAq;
V] = W/Oq.
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Algorithm

Mario Arioli, Dominique Orban

Thus, we can compute the first column of B and of V:
a1Mv; = Aqs, such as

w=M"1Aq;
a1 = Vw! Mw = y/wAq,
vi =w/aj.

Finally, knowing gq; and v; we can start the recursive relations

gi+1 = N"! (ATv; — a;Ng;)

Biv1 =8 Ng

i1 =8 Bin
w=M"1(Aqg;i1 — Bir1MV))
Qg1 = VWTMW

Viy1 = W/Oéi+1-
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.
At k-th iteration, seek y ~ y, = \"/kyk:

(B/B, + 1)yx = B] Bres
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.

At k-th iteration, seek y ~ yy := \"/kyk:

(B/B, + 1)yx = B] Bres
. 2
min LB« §— prer

yeR* 2 I 0

2
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Generalized Least Squares

Normal equations: (ATM~1A + N)y = ATM~1b.

At k-th iteration, seek y ~ yy := \"/kyk:

(B/B, + 1)yx = B] Bres
. 2
min LB« §— prer

yeR* 2 I 0

2

or:
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2
min

Generalized LSQR
-
yeR* I 0

Solve
by specialized Givens Rotations (Eliminate | first and Ry will be
upper bidiagonal)

N|—=
<

2
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2
min

Generalized LSQR
-
yeR* I 0

Solve
by specialized Givens Rotations (Eliminate | first and Ry will be

upper bidiagonal)
Rl - [ox
5513

N|—=
<

2

2

min %
k

yeR

2
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2
min

Generalized LSQR
-
yeR* I 0

Solve
by specialized Givens Rotations (Eliminate | first and Ry will be
upper bidiagonal)

Rl - [ox

ik

As in Paige-Saunders '82 we can build recursive expressions of y,
Yit+1 = Yk + didi (Dk = Vk§;1>

and we have that

<

N|—=

2

2

min %
k

yeR

2

m

m
=112 2 = 2
||YHN+ATM71A = Z ¢j and ||y — Yk||N+ATM*1A = %2
j=1 J ience & Technology
acilities Council
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Error bound

Lower bound We can estimate ||y — yk||2N+ATM—1A by the lower
bound
k+d+1

2 2 - 2
fk,d = E ij <[y - kaN_y_ATM*lA‘
j=k+1

- k
and HYH2N+ATM*1A by the lower bound 3", gbf.
Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

fkd<7 Z §bj <7’Z¢2<7—||YHN+ATM 1A
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Error bound

Lower bound We can estimate ||y — y;<||2,\|+ATM_1A by the lower
bound
k+d+1

2 2 - 2
fk,d = § ¢j <[y - kaN_y_ATMflA‘
j=k+1

- k
and Hy|]2N+ATM,1A by the lower bound 3", gbf.
Given a threshold 7 < 1 and an integer d, we can
stop the iterations when

k+d+1

fkd<7 Z §bj <7’Z¢2<7—||YHN+ATM 1A

Upper bound Despite belng very inexpensive, the previous
estimator is still a lower bound of the error. We can
use an approach inspired by the Gauss-Radau
quadrature algorithm and similar'to the on tnce  Techmology
described in Golub-Meurant (2010). = Fcilies Counc
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Generalized CRAIG

min 3(IyIR + 1xIR) st Ay +Mx = b.
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Generalized CRAIG

min 3(IyIR + 1xIR) st Ay +Mx = b.

At step k of GK bidiagonalization, we seek

X & Xj = UgXy, and y ~ yi = Viyk.
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Generalized CRAIG

min 3(IyIR + 1xIR) st Ay +Mx = b.

At step k of GK bidiagonalization, we seek
X & Xj = UgXy, and y ~ yi = Viyk.

min (197 + [%1%) st Bidi+ % = fres
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Generalized CRAIG

min 3(IyIR + 1xIR) st Ay +Mx = b.

At step k of GK bidiagonalization, we seek

X & Xj = UgXy, and y ~ yi = Viyk.

min %(H)_IHQ +[[%]1?) st Bi¥x + Xk = Bres

-

or:
mink %
yeR

2
Science & Technology
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem

s b=
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem

e By [X| _ [fres
B/ | lw] |0
Following Saunders (1995) and Paige (1974), we compute an LQ

factorization to the k-by-2k matrix [Bx x| by applying 2k — 1
Givens rotations that zero out the identity block.
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Generalized CRAIG

By contrast with generalized LSQR, we solve the SQD subsystem

i -

Bl |l |0
[Bk Ik] QZ—: [ék 0] Q/Z—kal
where
&%
R B &
B, .— 2 2
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Generalized CRAIG

frer = Biyx + Xk = [Bi Ii] [;k} =
[ék 0] Qk [gi] = [ék 0] [iok:| — ékik,

for some z, € RX: 7, = (G- Ck)
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Generalized CRAIG

B1e1 = By + Xx = [Bk lk] [;k:| =

B, 0]Q, [gﬂ _ (B, 0] m B,

for some zx € RX: z, = (C1y--05Ck)

G =p1/é1, Civ1=—Pir1Gi/div1, (i=1,...,k—1).
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Generalized CRAIG

31/ 44

Solving for x, directly, and bypassing Xx, may now be done. By
definition,
Xk = Uk)_(k = UkB;TEk.

Since é;T is upper bidiagonal, all components of I§;T2k are
likely to change at every iteration. Fortunately, upon defining
D, = Uké;T, and denoting d; the i-th column of Dy, we are
able to use a recursion formula for x provided that d; may be
found easily. Slightly rearranging, we have

B.D] = U]

and therefore it is easy to identify each d;—i.e., each row of
D;'(——recursively.
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Generalized CRAIG

31/ 44

Solving for x, directly, and bypassing X,, may now be done. By
definition,
Xy = Uk)_(k == UkB;TEk.

di = u1/d1, dip1 = (Ui — Bisad)/iv1, (i=1,...,k—1).
This yields the update

Xk+1 = Xk + Ckr1dkr1

for x41.
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Generalized CRAIG: errors bound

Let ng be defined as above and Dy := Uké;T. For k=1,...,n,
we have
D/ (AN"AT + M)D, = I,.

In particular,
k
Xk = Z dej
j=1

and we have the estimates

k
||kaiN*1AT+M — ZC?? (13)
i=1
n
2 2
[x* = kaANflATH\A = Z G (1b)
i=k+1
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Generalized CRAIG: errors bound

As for generalized LSQR, we can estimate the error using the
windowing technique and we can give a lower bound of the error by

k+d+1

2 2 2
id = Z G < x*— XkHANflAT.kM
j=k+1

and we can estimate ||x*||an-1a7+m by the lower bound Zle CJ-2.
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Generalized CRAIG: errors bound

As for GLSQR. If we know a lower bound of singular values we can
use an approach inspired by the Gauss-Radau quadrature algorithm
and similar to the one described in Golub-Meurant (2010).
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Other variants:

Generalized LSMR

minilr?nniqze %HN*%(ATMflb — (ATM'A + N)y)) 2.
ye

Error bounds similar to the ones given above exist for the MR
variants

Science & Technology
@ Facilities Council

34 / 44



Purdue University 15 April 2013 Mario Arioli, Dominique Orban

Other variants:

Generalized LSMR
Generalized Craig-MR

Error bounds similar to the ones given above exist for the MR
variants
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Numerical experiments

We will focus on optimization problems:

minigjze g x+ %XTHX subject to Cx =d, x> 0,
Xe

where g € R” and H = HT € R"™" is positive semi-definite, and
result in linear systems with coefficient matrix

H+X1Z+p CT
C —5l

where p > 0 and § > 0 are regularization parameters.
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Numerical experiments MINRES

This is a blow-up of some iterations

150

100
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Numerical experiments GLSQR

Regularized Least-Squares Objective Residual of Normal Equations

10° 10°
10’
10* 10
10°
10° 10
10"
\\
10? 10° \\\\
.
10° \\
N
0 =5 20 20 60 80 100 120 07 =5 20 20 60 80 00 120
Figure: Problem DUAL1 (255,171).
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Numerical experiments GLSQR

Regularized Least-Squares Objective Residual of Normal Equations

— G-LSQR
G-LSMR

Figure: Problem MOSARQP1 (5700, 3200).
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How to choose d?

problem
duall
stcqpl

gpcboeil
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m
255
12291
1355

171
10246
980

Mario Arioli, Dominique Orban
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Numerical experiments GCraig

40 / 44

d =515

10?
107
10°
10"
10°
10°
107
10°
10°
1070
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107
10"

CRAIG: Direct Errors and Estimates

Mario Arioli, Dominique Orban

CRAIG: Direct Errors and Estimates
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Figure: Problem
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CG?
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Numerical experiments CG

D-Lanczos

D-Lanczos

10*

-10°

Figure: Problem DUAL1 and MOSARQP1 (5700, 3200).
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Numerical experiments CG
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D-Lanczos

Mario Arioli, Dominique Orban

— d=5
— d=15
— Actual

Figure: Problem Stokes (IFISS 3.1): colliding and cavity
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Conclusions

» Preconditioning — Norms i.e. different topologies!!
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Conclusions

» Preconditioning — Norms i.e. different topologies!!

> Nice relation between the algebraic error and the
approximation error
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Conclusions

» Preconditioning — Norms i.e. different topologies!!
> Nice relation between the algebraic error and the
approximation error

» A. and Orban " Iterative methods for symmetric quasi definite
systems” in preparation. WORK IN PROGRESS
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