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TENSOR PRODUCT OF RANDOM ORTHOGONAL MATRICES

M. ARIOLI1,2

Abstract. In this short note, we introduce a class of orthogonal matrices of order n for which
the matrix by vector product can be be computed in O(n logn) instead of O(n2). The matrices
in this class form a proper Lie subgroup of the set of the orthogonal matrices random generated
following the Haar’s measure distribution. Given a vector that has the absolute values of its entries
presenting large variations of magnitude, the product of a matrix in the subgroup by this vector will
produce a new vector where the magnitude of the absolute values of the entries does not vary by a
very large amount.
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1. Introduction. Let A be an n× q matrix with real entries ai,j ∈ [−1, 1]. We
assume that the entries of the rows, or the columns, are varying in size by several orders
of magnitude and we seek orthogonal matrices that can homogenize the entries in A
without changing either the condition number or if n = q the eigenvalues eigenvectors
properties. Similar work was described in [2, 6, 7]. In the following, we will denote
by G(θ) a Givens rotation of order 2 and by Hm an orthogonal matrix of order m.
In particular, we will assume that the G(θ) ∈ SO(2) (i.e. det(Gi) = 1) but we will
leave Hm ∈ O(m) (i.e. det(Hi) = ±1):

•

G(θ) =

 cos θ sin θ

− sin θ cos θ

 , θ ∈ [−π
2
,
π

2
];

• SO(2) is the standard special orthogonal Lie group;
• O(m) the orthogonal Lie group of the orthogonal matrices (we recall that
O(m) has two connected components).

Finally, we will use the Frobenius (euclidean) topology on the Lie groups of matrices
throughout the paper, i.e. let A ∈ IRn and B ∈ IRn

A ·B = trace
(
ATB

)
||A||2F = trace

(
ATA

)
.

Moreover, given a matrix X(θ) with entries that are functions of a set of parameters
θ ∈ IRp we will denote by dX its differential.

2. Random orthogonal matrices. The need for generating random orthogo-
nal matrices is widely diffused in applied mathematics and physics and a very good
survey on the topic can be found in [3]. Here, given a O(k), we want to generate a
matrix that is a random choice with respect to the Haar’s measure on O(k). In [8] and
[1], two approaches are presented that achieve this task. Given the property that O(k)
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is a locally compact matrix Lie group, Haar’s measure is the natural generalization
of the Lebesgue to the orthogonal matrices. The Lebesgue measure is invariant for
translations. Given a fixed orthogonal matrix Q, a left (or right) Haar’s measure is
invariant for the transformations O(k) 3 H→ QH (left)

O(k) 3 H→ HQ (right)

Hereafter, we will use Haar’s measures that are both left and right invariant. In
particular, we will follow the framework given in [8] in order to generate a realization
of an orthogonal stochastic matrix following a density function based on the Haar’s
measure. In Figure 2.1 we describe the algorithm (ROMG) in detail. We assume
that a random number generator for a stochastic real variable following a normal law
N(0, I) is available.

Random Orthogonal Matrix Generator (ROMG) algorithm Let k be
order of the matrix to compute and H = I.
for i = k : −1 : 2 do

Generate i realizations of a random normally distributed (N(0, I))
stochastic variable ;

Organize them as the entries of the vector ṽi ∈ IRk−i+1

and let v =

[
0

ṽ

]
∈ IRk;

Compute the Householder matrix Hi = I − 2
viv

T
i

||vi||22
H = HiH.

end do.

Fig. 2.1. Random Orthogonal Matrix Generator

Taking into account the property that every orthogonal matrix H where each
entry is an independent variable, satisfies

HTH = I

we have

HTdH = −(HTdH)T

i.e. HTdH is skew-symmetric. Then, we will assume that [4]

HTdH ≡
k∧
i=1

k∧
j=i+1

HT
·,jdH·,i,

and that HTdH is the differential form linked to the manifold of the orthogonal
matrices of order k. Finally, we remember that the differential form HTdH is of
maximum degree and this coincides with the number of degrees of freedom of the
orthogonal group k(k − 1)/2.
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3. Tensor product Lie subgroup. In order to homogenize the columns and
rows of a n× n matrix A, we can operate the following transformation where Hc and
Hr are two realizations of the random orthogonal group with ROMG algorithm:

A→ HcAHr. (3.1)

It is obvious that the benefit of homogenization will be negligible vis-a-vis the excessive
computational cost of (3.1).

Therefore, we propose to use a subgroup of O(n) by which we can preserve the
relevant properties of homogenization of A at a lower computational cost and with
the possibility of reducing further the computational cost by an efficient parallel im-
plementation of the algorithm.

Let us assume that

n = 2p3q15q2 , (3.2)

with p, q1 and q2 positive integer numbers, then, using ROMG algorithms, we can
generate Gi ∈ O(2) for i = 1, . . . , p, and Hj ∈ O(3) for j = 1, . . . , q1 and Wj ∈ O(5)
for j = 1, . . . , q2. Then, we propose to use the following matrix Lie subgroup of O(n):

Õ(n) =

H | H =
( p⊗
i=1

Gi

)
⊗
( q1⊗
j=1

Hj

)
⊗
( q2⊗
i=1

Wi

) (3.3)

The Lie subgroup Õ(n) as a linear vector space has a dimension lower than the full
space O(n) which is n(n − 1)/2. For the specific choice in (3.2), we have that the
dimension is 2p+ 3q1 + 10q2.

Remark 3.1. The choice of the prime numbers 2, 3, 5 is quite arbitrary and more
prime numbers or non prime numbers can be used. Our choice is purely motivated
by the desire to give a taste for a general example, without the use of a very complex
notation.

3.1. Factorizations. The matrices of Õ(n) can be factorized as a product of
simpler factors. This property will be the key to achieve the target of reducing the
complexity. Hereafter, we will denote by It the identity matrix of order t. Each of
the three blocks in (3.3), can be factorized as⊗p

i=1 Gi =
∏p
j=1 I2j−1 ⊗Gj ⊗ I2p−j⊗q1

i=1 Hi =
∏q1
j=1 I3j−1 ⊗Hj ⊗ I3q1−j⊗q2

i=1 Wi =
∏q2
j=1 I5j−1 ⊗Wj ⊗ I5q2−j ;

(3.4)

and, then, we have that each H ∈ Õ(n) can be written as

H =
[ p∏
j=1

I2j−1 ⊗Gj ⊗ I2p−j ⊗ I3q15q2
][
I2p ⊗

q1∏
j=1

I3j−1 ⊗Hj ⊗ I3q1−j ⊗ I5q2
]

[
I2p3q1 ⊗

q2∏
j=1

I5j−1 ⊗Wj ⊗ I5q2−j

]
(3.5)

We remark that we could choose a different order in combining the three blocks.
However, we think that the increasing order we chose will be easier to implement.
The last matrix in (3.5) is block diagonal and, thus, we can use a block version of the
matrix by vector product.
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3.2. Haar’s measure. The topological properties of O(n) are transferred to

Õ(n) that, therefore, is a proper Lie subgroup of matrices. In the following, we prove
that the Haar’s measure in the smallest atomic spaces are generating a global Haar’s
measure on Õ(n). First of all, we compute the differential of H ∈ Õ(n)

dH = H


p∑
j=1

(
I2j−1 ⊗GT

j dGj ⊗ I2p−j

)
⊗ I3q15q2 +

q1∑
j=1

I2p ⊗
(
I3j−1 ⊗HT

j dHj ⊗ I3q1−j

)
⊗ I5q2 +

q2∑
j=1

I2p3q1 ⊗
(
I5j−1 ⊗WT

j dWj ⊗ I5q2−j

) (3.6)

Each GT
j dGJ , HT

j dHJ , and WT
j dWJ is a skew-symmetric matrix, thus, we have

that HTdH is a skew-symmetric matrix. Next, we observe that the left invariance is
straight-forward: let B ∈ Õ(n) a fixed matrix then

HTdH→ (BH)Td(BH) = HTBTBdH = HTdH.

The right invariance of HTdH is also a straight-forward consequence of Theorem 2.1.4
in [4]:

d(HB) = det(B)n−1dH = ±1dH.

Therefore, we can conclude that
Theorem 3.1. The matrix H produced by ROMG algorithm is a realization of a

random orthogonal matrix distributed according to the Haar’s measure on Õ(n).
Finally, we remark that the differential form associated with HTdH is the wedge

(external product) of the differential forms of the atomic parts of the Kronecker prod-
uct. In particular if n = 2p then we have

HTdH =

p∧
i=1

dθi.

3.3. Density functions. The determination of the density function in the gen-
eral case can be quite tricky. However, if n = 2p several simplifications are available.
In this case, each row (or column) has entries that, neglecting the sign, are a permu-
tation of the entries of the first column. In particular, the Gj are Givens rotations
G(θj) with −π ≤ θj ≤ π. Owing to the independence of each of them, we have that
the entries of the first column of H are a product of independent cosine and sine of
the stochastic variables θj . Therefore, each entry has a density function that is the
product of the density functions of the sines and the cosines. Following [5, page 133],
the density functions are

fcos θj (y) =
1

π
√

1− y2
and fsin θj (y) =

1

π
√

1− y2
.

Thus, we have that the density function ρ of the products is

ρ =
1

πp

p∏
i=1

1√
1− y2i

. (3.7)
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We observe that ρ is defined if and only if −1 ≤ yi ≤ 1. Therefore we assume that
ρ = 0 for values of y outside the interval [−1, 1].

4. Homogenisation of a vector. In this Section, we study the problem of the
homogenization of vectors having entries the absolute value of which can vary by
several orders of magnitude. In this case the meaning of homogenization is to linearly
transform these vectors into vectors having entries the absolute value of which is
almost constant. Let u ∈ IRn, n = 2p, be a real vector with entries uj and let

J = {i1, i2, . . . , ik} ⊂ I = {1, 2, . . . , n}

a subset of the indexes for which we have |ui| � |uj | for i ∈ I and j ∈ I \ J .

The set of vectors u that have the previous distribution of values for the entries
can be homogenized by the use of the random orthogonal matrices introduced above.

Taking into account that

u =
∑
j∈J

ejuj +
∑

k∈I\J

ekuk

the problem can be reduced to prove that given G ∈ Õ(n) the product g = Gej has
elements that are approximatively of the same order of magnitude in absolute values.
This is an easy consequence of the results of Section 3.3. The density function ρ is
given by (3.7) and we can easily compute for the column Gj of G:

• the probability Pr that X, an entry in g, be in the interval [−τ, τ ], τ > 0,

P r
{
−τ ≤ X ≤ τ

}
=

∫ τ

−τ
ρ(y)dy =

2p

πp
(
arcsin(τ)

)p(≈ 2p

πp
τp if τ � 1

)
,

• the mean value µ of one entry in g

µ =

∫ 1

−1
yρ(y)dy = 0,

• and the standard deviation σ2 of one entry in g

σ2 =

∫ 1

−1
(y − µ)2ρ(y)dy ≈ 1

2p
.

Therefore v = Gu is the linear combination of vectors with entries having a distribu-
tion with zero mean and σ2 = 1/2p.

5. Computational complexity. The computational complexity for the matrix
by vector product of a matrix H ∈ Õ(n) with n =

∏k
j=1 b

pj
j , with bj and pj positive

integer numbers, by a vector y ∈ IRn is given by:

n
( k∑
j=1

bjpj
)
≈ O(n lnn).

If we compare this complexity with the one of a general full matrix by a vector, i.e.
n2, then we have a substantial advantage.
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6. Numerical experiments. We remark that the choice of using bases 2, 3, 5
is not the only possibility. Other choices such as base 10 can be easier and adequate.
In our numerical experiments we have chosen as dimensions n = 202, n = 302, and
n = 103 where the basis is respectively 20, 30, and 10. There is another advantage
in making this choice: the values of the entries in the random orthogonal matrix are
less small in absolute value than those obtained using the base 2. This give a better
distribution of the values in the columns and rows of H ∈ Õ(n) and in the vector
z = Hu. In order to test the numerical results, we have chosen to compare the results
of the matrix by vector product of 100 random generated matrix H ∈ Õ(n) by the
vector v ∈ IRn

vi =



100 i = 10

450 i = 45

1000 i = n

1 otherwise,

with the results of the matrix by vector product of a random matrix M ∈ O(n) by the
same v. The computational complexity in the two cases is summarized in Table 6.1.

H Hv M Mv

3 4
3103 = 4, 000 30, 000 ≈ 109 ≈ 106

Table 6.1
Computational complexity (number of sum+addition operations) for computing H and M and

their product by v with n = 103.

We have chosen as comparison parameters the ratio ρ between the two following
quantities that measure how the first entry in Mv and in Hv is acceptable as pivot
in the Gaussian factorization of an hypothetical matrix where the vector v is the first
column of the Schur factor after some steps. For each of our 100 random matrices,
we compute the two parameters as

ρM =
|(Mv)1|

maxi |(Mv)i|
and ρH =

|(Hv)1|
maxi |(Hv)i|

.

We remark that both ρM and ρH are independent of the norm of v. Finally, we
compute ρ as

ρH
ρM

.

In Table 6.2, we report the percentages of the cases when ρ > 1, ρ < 1 and
0.1 ≤ ρ ≤ 2. The numerical results show that the tensor approach can be less effective
in homogenising an unbalanced vector than using a general random orthogonal matrix.
However, both methods are almost equivalent if we look at the percentage of the cases
when ρ ∈ [0.1, 2]. In these cases we do not see any major difference in the quality of
the result justifying the much larger computational cost of the construction M and
of the corresponding cost for the product Mv.
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n ρ > 1 ρ < 1 0.1 ≤ ρ ≤ 2 ρ < 0.1

400 41% 59% 68% 12%

900 28% 72% 72% 10%

1000 20% 80% 58% 30%

Table 6.2
Percentages of successful and unsuccessful cases for ρ.

7. Conclusions. We have proposed a method for the homogenisation of an un-
balanced vector of order n that has a computational cost much lower than the cost of
a classical method using a random orthogonal matrix of order n.

We observed that this tensor product can be less effective than the method gen-
erating the full random orthogonal matrix, even if is frequently comparable.
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