The University of Reading

BENCHMARK SYSTEM FOR A STORAGE
RESOURCE BROKER

A Dissertation

Submitted In Partial Fulfilment Of
The Requirements For The Degree Of

MASTER OF SCIENCE
In

NETWORK CENTERED COMPUTING,
HIGH PERFORMANCE COMPUTING

in the

FACULTY OF SCIENCE

THE UNIVERSITY OF READING
by
Carsten Koebernick

March 3, 2006

University Supervisor: Prof. Vassil Alexandrov

Placement Supervisor: Dr. Adil Hasan

Abstract

This dissertation deals with the design and development of a measurement system for a
"Storage Resource Broker" (SRB). The SRB is a client-server middleware that provides an
interface for connecting to heterogeneous data resources over a network. The aim of the

project is to enable long-run measurements of the SRB server and standard applications.

The document starts with comparing two state of the art monitoring system to find one
that helps with gathering and transmitting measurement data. Afterwards the document
focuses on other necessary tools, which help to measure applications and to store them in
a relational database. Two basic approaches will be visualised, which will meet the task
of the project. The measurement system has been developed to gather measurements from
more than one server, so both approaches base on a client server system. Furthermore,
measurement graphs have been developed to compare the load and memory efficiency
of different machines and measurement cycles. Finally, the measurement system should

help the researchers of the SRB to find possible leaks and ease the further development.

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Project Description
Motivation e
Restrictions o o e e e e e e e

Document Structure e e e e

2 Monitoring Systems

2.1
2.2
2.3

Ganglia e
Nagios o o e

Comparison e e e e e

3 Technologies

3.1

3.2
33
34
3.5
3.6

Storage Resource Broker,

3.1.1 Scommands

Database system L L L
3.6.1 Databasemodels
3.6.2 Entity Relationship Model (ERM)
3.6.3 Structured Query Language-SQL
3,64 SQLite
3.65 Pysqlite

II

\'/l

Vil

Contents

37 XML ..
3.77.1 StructureandRules o oL
372 Parser
3773 Metalanguages
4 Analysis
4.1 Ganglia
42 SRBSystem
43 BasicApproach
44 Solutions
4.4.1 Solution with Network Functionality of Ganglia.
4.4.2 Solution with Data Transmission over the Socket
4.4.3 Comparison and Decision
5 Design
5.1 System Architecture
5.1.1 Monitoring Server
5.1.2 Monitoring Client
5.1.3 Measurement Sequence oL
52 Database
5.2.1 Entity Relationship Model -ERM
5.2.2 Relational Datamodel-(RDM)
5.3 GUIDesign e
531 MainFrame
5.3.2 Configuration Frame
5.33 Diagrams
54 Modularisation L.
5.5 ObjectModels. e
5.5.1 Monitoring Servero
5.5.2 Monitoring Client
6 Implementation
6.1 SocketConnection
6.2 Application Measurementso
6.2.1 Standard Application L L Lo

III

32
32
34
35
37
37
38
38

40
40
40
42
45
47
48
49
51
51
52
53
55
57
57
59

Contents

6.2.2 SRB Application
6.3 XML Parser
6.4 Client Measurement Thread
6.5 Multiple Measurement Diagram

7 Tests
7.1 Testwithone Server

7.1.1 Configuration L

7.1.2 Results
7.2 Testwiththree Servers

7.2.1 Configuration

722 Results e

8 Conclusion

9 Future prospect

Abbreviations
Bibliography
A Handbook
Al Files o e
A 1.1 Monitoring Servero i e e e
A.1.2 Monitoring client L Lo
A.2 Installation and Configuration
A2.1 Ganglia
A22 Python
A.2.3 SQLite and Pysqlite
A.2.4 Measurement system o e
A3 Monitoring Server e e e e e
A4 ConsoleClient
A5 GUICHent e

B Python Scripts
B.1 python_server.py

B.2 socket_connection.py

v

82
82
82
84
86
86
87

89

91

Contents

B.3 gangliapy XXVIII

B.4 python_clientpy XXX

B.5 console.py XLVII

B.6 gui2py LIIT

B.7 gui2_ui.pyo LV

B.8 myplotpy LXXVII

B.9 tooltip.py LXXXIX
C Bash Scripts XC

C.1 average.sh e XC

C.2 average_mem.sh XC

C3 num fdsh e XCI

List of Figures

2.1

3.1
32
33
34
3.5
3.6

4.1
4.2
4.3
44

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

Ganglia Output of University Karlsruhe, Germany 6
SRBnetwork 14
GNU-projectlogo 20
Database models 21
Chennotation e 23
Bachmannnotation, 23
IDEF1X notation 23
SRB server connectiono 35
Client-Server connection v v 36
Solution T 37
Solution2 38
Serverinterfaces o 41
Clientinterfaces e 44
Programme flowchart. oo oL 46
Entity RelationshipModel 48
Relational Database Model 49
MainFrame e 51
Configuration Frame 53
Single View Diagram 54
Multiple View Diagram o 55
Modules 56
Server Object Model, 58
Client Object Model 61
Menus L 63
GUIObject Model 64

VI

List of Figures

6.1
6.2

7.1
7.2

9.1

Al
A2
A3

GUIExample e 78
Listbox o 79
Test Single View e 84
Test Multiple View 88
New Database Approach 93
Main L XVIII
Configuration L XIX
Diagram Dialog L XX

VII

List of Tables

2.1

5.1
5.2
53

7.1
7.2
7.3
7.4

A.l
A2
A3
A4

gmond variables Lo 8
Configuration filecontent, . 43
Gmond metrics e e e 50
Console Client Parameter 59
Maximum values of the applications 84
Maximum values of the machine 85
Machine Specification L Lo 86
Maximum Values of 3 Machines 87
Files of the monitoring server XII
Files of the monitoring client XII
Application Versions L XIII
Console Client Parameter XVII

VIII

Chapter 1

Introduction

The developers of network applications often have to fight more problems with their ap-
plications then developers of standard applications. The programme has to be resistant
against network interruptions or changes in the connection, such as different latencies.
When multiple computers exchange data, it would be good to know, which computer is a
bottleneck or has capacity problems. Thus for improving and testing network applications
and services, every single computer which is part of the application has to be monitored
to find mistakes. In many cases, new programmes have to be developed, which have only

the exercise to watch the actual application.

The Council for the Central Laboratory of the Research Councils (CCLRC) has the men-
tioned problem and needs an application, which is able to monitor every application and
one in particular on a Linux operating system. Furthermore, already existent monitoring
systems should be considered, if they are able to do the work. The particular applica-
tion is the Storage Resource Broker (SRB), which has been developed by the San Diego
Supercomputer Centre (SDSC). The CCLRC takes part in the further development. The
SDSC Storage Resource Broker is a client-server middleware that provides an interface
for connecting to heterogeneous data resources over a network. It is able to access differ-
ent storage systems, such as databases or file servers, and represents the storage outwards
as if it woulde be one storage. Further information about the system are described in

section 3.1 on page 13.

Introduction 1.1 Project Description

1.1 Project Description

The project deals with the research, design, and development of a monitoring system to
measure the performance and efficiency of the SRB system. The dissertation is created
on behalf of the RAL (Rutherford Appleton Laboratory), which is part of the research
department CCLRC. The project requires the development of a system to control the
running of applications, to monitor, and to collect statistic outputs. This system will
be used to benchmark various SRB and Linux applications and will give a brief overview
about the capacity and efficiency of the monitored computer. The monitoring system must
be able to connect to more than one computer at a time and measure the performance in
parallel. Data that will possibly collected are CPU efficiency, the amount of used file
descriptors, open disk space and the number of processes. History graphs will be needed
to get a better view on the monitoring data. These graphs should be embedded in a
Graphical User Interface (GUI).

1.2 Motivation

The CCLRC works on the improvement of the SRB, tries to determine errors, and wants
to tune the application. Therefore measuring the performance of a system can be very im-
portant to determine bottlenecks. The CCLRC would like to know how the SRB reacts in
particular situations. Thus, the motivation behind this project is to find possible mistakes
in the SRB and get more feedback from the systems. The developers of the SRB have
already written some testing applications, which should bring the SRB up to its limits.
For instance, a huge amount of data is copied within the SRB systems and the capacity
of the participating computer might be reached. Caused by the structure of the SRB it is
not possible to predict on which SRB server in the network will be the most load. So a
framework is needed, which starts test applications and is able to monitor more than one
computer, which might be influenced by the test applications. Consequently, the target of
the project is to help the developers find possible efficiency leaks and help them with the
further extension of the Storage Resource Broker by developing an adapted monitoring

system.

Introduction 1.3 Restrictions

1.3 Restrictions

An existing monitoring system should be used as far as possible to meet the targets of
the project. The data should be stored in a relational database. Furthermore, the data-
base should be small and easy to install. SQLite fits these requirements and will thus be
used for data storage. The implementation of further applications has to be done with the
scripting language Python. The version of Python is restricted to 2.2.3 to ensure com-
patibility to older working environments. The GUI needed to draw the diagrams has to
be implemented with Tkinter, an Application Programming Interface (API) between TK
scripting language and Python.

All other applications that are needed for the project must be installable without superuser
rights in Linux. This means every user has to be able to install Python, Tkinter, the exist-
ing monitoring system, and SQLite on every Linux machine used for measurement. For a
better extensibility and reusability of the programmed code, an object-oriented approach

has to be used for the implementation.

1.4 Document Structure

This dissertation consists of nine chapters. The first and current chapter gives a short
introduction into the topic of the project. The second chapter “Monitoring Systems”
presents two state of the art monitoring systems and explains them. At the end, both
will be compared and the one used in the project will be exposed. The third chapter
explains all additional technologies used to support the existing monitoring system and to
create the measurement system. Therefore, the programming languages, database and the

SRB server will be explained in detail.

The “Analysis” chapter describes the exercise of the measurement system and shows two
different approaches to meet the tasks of the project. Afterwards the design shows the
chosen architecture, the modules, object models and the database models of the mea-
surement system. The “Implementation” chapter describes the Installation of the needed
tools and describes five code examples in detail. So, the “Design” chapter explains, what
the measurement system does and the “Implementation” section how it has been imple-
mented. The last main chapter “Tests” shows two different cycles of the measurement

system and describes the results. The “Conclusion” chapter summarises the whole work

Introduction 1.4 Document Structure

again, shows what has been achieved, not fulfilled and over-fulfilled during the project.
The “Future Prospect” helps with the further development of the measurement system
by suggesting a few improvements. At the end of the document is the Appendix, which

consists of a short documentation of the programmes and the implemented code.

The experienced reader does not need to read the “Technologies” chapter, because it ex-
plains database and programming bases, which he might already knew. But the following

chapter assume that the reader know about the bases

Chapter 2

Monitoring Systems

In a time where administrators have to fight with networks getting bigger and bigger by
connecting to other networks or by embedding them into a Grid!, monitoring systems

become more and more important.

A monitoring system constantly monitors different sections of a computer. Conceivable
applications are network, performance and service monitoring. Network monitoring is
used to constantly supervise computer networks. Mostly the in and output will be mea-
sured. Performance monitoring can be used to watch the efficiency of a server. For
instance if an administrator wants to know if a server operates on its full capacity or is the
server able to run another service. Service monitoring controls running applications and

the system is able to handle eventually defects.

A monitoring system for Linux uses different sections of the Linux file system. There are
plenty of possibilities to get performance and statistic information from a Linux operating
systems. The most common way is using the "proc"-directory. The "proc"-directory has a
dynamic content, that means whenever someone wants to get information from the proc-
directory, the Linux-Kernel creates the information. So, the information of this directory
depend on the actual state of the running machine. By creating the information dynam-
ically the directory needs no memory capacity on the hard disk. The monitoring tools
often use this folder to get their information. Every process, which is running in Linux
has a process-ID. During the process is alive, a directory with the specific process-ID will
be stored in the proc-directory. A lot of information can be found about the process like,

how much cpu and memory usage needs the process. Sometimes monitoring systems use

IGrids are resources of many separate computers connected in a network (often the internet) to solve
large-scale computation problems

Monitoring Systems 2.1 Ganglia

standard supervision programs like "vmstat","lsof" or "ps". "ps" can be used to get infor-
mation about running processes, "vmstat" returns information about the virtual memory
of the system and "Isof" lists open files. But at the end these supervision programmes use
as well the proc file system to get their information. The advantage is that the programmes
are nearly independent from the used Unix derivate [1]. The proc file system has different

structures on different Unix derivates and sometimes it is not even existent.

A monitoring system has to be easy to use and needs to be extensible. The current moni-
toring systems are often used for big networks, clusters or Grids. The information of the
monitored computers are mostly stored in a database or sometimes ordinary files are used.
Furthermore monitoring systems provide a possibility to produce diagrams for instance to
watch the CPU efficiency of the last month. If errors have occurred on the machine, the

graphs might give a reference to the problem.

Two systems are currently state of the art. Ganglia [2] and Nagios[3] are widely used to

monitor computers in a network, cluster or Grid.

2.1 Ganglia

Ganglia is a scalable distributed monitoring system for high performance computing sys-
tems such as Clusters and Grids, but it can be used just for one computer or small net-
works as well. It was developed by Matthew L. Massie and is an Open Source devel-

opment project under General Public License (GPL) [4]. Ganglia uses several common

GridPP Grid CPU Load last hour GridPP Grid Data Throughput 1ast hour

=
—

4IATLII0 T90L ¢ T00L0HY
4IATLII0 T90L ¢ T00L0HY

Bytes/ sec
(=]
(4]

Load /P rocs

13100 1320 1340 13100 1320 1340
O 1-min Load [E Modes [CPUus W Running Processes HIin [l out

fig. 2.1: Ganglia Output of University Karlsruhe, Germany

techniques like eXtensible Markup Language (XML) for data presentation. It is a widely
used application, which runs on over 500 clusters around the world, for instance it is used

by the Wikimedia Foundation to monitor their servers [5].

Monitoring Systems 2.1 Ganglia

Ganglia consists of two daemons, a PHP web interface and some little helper tools. A
Ganglia monitor needs to run on each node in the network. The monitor gathers the
values for various metrics such as CPU load, free memory, disk usage, network I/O (In-
put/Output), operating system version, etc. These metrics are sent through the network
and will be used by the front end node to generate historical graphs. In addition to met-
ric parameters, a heartbeat message from each node is collected by the ganglia monitors.
When a number of heartbeats from any node are missing, the web page will declare it as
"dead".

The three main components of the Ganglia Toolkit are in detail:

Ganglia Monitoring Daemon (gmond) The standard monitoring daemon in Ganglia is
the gmond. It is a multi-threaded daemon, which runs on every node that should
be monitored. Multi-threaded applications run more more than process or thread
2 in parallel. The daemon monitors several variables, which have been set within
a config file or with the gmetric application. The gmetric application allows the
user to set its own metrics by passing a new metric name and its value. Standard

variables which can be set in the gmond.conf for a Linux distribution are:

Metric name Description

boottime System boot timestamp
bytes_in Number of bytes in per second
bytes_out Number of bytes out per second
cpu_aidle Percent of time since boot idle CPU
cpu_idle Percent CPU idle

cpu_nice Percent CPU nice

cpu_num Number of CPUs

cpu_speed Speed in MHz of CPU
cpu_system Percent CPU system

cpu_user Percent CPU user

disk_free Total free disk space

disk_total Total available disk space

load_fifteen

Fifteen minute load average

Continued on next page

2A thread is a so called lightweight process. Many threads share resources and the used memory area with

Monitoring Systems

2.1 Ganglia

Metric name

Description

load_five
load_one
mem_buffers
mem_cached
mem_free
mem_shared
mem_ total
mtu

0s_name
os_release
part_max_used
pkts_in
pkts_out
proc_run
proc_total
swap_free
swap_total

sys_clock

Five minute load average

One minute load average

Amount of buffered memory
Amount of cached memory

Amount of available memory
Amount of shared memory

Amount of available memory
Network maximum transmission unit
Operating system name

Operating system release (version)
Maximum percent used for all partitions
Packets in per second

Packets out per second

Total number of running processes
Total number of processes

Amount of available swap memory
Total amount of swap memory

Current time on host

Table 2.1: gmond variables

The same table is available by using the gmond command with the parameter “-
m”. Furthermore it is possible to pass the gmetric tool a Bourne Again Shell (bash)
script. This bash script has to return a value, which will be passed to the gmond
daemon. This is a feature of the Linux command line and not of gmetric, but it is
the best way to pass calculating functions to gmond. More information about bash
can be found in the technology chapter in section 3.5 on page 20. The values, which
have been set by the user, need to be updated by himself. That means whenever a
user wants get current monitoring data, he has to execute the gmetric command and
pass a new value to gmond. But it is also possible to set up a cron job with the
crontab command. The crontab command, found in Unix and Unix-like operating
systems, is used to schedule commands to be executed, frequently. So the measure-

ment data of Ganglia could be updated with a cron job up to every minute. Here is

Monitoring Systems 2.1 Ganglia

an example for a gmetric command, which passes a return value of a bash script to

the gmond daemon:

gmetric --name time --value ‘date | awk ’'{ print \$4 }’

--type string

This command gets the time from the commandline tool date and put it into the

gmond metrics.

The gmond daemon transmits the information via User Datagram Protocol® (UDP)
messages in eXternal Data Representation* (XDR) format or sending XML over a
Transmission Control Protocol’ (TCP) connection. The simplest possibility to get
the data from gmond is to a use a telnet query, which returns the monitoring data
in XML. If someone has a gmond daemon on his computer system, the following

command would return the monitoring data:
telnet 127.0.0.1 8649

The command queries the local network device, and returns the information if there
are any messages on Port 8649. If Ganglia is running the monitoring will be struc-

tured in XML format.

Ganglia Meta Daemon (gmetad) Federation in Ganglia is achieved by using a tree of
point-to-point connections over particular cluster nodes to gather the state of mul-
tiple clusters. At each node in the tree, a Ganglia Meta Daemon (gmetad) polls fre-
quently a collection of child data sources. The collected XML data will be parsed
and saved to a Round-Robin database. The gathered XML data will be spread out
over a TCP socket to the other clients.[2]. For more information about the Round-
Robin database, please have a look at the homepage of “RRDtool” [6], which is
used in the Ganglia toolkit.

Data sources, which should be monitored, may be either gmond daemons, particular
clusters, or other gmetad daemons, representing sets of clusters. Multicast® chan-

nels spread the data over the network to share the monitoring data with other nodes.

3UDP - minimal connectionless network protocol

4XDR - communication standard between server and clients for data exchange
>TCP - reliable connection-oriented network protocol

®Multicast - one node sends data to multiple nodes

Monitoring Systems 2.2 Nagios

Ganglia uses the multicast channel to get the information from a group of nodes in
the network. A particular IP address space (224.0.0.0 bis 239.255.255.255) has to

be used for multicast connections.

Ganglia PHP Web Frontend The Ganglia web frontend provides a view of the gathered
information via real-time dynamic web pages. Most importantly, it displays Gan-
glia data in a meaningful way for system administrators and computer users. It
is possible to group the information by clusters and networks, to get an overview

about parts of the network.

Every tool can be configured over a configuration file: gmond.conf, gmetad.conf and
conf.php. The structure of the monitoring system allows using only parts of the toolkit,
because not every administrator needs gmetad to get information about a whole cluster.
Mostly the gmond daemon is enough to supervise small networks. Furthermore not every

one likes the PHP webpage and wants to draw its own diagrams with a standard GUI.

2.2 Nagios

Nagios is server based monitoring system, which is widely used and very popular. Com-
panies such as Dell and Cisco use it for their own systems. Nagios consists of a server,
which provides information for a client. So on every machine, which needs to be moni-
tored runs a server. It is possible to create network hierarchies, which allows the system
to stop the monitoring of resources, which cannot be reached anymore. That means if a
network node, for instance a router, has been disconnected, all measurement queries for

that node and the nodes behind it, will be stopped at once.

Nagios combines many monitoring features of single programmes in one big package.
It is a network and system monitoring application. It watches hosts and services, which
were specified by an administrator. It is able to send out alerts, if something went wrong
or if particular events have happened. Nagios was originally designed to run on Linux,
but it should work with the most Unix derivates as well. The resource, which shall be
monitored, is called service check in Nagios. These service checks are connected over a

plugin manager to Nagios. Nagios has the following additional features [3]:

Monitoring of network protocols Protocols like POP3 (Post Office Protocol Version 3)

or SMTP (Simple Mail Transfer Protocol) can be monitored. An overview of sent

10

Monitoring Systems 2.2 Nagios

mails can be created to count and compare the amount of transmitted and received
mails. But a lot more network protocols are conceivable such as ICMP (Internet

Control Message Protocol) or NNTP (Network News Transfer Protocol).

Simple plugin design The design of the Application Programming Interface (API) for
Nagios allows users to easily develop their own service checks. The service check
can be written in any installed programming language. It just have to be executable
and return O for "OK", 1 for "Warning", 2 for "Critical" or 3 for "Unknown". The
most plugins are written in Perl, Bash and C, but it is absolutely not important and
a developer can use the programming languages he likes most. Furthermore a lot
of service checks are available in the Internet. For example the ‘“NagiosExchange

Portal”[7] provides many plugins for free.

Network host hierarchy As already mentioned, Nagios is able to define a network host
hierarchy using "parent" hosts, for example a Router. This allows the detection of
broken hosts and the differentiation between hosts that are down and those that are

unreachable.

Contact notifications The four different states “OK”, “Warning”, “Critical”, and “Un-
known” can start particular events. An event handler can be written by the user to
react on particular states. It is possible to send mails to the administrator or to use
any user-defined function. For instance if a web server has been monitored and the
state is "Critical” the server could be restarted automatically and the administrator

just gets the information that something has happened.

Automatic log file rotation A log file can be archived if it reaches a particular size or

age. This feature allows an automatic archiving of the logging content.

Support for implementing redundant monitoring hosts A monitoring host of Nagios
can be installed redundant on two hosts. If one of them fails, the other takes on
with the monitoring task. This enables an automatic maintainance of Nagios. For
instance, if the primary host, which runs Nagios, fails or when portions of the net-

work became unreachable, the system will still work on another machine.

Optional web interface A web interface can be optionally configured for viewing the
current network status, the last notifications, problem history. Besides the overview,

the log file can be edited within the web interface.

11

Monitoring Systems 2.3 Comparison

Normally the measurement data will be stored in two log files, but older versions of
Nagios are available with database support for PostgreSQL and MySQL. There are binary
packages available for the Linux distribution Debian, Suse and Red Hat. The newest
version Nagios 2.0 abandons on databases, but with the PerfParse Toolkit[8] it is again
possible to store the data in MySQL. Nagios needs a lot of configuration getting it to work.
A sample configuration file, which is called "minimal" is 300 rows long and configures

Nagios for the use of only eight service checks.

2.3 Comparison

Nagios has one particular disadvantage, which is to restrictive for the development of
the measurement system. Only a Linux root user, the so called superuser, which is able
to do everything under the Linux operating system, is allowed to install Nagios. That
means whenever a Nagios system needs to be installed on a system, a user with full rights
is needed to install the monitoring system. It is possible to use Nagios without User
permissions, but for the installation are Superuser rights necessary. It might be possible
getting it installed without root rights, but a lot of investigation and time would be needed,
because no documentation could be found, where someone has done it. Furthermore
Nagios is a lot more complicated than Ganglia and difficult to install. Ganglia has the
advantage, that it is divided in three main parts, gmond, which is mostly used for standard

networks, gmetad for clusters and the PHP web page to draw diagrams in a browser.

Hence, it follows that the project will use Ganglia to get the monitoring information from
the nodes. As mentioned in this chapter, Ganglia uses a Round-Robin database. The
project restrictions say that a relational database should be used for data storage. There-
fore only gmond will be used to gather monitoring data and further implementations are

needed to store the data in an SQLite database.

12

Chapter 3

Technologies

After the decision had been made to use Ganglia as the system to gather the monitoring
data, further research and analysis was needed. This chapter will begin with the explana-
tion of the functionalities of the Storage Resource Broker. It is important to know how
the SRB works and which information are needed to monitor the SRB. Furthermore, the
chapter explains the details of the prescribed applications and the associated tools. The
scripting language Python is also prescribed for the project and some peculiarities of the
language will be shown. Afterwards a brief overview about Bourne Again Shell will be
given, which helps to monitor the SRB and standard applications. Besides that, the mea-
surement data must be stored in a relational database. So, the fundamentals of database
systems will be explained within a section about the Structured Query Language (SQL)
and the used database SQLite. The last step will be to emphasise on the abilities of the
XML, which is used by Ganglia to provide the monitoring data.

3.1 Storage Resource Broker

The management and access to data, which are stored in different storage systems by dif-
ferent manufacturers is very often a problem of computer centres and IT offices. The users
are not interested in the way the data are stored, they just want to have one or two point
of references to store and load their data. The Storage Resource Broker allows storing the
data not only with typical attributes of a file system. The files can be stored with attributes
such as the user information, version number and file specific information, for example

parameter of the file. The SRB creates a global name space, which allows splitting the

13

Technologies 3.1 Storage Resource Broker

user from the storage infrastructure. User and applications can organise their data com-
pany wide, without being involved saving it on physical data storage. The administrators
can store the data where and as they like it, without influencing applications and users.
The SRB can access nearly every possible storage system such as relational databases,
tape libraries or file servers. Furthermore, it is able to access every attribute of a file
through the Meta data CATalogue (MCAT). The MCAT stores the attributes like physi-
cal storage location, file attributes, access rights and all user defined attributes of every

file. A user can connect to the network with SRB client applications. An SRB client can

SRB-Client 1 SRB-Client 2

0 Network)

Wt
et
W et

SRB-Server 1 SRB-Server 2 SRB-Server X

MCAT Server MCAT Database

fig. 3.1: SRB network

be a set of UNIX commands called Scommands', which have been developed to get the
same comfort as in normal UNIX environment. For instance an SRB command “Sgrep”
has been migrated from the UNIX “grep” command and has similar functionality. Other

access possibilities are GUIs such as the web client MySRB [9], or Windows Client inQ

"http://www.sdsc.edu/srb/scommands/index.html

14

http://www.sdsc.edu/srb/scommands/index.html

Technologies 3.1 Storage Resource Broker

[10]. The picture 3.1 on the last page shows the connection between the SRB-clients, the
SRB-server, the MCAT Server and the MCAT database. The whole system can run on a
single computer, which is fine for testing purposes. The MCAT database is the metadata
repository that provides a mechanism for storing information used by the SRB system. It
stores the internal data needed by the SRB system and the user metadata regarding data

sets are stored by the SRB.

The SRB has a lot more features, which should only be mentioned:

* Creating and administrating data replications for fast recovery, load sharing and

caching
* Transparent migration of data, without changing the view of users and applications
 Security and Backup of data if someone made unintended modification or errors

* Security mechanisms, for example encrypted data transfers and secure authentica-

tion methods like Public Key Infrastructure (PKI).
* Scalability, which allows the handling of millions transactions per day
* Mechanisms to minimize latency during the transfer
* Management of access and logging methods

* APIs allow the integration and adjustment of the SRB in any work environment

3.1.1 Scommands

Using the Scommands needs a connection to a remote or local SRB server. To establish
the connection, two files are needed on the local machine, which connects the host to
the SRB server. The files “.MdasAuth” and “.MdasEnv” are hidden in the “.srb” folder,
which is located in the user home directory of Linux. The “.MdasAuth” file contains
the password, which enables connecting to the SRB. The “.MdasEnv” file consists of the

following information:

mdasCollectionName ’/homezone/home/srbadmin.homedomain’

mdasDomainName "homedomain’

15

Technologies 3.2 User Management of Unix based systems

srbUser ’srbadmin’
srbHost "127.0.0.1"'
srbPort 5544’
defaultResource 'srbdisk’

AUTH_SCHEME ’'ENCRYPT1'

The most interesting information are, that the server is running on its own machine
(“127.0.0.1”) and is connected over network port 5544, which is also called SRB port.
Furthermore, it contains of the user name, domain and the collection. An SRB collection
is similar to a folder or directory in a file system. The collection is an object that con-
tains other collections or data objects. It organises data objects into a logical hierarchy.
Therefore, the hierarchy can be accessed easily. Every SRB user must be a member of
one domain. Domains group individuals together that are located on one physical site or
office location. The Authentication scheme depends on the used system, which could be a
Grid, than particular Authentication Methods will be used, for instance the Grid Security
Infrastructure (GSI) [11]. The “defaultResource” points to the first SRB server, which
should be used.

So before using the Scommands both files need to be in place. The “Sinit” command can
be used to start the connection to the SRB and with “Sexit” the connection will be closed.
A further list and an explanation of the Scommands can be found on the SDSC website
[12].

3.2 User Management of Unix based systems

The project needs all necessary applications installed with user rights. Therefore, it is
important to give a short explanation of the way UNIX deals with its users. The Multi-
user system UNIX allows setting privileges for different users. For instance, a usual user
is not allowed to stop the machine or delete the complete hard disk. Furthermore, every
user has ownership rights, which allow him to prevent his files from other users. The

output of the bash command “Is -1”” will help to explain the ownership of files:

drwx——---- 2 carsten staff 2048 Jan 2 1997 private

drwxrws—-—-—- 2 root admin 2048 Jan 2 1997 admin

16

Technologies 3.2 User Management of Unix based systems

—rw-r----- 2 carsten staff 12040 Aug 20 1996 myfile
drwxr-xr-x 3 carsten user 2048 May 13 09:27 public

Field 1 The first field is a set of ten permission flags. The first flag distinguish directories
“d” from normal files “-”. A “-” says that no flag is set. The next 3 flags are the
permission of the owner. “r”” for read, “w” for write and “x” for execute. The same
permission flags come than for the Group and for Others. The position where x
would normally go is sometimes a “s” flag, which is called set-UID or set-groupID
flag.On an executable program with set-UID or set-grouplD, that program runs with
the effective permissions of its owner or group. The set-grouplD flag means for a
directory that all files, which are created inside that directory, will inherit the group
flag. When directory has no flag, all files take the primary group of the user that
created the file. This issue is important to people that try to keep a directory as group
accessible. The subdirectories of the main directory also inherit the set-grouplD
flag.[13]

Field 2 - link count describes how many times the file is linked to other positions
Field 3 - owner of a file (user) is set in field 3

Field 4 - the associated group of the file

Field 5 - size of the file in bytes

Field 6-8 - date of last modification. The format varies between UNIX derivates, but

consists always of three fields.

Field 9 - name of the file

When a new user was created, he gets his own folder in the home directory, which has the
name of the user. The user is allowed to install his programmes and to store his files there.
Hence, all applications, which are needed for the project, have to be installed somewhere

in the home directory.

17

Technologies 3.3 Python

3.3 Python

“Python is an interpreted, interactive and object-oriented programming lan-

guage.”?

It is completely written in C and has been developed in the beginning of the Nineties by
Guido van Rossum at the "Centrum voor Wiskunde en Informatica" in Amsterdam. Orig-
inally, it has been developed for the distributed operating system "Amoeba" and consists
of many features from the programming languages Lisp, Smalltalk, FP and Unix-Shells.
The name of the programming language is based on the English comedy group "Monty

Python", so connections in Python documentations are volitional.

Python has been advanced and is one of the most important scripting languages and be-
comes more and more popular. The programming language is easy to learn and the syn-
tax is manageable. Python consists of big standard library, which means the programmer
needs less effort to achieve much. It is comparable with Perl, PHP or Java. Classes,

Modules, exceptions and dynamic data types can be used.

There are interfaces to system calls and libraries, as well as to various windowing systems
such as X11, Motif, Tk, Mac, MFC, wxWidgets, and Qt. New built-in modules are easily
written in C or C++. Python is also usable as an extension language for applications
that need a programmable interface. The Python implementation is portable: it runs on
many brands of UNIX, Linux, on Windows, OS/2, Mac, Amiga, and other platforms. If a
particular system has no Python support, yet it may be supported later, as long as there is
a C-Compiler for this system. Sometimes nobody tried to compile Python for a particular
system before. Python can be used free for commercial and non-commercial use, but it is

copyrighted.

Python has peculiar syntax, which nearly needs no brackets. It uses in instead of brackets
indention to switch between looping constructs and normal commands.

<statementl >
while <test >:

<statement2 >

This forces the user to write clean and human readable code. Semicolons are not necessary

and are proscribed. Python is completely object-oriented and a lot of modules and classes

Zhttp://www.python.org/doc/Summary.html

18

http://www.python.org/doc/Summary.html

Technologies 3.4 Tkinter

are provided in the Internet. So whenever one heard somewhere of "Python, batteries
included" it means the programmer should search in the library before starting to reinvent

the wheel.

For a better understanding of the attached Python scripts in B on page XXI, it is necessary
to explain the meaning of the underscores before attributes and operation names. Python
classes cannot be restricted to public, protected or private. However, the underscore helps
to avoid name collisions between attributes of different classes. A double underscore is a
pseudo private prefix. The name of the operation, for example “__gui()”, will be changed

(X3

during the interpretation to “_<class-name>__gui”. This avoids any name collisions. A
single underscore prevents the attributes to be sent between files. So if a new file imports
classes from another file in this way “from “filename” import *” the attributes are not
available in the new file. Every other attribute name is visible for everyone. The con-
structor of every class is the “__init__" function, where every member variable should
be declared. The constructor will be started, when an object has been created. The at-
tribute “self”” is needed in every member function of a class and allows the access to all
other member functions and variables. For instance the constructor can be called with

“self.__init_ ()”.

3.4 Tkinter

Tkinter is a portable library for the construction of graphical user interfaces and is part of
the standard library modules of Python. It is implemented as a thin-object oriented layer
on the basis of Toolkit (Tk). Tk is an extension of the Tool Command Language (Tcl).
Tk is an open source, cross-platform widget® toolkit, which is a library of basic elements
for building a GUI. So all the possibilities which provides Tk can be used with Tkinter
in Python. Tkinter is one of the most commonly used GUI toolkits, because it is portable
between Mac, Windows and Unix. Furthermore it is easy to learn like Python, because it
consists of only a few widgets, but it is mostly enough for smaller applications. Unlike
Java every scrollbar must be connected to a particular widget by the programmer, himself.
So a lot more code is needed to get small things to work. Tkinter is not only used, because
it is portable, it is also pretty fast, which is sometimes a big disadvantage of interpreted

languages.[14]

3components of a GUI

19

Technologies 3.5 Bash

3.5 Bash

UNIX allows a different command line interpreter, which are called shells. It is an impor-
tant connection between the User and operating system. UNIX shells execute commands
sequentially, therefore they are often used as scripting languages to write little helper
applications to relieve the everyday life. The Bourne Again SHell (Bash) is part of the
GNU.

GNU is a recursive acronym for "GNU’s Not

UNIX", a project to write a free Unix like operating

system. Bash is fully Bourne Shell (sh) - compat-

ible, which is parent of the most new shells. The
bash extends the shell with features of the Korn
Shell (ksh) and the C Shell (csh). The bash of-

fers the functionality to use it for programming and

QA

interactively. Because of the compatibility with
Bourne Shell, all older scripts will run without mod-
ifications under the bash. The improvements of-
fered by the bash are, for example command line

fig. 3.2: GNU-project logo
editing, an unlimited size can be used for the com-

mand history or indexed arrays of unlimited size.
Further implements the bash, a Job Control system, which allows the user having the

system work on a job in the background, while he is working with the keyboard.

3.6 Database system

A database system consists of two parts, the database, which is an organized collection
of data, and a database management system (DBMS), which is used to query and manage
the database. The database system has to store a huge amount of data and must be able to
react on requests from applications and users. Databases store collection of records in a
systematic way, so particular information is easier to find and can be ordered and grouped

by using requests. There are different types of databases, which differ in their data model.

20

Technologies 3.6 Database system

3.6.1 Database models

3.6.1.1 Hierarchical model

The hierarchical model is the oldest data model that is not often used in databases any-
more. The databases, which are based on the hierarchical database model, use a tree

model for displaying data.

The object types have definite connections to each other. The data model has a root,
which is connected to his subordinates. The structure is efficient for the computer, but
is not possible to do any changes without varying the organisation of the data. Requests

need to orientate on the tree structure.

3.6.1.2 Network model

DBS, which are based on the network model, create a structure by using networks. It
consists of no root objects and so every object type can have more than one connection to

other objects. Connections have to be labelled.

(a) Hierarchical Database Model (b) Network Database Model

fig. 3.3: Database models

3.6.1.3 Relational model

The relational model is one of the most important and widespread data models. The main
part of this model is a table (relation). The data is managed in two-dimensional tables,

which are connected by primary keys and foreign keys. Primary keys are unique and

21

Technologies 3.6 Database system

define every row in a table. The foreign keys are primary keys from other tables, which
build the connection between different a tables. The relational model allows the using of
easy describing database languages such as the Structured Query language (SQL). The

section 3.6.3 on the following page will explain more details of SQL.

3.6.1.4 Object-oriented model

The content of an object database are objects. An object is a summary of connected
attributes in a record. The objects are similar to the objects of the object-oriented pro-
gramming. The advantage of the object database model is that the model can be used to
interleave the objects and to build a breakdown structure. For instance: Car — Motor
— V-belt

3.6.2 Entity Relationship Model (ERM)

The entity relationship model is used to describe a part of the real world in the data mod-
elling. The ERM is the preliminary stage for the design of relational database schemes. It
consists of a graphic or a description for the elements of a database. Therefore, the ERM
consists of two main terms, entities and relationships. The entity is an item, which rep-
resents things of the reality, for instance a person, a book, or a house. The relationships
represent the connection or dependence between two entities. For example, the person
"lives in" the house or the book "is on" the shelf. The last term, which is often used in
case of ER-models, is the cardinality. This is the possible number of connected entities to
one relationship. So there could me more than one book on the shelf, but the same book
cannot be on more than one shelf. One differentiates between one-to-one, one-to-many
and many-to-many relationships. The many-to-many relationship needs a further devel-
opment, because it cannot be solved in a database schema. Therefore, join tables will
be used to solve it. That is an additional table, which consists only of foreign keys and
one primary key. Nevertheless, one should avoid using them and the developer should try
to find another solution. The Entity Relationship model is mostly used in the beginning,
when the database gets a concept. The planner gets an overview about the data, which
will be needed in the database to consider every possibility and avoid redundancies. Fur-
thermore there are different notations for drawing ERM models. The most popular ones

are:

22

Technologies 3.6 Database system

n 1
person @ town

fig. 3.4: Chen notation

person town

fig. 3.5: Bachmann notation

1
person @ town

fig. 3.6: IDEF1X notation

Other notations are Must-Can Notation (MCN), numerical notation or (min,max) nota-

tion.

3.6.3 Structured Query Language - SQL

SQL is a declarative computer language for relational databases. It is the main standard
language for relational databases and allows independence from applications. SQL has
an easy syntax, which is based on the English colloquial language. Unfortunately, every
manufacturer has its own extension for SQL and so the programmer has to make nec-
essary adjustments. Many popular DBS like MySQL, MSSQL (Microsoft SQL Server),
PostgreSQL, DB2 or SQLite use parts of the SQL implementations.

SQL is divided into four partial languages:

23

Technologies 3.6 Database system

3.6.3.1 Data Definition Language (DDL)

The DDL defines the database scheme. Three commands are part of the language: "CRE-
ATE" can be used to generate, "DROP" to delete and "ALTER" to change a table. Further-
more, primary and foreign keys can be set during the creation and the changing. As men-
tioned before, not every database implementation allows every command. For instance
the SQLite database, which will be further explained in subsection 3.6.4 on page 26, is
not able to handle foreign keys and the "ALTER" command is not implemented in SQLite

version 2.
Examples:

CREATE TABLE house(h_id INTEGER PRIMARY KEY,

colour varchar (50), address varchar (50) NOT NULL)

The query creates a table house, which has a primary key h_id, a colour and address with
a string length 50. The address must have a value, because the column is not allowed to

be empty.

ALTER TABLE house DROP address

ALTER TABLE house ADD zip_code varchar(10) NOT NULL
The “ALTER” queries erase the column address and add a new column zip_code (some
databases for instance Oracle 9 version 2, allow the same with "RENAME", than just the
name would have been changed by using the address column as the new zip_code column

without loosing the data).

DROP TABLE house
The “DROP” query deletes the table house.

3.6.3.2 Data Query Language - DQL

DQL is used to request data from the database. It consists only of one command: “SE-
LECT”. The command has many abilities by joining tables and creates new output tables.
Particular attributes can help to get a smaller set or sorted part of the database. The at-
tributes are [15]:

* "WHERE" identifies particular rows and retrieves them. ("SELECT * FROM house

WHERE colour = "yellow" " — returns every yellow house)

24

Technologies 3.6 Database system

e "GROUP BY" combines rows with related values into elements of a smaller set of

rows

* "HAVING" is used to identify, which of the "combined rows" are to be retrieved.
(used in combination with “GROUP BY”)

* "ORDER BY" sorts the output data by a particular column (can be sorted ascending
("ASC") or descending ("DESC")

Furthermore there are little functions called aggregate functions to do calculations during
the retrieval of data ("SUM,MIN,MAX,COUNT") For example, you could also use the
"SUM"-function to return the name of a department and the total sales of the associated
department. The "HAVING" clause will filter the results that only departments with sales
greater than 1000 Pounds will be returned:

SELECT department, SUM(sales) as "Total sales"

FROM order_details

GROUP BY department

HAVING SUM(sales) > 1000

3.6.3.3 Data Manipulation Language - DML

The DML consists of three commands: "INSERT", "UPDATE", "DELETE". The func-
tion "INSERT" is used to insert values into a table. "UPDATE" changes values and
"DELETE" erases values of a table. These functions are used to change the content of the

table.
Examples:

INSERT INTO table_name (namel, name?2)
values (valuel, value?2)

This inserts valuel into column namel and value2 into column name?2.

UPDATE table_name SET namel=value2

It changes every column namel to value2.

DELETE FROM table_name

This query deletes every row from a table.

25

Technologies 3.6 Database system

3.6.3.4 Data Control Language - DCL

The DCL sets user rights for a database. The function "GRANT" gives the user particular
rights and the function "REVOKE" takes the rights away.

Examples:

GRANT SELECT,UPDATE ON table_name
This “GRANT” query allows the user to change and get data from the table.

REVOKE SELECT ON table_name FROM PUBLIC
This “REVOKE” query denies every user, who is not stored in the system with other

rights, to see data.

The database, which will be used during the project, has not implemented any DML
queries, because the only rights management of an SQLite database is the Unix right
system. Therefore, the possibilities and restrictions of SQLite need to be explained in the

following section.

3.6.4 SQLite

SQLite is a programme library, which contains a relational database system. It supports
a lot of standard database functions like transactions, subselects, views, trigger and user-
defined functions. The database was originally developed for embedded computing and so
it can be used with every important programming language. However, it is also provides
a standard interface, which is usable over the command line and shell scripts. SQLite is
different from most other SQL database engines. It was primarily designed for simple
applications. Therefore, SQLite is simple to administer, operate, embed in larger pro-
grammes, and easy to maintain and customize. Many people like SQLite because it is
small fast and reliable. Reliability results from the simplicity of SQLite. With less com-
plication, there is less to go wrong. SQLite is has its strength and weaknesses, depending
on the things the user wants to achieve. It is not made for high concurrency and has no
fine-grained access control or a huge amount of inbuilt functions. Nevertheless, in many
situations it is the right choice, where for example someone needs a data storage, which
has to be portable and fast accessible. SQLite cannot compete with Oracle or PostgreSQL

and do not want to do it. It just rules in another area.[16]

26

Technologies 3.7 XML

3.6.5 Pysqlite

Pysqlite is an API for SQLite. Pysqlite makes SQLite available to Python programmers
and allows using the advantages of the small database. It stays compatible with the Py-
thon DataBase Application Programming Interface (DB-API) specification 2.0 as much
as possible. The DB-API 2.0 has been defined in order that the developers try to pro-
gramme similar Python modules for accessing databases. Therefore, whatever database a
developer chooses, he can use the same Python commands to access the database. SQLite
and Pysqlite are good alternatives to other databases like MySQL or Postgres, because it

is fast, small and easy to use. [17, 18]

3.7 XML

The extensible markup language is a standard for the creation of machine and human read-
able documents in tree structure. The World Wide Web Consortium (W3C) has defined
this standard. XML defines the rules for the body of such documents and applications

have to follow these rules and specify their own details.

XML has been arisen out of the Standard Generalized Markup Language (SGML) project.
SGML has a lot more options than XML, but it is too complicated for most applications,
so XML became the main standard for markup languages. The names of the structure
elements of an XML-application can be chosen freely. An XML element consists of or
describes different data, for example texts, graphics, or abstract data types. The main
reason of using XML is to differ between data and the presentation of the data. For
instance, graphs can be shown in tables or in pictures, but both can be stored in XML

format. An XML file consists of elements, attributes, text, instructions and commentaries:

elements - consists normally of a start-tag and an end-tag, which surround the content
(e.g text), So called Empty-Element-Tags have just one tag and surround nothing.

<TAGNAME>contents </TAGNAME>
<TAGNAME\ >

attributes - are mostly used for optional information in the starting and empty tags.

<TAGNAME attribute —name="attribute">

27

Technologies 3.7 XML

instructions - are used to identify the XML file .

<?target—name parameters 7>

commentaries - are optional and can be used to describe the code.

<!-— commentary ——>

3.7.1 Structure and Rules

The structure of an XML document is nearly unrestricted. There are just some elements,
which always have to be in the file. There is a beginning tag, which identifies the file as
an XML document.

<?xml version="1.0" encoding="UTF-8" 7>

The version attribute identifies the version of the XML file. The encoding attribute indi-
cates which character set is used. For instance UTF-8 announces a Unicode* character set,
where every character has a particular number. UTF-16 is a bigger character set, which

additionally is able to store Chinese and Japanese symbols.

The second predefinition, which has to be in an XML file, is the root tag. This tag consists
of all other following tags in the document and only one root tag is allowed.

<?xml version="1.0" encoding="UTF-8" 7>
<root>
<other tag>content </other tag>

</root>

The whole content of the document can now be stored between the root tags. Tags are
case sensitive and so if using different cases for the Start and End Tag, the XML Parser
would return an error. Furthermore, it is only allowed to begin a tag with an underscore
and a letter. The following characters can be letters, numbers, points or lines. The last
main rule is that no nested tags are allowed:

<Tagl>content]l <Tag2>content2 </Tagl><Tag2>

This would be the correct form:

<Tagl>content] <Tag2>content2 <Tag2></Tagl>

4Unicode website - www.unicode.org

28

www.unicode.org

Technologies 3.7 XML

3.7.2 Parser

If an application wants to use the information of an XML file, the user needs to parse the
file to get the structure and the information. Therefore, the application must have an XML-
parser. The programmer can write his own parser, but that is mostly not necessary, because
most programming languages got the two main parser already implemented. The two
different parsers are Simple API for XML (SAX) and Document Object Model (DOM).

3.7.2.1 SAX

The SAX parser reads the XML file, sequentially. That means every tag will be loaded
after another and the tree structure will be available after the complete file has been parsed.
The information is returning one after another during the parsing. This parsing algorithm
needs less memory, because only current tags will be loaded in the memory. Hence, it is

useful for large files with a lot of content.

3.7.2.2 DOM

The DOM parser is the second way, to analyse XML files. It loads the complete file in
the memory and at first analyses the tree structure. The advantage is that, all information
is available in a hierarchical tree structure and can be accessed at the same time. The big
memory requirements could be a problem, because the requirements are proportional to
the file size. The problem is not the amount of memory which is been used during the
parsing. The latency, between loading the file and the first access can be very long and

disturb the application, which is using the XML-Parser.

3.7.3 Meta languages

Another difference between parsers is validating and non-validating parsers. These par-
sers try to check before reading the document, if the XML syntax is well formed. This
means if the original intended XML form looks like the XML form in the actual docu-
ment. Therefore, Meta languages exist, which describe the XML-format before the con-
tent follows. The most popular Meta languages are the Document Type Definition (DTD)
and the XML-schema (XSD).

29

Technologies 3.7 XML

3.7.3.1 DTD

The Document Type Definition defines the building of an XML file. Further it defines
the structure with a list of legal elements. The DTD can be declared inside of the XML

document or as an external reference to another file.

Internal DOCTYPE declaration If the DTD should be included in the XML source file,
it should be wrapped in a DOCTYPE definition with the following syntax:

<IDOCTYPE root—element [element—declarations]>

The document type starts with the root element, which is followed by the element
declarations in brackets.
Example:

<?xml version="1.0"7>
<!DOCTYPE point [
<!ELEMENT point (x_value,y_value)>

<!ELEMENT x_value (#PCDATA) >
<!ELEMENT y_value (#PCDATA) >
1>
<point>

<x_value>10</x_value>
<y_value >20</y_value>

</point>

The DTD above is interpreted in the following way. !DOCTYPE point defines that
this is a document of the type point. |ELEMENT “point” defines that the point ele-
ment has two elements: "x_value,y_value". |ELEMENT x_value and !ELEMENT
y_value defines both to be of type "#PCDATA">,

External DOCTYPE declaration The external doctype declarations contain of a refer-
ence to another file:

<!DOCTYPE root—element SYSTEM "filename">

3.7.3.2 XSD

XML-Shema is the modern possibility to describe the structure of XML documents.

XML-Shema allows to restrict the content, elements and attributes. The restrictions can

S#PCDATA - parsed character data, which means PCDATA is text that will be parsed again, because it
may consist of elemenents and attributes

30

Technologies 3.7 XML

be done with regular expressions®

. XSD is more complex than DTD, but therefore a
lot more complicated especially the specification. XSD is using an XML format, which

allows using XML tools to process them.

Example:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.w3schools.com"
xmlns="http://www.w3schools.com"

elementFormDefault="qualified">

<xs:element name="point">
<xs:complexType>
<Xs:sequence>
<xs:element name="x_value" type="xs:int32"/>
<xs:element name="y_value" type="xs:int32"/>
</xs:sequence >
</xs:complexType>
</xs:element>

</xs:schema>

This is the XSD description for the same XML example as in section DTD. As mentioned
before, it is a lot more complex and need a bigger header. The "complexType" shows that
the tag "point" has more elements between its start and end Tag. The other tags x_value

and y_value are so called "Simple tags", because they do not contain other elements.[19]

There are many other meta languages such as Document Structure Description (DSD) or
REgular LAnguage for XML Next Generation (RELAX NG), which are adapted to new
requirements of the developers. However, the DTD is for most tasks complex enough and
is still used. For instance, the monitoring system Ganglia uses DTD to describe the XML

output of the gmond daemons.

SRegular expressions describe subsets of strings

31

Chapter 4

Analysis

The following chapter will provide a further insight into the project. The target of the first
section is to analyse Ganglia and to point out what is needed to embed it into the project.
Mainly the interfaces are interesting for the further development. The second section
deals with the SRB server and what is necessary to measure the SRB server application.
Then two possible approaches to solve the exercise will be given. Both have the ability
to connect to several servers and get the monitoring information from these computers.

Weaknesses and strengths of the solutions will be presented and a decision will be made.

4.1 Ganglia

The measurement system implemented during the project uses parts of the existing mon-
itoring system Ganglia. It needs to collect and transfer the measurement data between
the machines in one network. For this task, the gmond daemon can be used and config-
ured to use standard Host-to-Host connections to provide the measurement data of the
machines. The gmond daemon will run on every machine, which takes part of a measure-
ment. The “gmond.conf” of the gmond daemon will need an extra parameter to transmit

the information to one machine, which measures the other ones.
udp_send_channel {

host = <hostname>

port = 8649

32

Analysis 4.1 Ganglia

The change of the hostname allows to send the measurement data to any host in the
network. As mentioned in the technology chapter, gmond has some standard metrics,
which can be set in the configuration file “gmond.conf”. But the project needs only a few
values like the CPU system efficiency or the processes running on the machine. But some
other values, which are not preconfigured, are needed by the project. It should be possible
to measure applications and to get values like open filedescriptors, the CPU efficiency
and the used memory of the application. The “gmetric” tool is able to create and fill new
metrics into gmond. Therefore it is used to pass the application measurements to gmond.
It is necessary to set up the name of the new value, the type and the value itself. The type
can be string, int8, uint8, int16, uintl6, int32, uint32, float and double. The value can be
passed directly by giving a string or an integer. But it is also possible to pass the return
value of Bash script to gmetric. The following lines will give an example for gmetric

command line:

~/bin/gmetric -c ~/sbin/gmond_test.conf --name srb_fd

--value ‘./num_fd.sh 5544' --type intlé6

Unfortunately gmetric has to be executed frequently to refresh the data in gmond. This
means one has to get the monitoring data from the system and put them with gmetric into

Ganglia, frequently.

The measurement system will get the measurements by using a telnet query. The query

returns an XML string which sorts the measurement data by its hosts:

<GANGLIA_XML VERSION="3.0.1" SOURCE="gmond">
<HOST NAME="1localhost"™ IP="127.0.0.1" REPORTED="1139739824" TN="6" TMAX="20" DMAX="0" LOCATION="unspecified"
GMOND_STARTED="0">

<METRIC NAME="cpu_speed" VAL="598" TYPE="uint32" UNITS="MHz" TN="42" ="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"/
>

<METRIC NAME="mem_total" VAL="1295744" TYPE="uint32" UNITS="KB" TN="42" ="1200" DMAX="0" SLOPE="zero" SOURCE="
gmond" />

<METRIC NAME="proc_total"™ VAL="111" TYPE="uint32" UNITS="" TN="2" TMAX="950" DMAX="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="machine_type" VAL="x86" TYPE="string" UNITS="" TN="42" ="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"/

>
<METRIC NAME="cpu_user" VAL="13.0" TYPE="float" UNITS="%" TN="2" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="cpu_nice" VAL="0.0" TYPE="float" UNITS="%" TN="2" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond"/>
<METRIC NAME="cpu_system" VAL="3.8" TYPE="float" UNITS="%" TN="2" TMAX="90" ="0" SLOPE="both" SOURCE="gmond"/>
<METRIC NAME="cpu_idle" VAL="81.9" TYPE="float" UNITS="%" TN="2" TMAX="90" ="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="1o0ad_one" VAL="0.47" TYPE="float" UNITS="" TN="42" TMAX="70" DMAX="0" SLOPE="both" SOURCE="gmond"/>

</HOST>

<HOST NAME="192.168.10.100" IP="192.168.10.100" REPORTED="1139739826" TN="3" TMAX="20" DMAX="0" LOCATION="unspecified"
GMOND_STARTED="0">

<METRIC NAME="cpu_speed" VAL="598" TYPE="uint32" UNITS="MHz" TN="3" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"/>

<METRIC NAME="mem_total" VAL="1295744" TYPE="uint32" UNITS="KB" TN="3" ="1200" DMAX="0" SLOPE="zero" SOURCE="gmond
">

<METRIC NAME="proc_total"™ VAL="111" TYPE="uint32" UNITS="" TN="3" TMAX="950" DMAX="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="machine_type" VAL="x86" TYPE="string" UNITS="" TN="3" TMAX="1200" DMAX="0" SLOPE="zero" SOURCE="gmond"/>

<METRIC NAME="cpu_user" VAL="13.5" TYPE="float" UNITS="%" TN="3" TMAX="90" ="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="cpu_nice" VAL="0.0" TYPE="float" UNITS="%" TN="3" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond"/>

33

Analysis 4.2 SRB System

<METRIC NAME="cpu_systen" VAL="3.9" TYPE="float" UNITS="%" TN="3" TMAX="90" ="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="cpu_idle" VAL="77.9" TYPE="float" UNITS="%" TN="3" TMAX="90" DMAX="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="1load_one" VAL="0.53" TYPE="float" UNITS="" TN="3" TMAX="70" DMAX="0" SLOPE="both" SOURCE="gmond"/>

<METRIC NAME="bash_cmd" VAL="bash" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"/>

<METRIC NAME="gkrellm_cmd" VAL="gkrellm" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="
gmetric"/>

<METRIC NAME="bash_cpu" VAL="0.1" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"/>

<METRIC NAME="gkrellm_cpu" VAL="1.1" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"
/>

<METRIC NAME="bash_fd" VAL="12" TYPE="int16" UNITS="" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"/>

<METRIC NAME="gkrellm_fd" VAL="13" TYPE="int16" UNITS="" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"/>

<METRIC NAME="num_of_apps" VAL="2" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"/>

<METRIC NAME="bash_men" VAL="0.4" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"/>

<METRIC NAME="gkrellm_mem" VAL="1.0" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric"
/>

<METRIC NAME="hostname" VAL="linux.site" TYPE="string" UNITS="" TN="0" TMAX="60" DMAX="0" SLOPE="both" SOURCE="gmetric
">

</HOST>

</GANGLIA_XML>

The XML string has no starting and ending tag for the values. Only attributes have been

used for the measurements.

Finally the Ganglia daemon has to be embedded by connecting to its interfaces. The
measurement system needs to configure, start and stop gmond. The gmetric tool is needed
to pass custom values to gmond and afterwards the measurement data must be queried
with telnet. Therefore it will be a main task to find the best interaction between Ganglia

and the measurement system.

4.2 SRB System

The measurement system has no direct access to the SRB system. It is not the task of the
measurement to start, control and stop the SRB system. But the test applications should
create load on the SRB server, which can be monitored with the measurement system.
The test applications will start a particular number of Scommands to increase the load.
A problem, which has not been touched yet, is that more than one SRB-Server could run
on one machine. But the SRB servers on one machine belong to different SRB systems.
Each SRB system uses a unique network port. That means every SRB server running in
one system uses the same port. Figure 4.1 on the following page illustrates, two different
SRB systems on one machine.

Therefore the measurement system needs to know the port of the SRB server that should
be monitored. The “.MdasEnv” file in the home directory needs to be parsed and the SRB
port can be extracted. Afterwards the system is able to measure the correct SRB server.

The SRB server application starts several processes, for example SRB master and SRB

34

Analysis 4.3 Basic Approach

— — — — — - _SRBsystem A

/ machine 1 |

| Port: 5463

| SRBserver 1 | +————>» SRBserver 4

| " Port: 5479
SRB server2 | «—» | SRBserver 3

/

SRB system B

fig. 4.1: SRB server connection

server. Therefore the values of all processes need to be summed up. It can be done with

the help of Bash scripts and data will be transmitted to Ganglia with gmetric.

4.3 Basic Approach

The Ganglia section showed that a gmond daemon has to run on every machine and it
has to know where to send the measurement data. Furthermore a script is needed, which
measures the applications on the machines and submits the data to gmond with gmetric.
This could be done with Linux cron jobs, which are able to run scripts in a particular time
interval. But still one has to activate and deactivate cron jobs, because the measurement
system is supposed to be stopped after the measurements have been finished. Furthermore
cron schedules are not precise enough. It is possible to start tasks every minute, but not
for example every 15 seconds. The cron daemon is a highly sophisticated application, but

does not fit to the measurement system.

But still someone has to refresh the performance data. Therefore, a script has to run
on every machine which measures the performance data of the applications and inserts
them into gmond with gmetric. But the user of the measurement system might not want

to change the hostname on every machine and set up the applications, which should be

35

Analysis 4.3 Basic Approach

measured. It would be better to have one point of reference to configure the measure-
ment system. Therefore a client server connection is useful to provide the scripts with

the application names. The monitoring client would be the machine, which starts and

monitoring |
monitoring a

lication names itori start
_ pp > monitoring sttt [gmond
client server 2

store data Y
monitorin

9| —» gmond
server x

“ applications

fig. 4.2: Client-Server connection

stops measurement cycles and is the single point of configuration. The client sends the
configuration data to the server. The client will get the measurement data and store them
in an SQLite database. The server will get the application names and the SRB port to
distinguish between different SRB systems. So the client must be able to connect to more
than monitoring server to transmit configuration and to receive measurement data. Pic-
ture 4.2 gives an overview of the fundamentals of the measurement system approach: The
figure shows that the server script starts and stops gmond, measures the applications and
passes the values with gmetric to gmond. But the question is, how gets the client script
the measurement data. The client can either get the gmond data from its local gmond
daemon, which is able to catch the data from the other gmond daemons in the network
or the monitoring client gets the data directly from the servers by using the already open
connection which was used to send configuration data. Both possibilities are conceivable

and need a more precise analysis in the following section.

36

Analysis 4.4 Solutions

4.4 Solutions

4.4.1 Solution with Network Functionality of Ganglia

The first possible solution is that the client gets the data directly from gmond. That means
every gmond daemon, which runs on a server machine, sends the data with the daemon
to the client gmond. By changing the IP address and the port in the send channel of

the gmond.conf, the measurement data will be sent directly to the client gmond. The

/ Client \ / Server N

| ‘ monitoring | W
data

— - — — — — — —

gmond |

| gmond

A

‘ | | insert new ? start |
metrics

| 7 | | metric Ltz |
9 gmond.conf
\ | \
‘ \ ‘ pass new pass ‘
metric client IP ‘
‘ v ‘ ‘ values

‘ application names ‘ ‘
monitoring Client » | monitoring Server
\) \ J

D _ N /

fig. 4.3: Solution 1

process starts with the client, which sends the application names and if needed the SRB
port to the server machines. Then the server takes the IP address from the client and
changes the Send channel in the gmond.conf. Afterwards the server will start gmond
with the changed gmond.conf. The server can now collect the measurement data of the
application with particular scripts and use gmetric to submit them to the gmond daemon.
So whenever a monitoring server updates measurements in gmond, the server gmond will
transmit the current data to the client gmond. The monitoring client can now access the
data by querying its local gmond. The query returns an XML string with the monitoring
data separated by the host name of the machines. The last step is to prepare the monitoring

data and store it in the SQLite database.

37

Analysis 4.4 Solutions

4.4.2 Solution with Data Transmission over the Socket

Another solution is to use less of the Ganglia system. One could abandon on the network
possibilities of gmond and use the own connection, which is needed to send the appli-
cation names. Ganglia would still be used as the main resource for the monitoring data,
but every monitoring server fetches the measurements from gmond by itself. Therefore
a send channel in the gmond.conf is set to localhost. This means every gmond daemon
keeps the measurements stored on the local machine. After the monitoring server has
collected the XML output from its gmond, the data will be forwarded to the client as an
XML string. When the client has received the measurement data from every server, the

data will be parsed and stored in the database as well.

-~ T T T T~
/ Server \
| |
| gmond |
T AN i
/ Cllent ‘ insert new T ‘

\ metrics

monitoring
| e | | gmetric | | data(xmD) |
| | |
‘ ‘ pass new
‘ ‘ metric ‘

values
\ v |

\application names

v

monitoring server |

< |
\ monitoring data | |

e

~

fig. 4.4: Solution 2

4.4.3 Comparison and Decision

Solution number one might seem more complicated at first sight, two network connec-
tions are involved: one between the monitoring server and client and one between the
gmond daemons. However the implementation is far easier, because the main network

transmission is outsourced to Ganglia. The second solution would need a full duplex

38

Analysis 4.4 Solutions

socket. This means the socket needs the ability to send into both directions. Further-
more the gmond daemon sends XML strings, which can become bigger in the further
development of the projec. Thus a lot of data might have to be sent through the socket
connection. Furthermore the monitoring client would receive an XML string from each
monitoring server. As a result, each single XML stream has to be parsed, before the data
can be stored in the database. It can become a real bottleneck, when many servers have
to be monitored. The receiving, parsing and storing of the data can be parallelised with
threads, but the SQLite database could make problems with threaded connections. Re-
garding to the SQLite-FAQ[20], a single database connection should not be used in more

than one thread.

“It is never safe to use the same sqlite3 structure pointer in two or more

threads.”

The problem has been acknowledged during some tests with SQLite. It occurred with
one database pointer and four threads, which use the same pointer. It was possible to
reproduce the message “library routine called out of sequence”, which leads to the con-
clusion that the SQLite database has not enough security mechanisms to handle these

connections.

So the first solution would work fine with a single thread to handle the parsing and storing
of the measurements. It is possible, because the monitoring data of all servers are in one
XML string. Furthermore the usage of Ganglia would not make any sense in the second
solution. The measurement data for the applications have been given to gmond and the
server would query the same data from gmond. This is a circle, which makes no sense, be-
cause the server could abandon on Ganglia and create its own XML string. Consequently

the first solution had been used for the design and development of the project.

39

Chapter 5

Design

The design chapter starts with database models and the explanation of the relations and
attributes. The database is just a part of the client application, but its explanation is neces-
sary to understand the following programme sequence section. This section will provide
an overview about the tasks during a measurement. Afterwards the module concept, that
is behind the design of the applications will be shown and described. The next step is to
go further in the development and show the object models for the client and server. The

methods will show a better insight to the applications.

5.1 System Architecture

The analysis has shown that a client-server approach is the best design for the measure-
ment system. Therefore two applications are needed to meet the tasks of the project. Both
applications are affected by the external application monitoring system Ganglia and need

to embed it as good as possible.

5.1.1 Monitoring Server

Task The monitoring server script is responsible for the operation of the gmond daemon
on the machines, which should be measured. The server gets the application names and
the SRB port from the client to measure particular applications on its machine. For the
transmission of the measurement data, the server has to start the gmond daemon and con-

figure the send channel of the “gmond.conf”. Therefore the server writes the IP address

40

Design 5.1 System Architecture

to the host parameter in the “gmond.conf”. To provide the measurement values of the
application, the server script has to run gmetric commands. Three particular application
measurements have to be provided: the percentage of CPU load caused by the application,
the amount of used file descriptors and the percentage of memory, which has been used
by the application. Caused by the complexity of the SRB, the measurements are different
from the measurements of standard applications. As mentioned before different processes
will be started by the SRB server. The processes with the command name SRB master
and SRB server will be summed up to one value. Therefore, the server has to distinguish
between the measurement of SRB servers and standard applications. Furthermore, the
monitoring server has to pass the measurements of the applications in a particular time
interval, which is more frequent than the client tries to get the data from gmond. This
means as long as the client is connected, the server updates the data repeatedly. When
the monitoring client requests the server to stop measuring, the server stops the gmond

daemon and the connection to the client.

Interfaces Figure 5.1 shows four different interfaces of the server script. The gmond
daemon will be started with a standard execution command and the server needs only the

process id of gmond, to kill the application after the measurement has finished. Gmond

(13 b

needs a parameter, “-c”’, which passes the path to the gmond.conf, which configures

gmond. The measurements of the applications will be done by Bash scripts, which re-

client

server applications

gmetric

fig. 5.1: Server interfaces

turn the measurement value. The Bash scripts use standard commands such as “ps” and

41

Design 5.1 System Architecture

“Is”. The following “gmetric” command line is an example for passing a return value of

an SRB Bash script to gmond:

~/bin/gmetric -c ~/sbin/gmond_test.conf --name srb_fd

--value ‘./num_fd.sh 5544' --type intl6

The last interface is a socket connection from the client, which is used only into one
direction. The server opens a TCP socket and the client connects to it. TCP sockets ac-
knowledge every sent package and assure that the data will be transmitted without errors.
The server closes the connection to the client after the client sent it a message to do so.

Afterwards the server will listen for a new connection.

Design The server application is a command line tool, because it is able to run without
interaction between the user and the programme. It is a small application, which needs
less load and configuration. The server has to open a port, so the client application is able
to connect to it. The server accepts one parameter “-p”, which opens the port for a client

connection. The server will open port 5000 if no parameter is given.

5.1.2 Monitoring Client

Task The client is more complicated than the server is. Before the client connects to
the server, it needs more configurations. This will be done by a configuration file, which
can be changed by the user. Furthermore, the client has to execute a test application,
which creates load on the SRB system, before it starts a new measurement. The test
application has to be started and stopped by the client application. When the user starts
a measurement, the client has to connect to the servers and send the applications names
and the SRB port. Afterwards the client starts its own gmond daemon and queries the
measurement data with telnet. The output from telnet is an XML string, which will be

parsed by the client. Now the measurement has to be stored in the database.

Besides the performing of measurements, the client provides the user the ability to browse
through old measurements and draw these in diagrams. The diagrams can be saved as a

Postscript file, which can be used for printing.

42

Design 5.1 System Architecture

Interfaces The client has to handle four interfaces as well as the server. The figure 5.2
on the next page provides an overview on the interfaces. The first interface, which will be
used by the client, is the configuration file, which provides the settings for a measurement.
The configuration file will be parsed directly after the client has been started. It has the

following structure:

Table 5.1: Configuration file content

Configuration Tag Description

project

name project title of the project table (reusable)

description project description of the project table

test

application applications which must be measured

name name for the test table (reusable)

description description for the test table

tester

surname surname of the tester

forename forename of the tester

email Email address of the tester

server

host_x server host or ip address

port_x server port

measurement

srb SRB flag to measure the SRB server or
not (boolean)

application application which should be started dur-
ing the test

poll_time time interval between two measurements

quantity maximum number of measurements

The test, project and tester tags are tables of the database and will be explained in the next
section of this chapter. The server tag sets the host and port of the server, where the client
should connect. The configuration file can have up to nine servers with port and host. The

“x” at the end of “host_x" and “port_x"" has to be substituted by a number between one and

43

Design 5.1 System Architecture

nine. The application parameter of the test tag sets the application names, which should be
measured on the server side. A semicolon can be used to separate the application names, if
more than one application should be measured. The measurement tag consists of the SRB
flag, the test application and the poll_time. The SRB flag can be “1” for the measurement
of an SRB server and O for a standard measurement without an SRB server. The test
application parameter sets the application, which should be started before a measurement.
The poll_time parameter sets the time interval between two measurements. That means,
when client has done a telnet query to get a new measurement, it waits for the “poll_time”

interval before querying again. The second interface is the connection to the server, which

server

configuration
file

fig. 5.2: Client interfaces

is logically a TCP socket. The client has to send the server the tasks. This means if the
client sends the application names, the server knows it has to start gmond and measures

the applications. Furthermore the client stops the connection by sending a “clientquit”.

Before querying telnet for measurements, the client has to start its gmond daemon to
receive new measurements. The telnet query can be executed by using the localhost device

of the client machine and the TCP port of gmond. This port is by default 8649:
telnet localhost 8649

The command returns the XML string with the measurement data of the hosts.

Design First of all the client application has been divided into two separate applica-

tions. One 18 console based and allows the user to measure other machines. The other

44

Design 5.1 System Architecture

application provides a Graphical User Interface (GUI) interacting with the measurement
system. Both allow the measuring of the machines and the storing of measurement data in
a database. However, the console application provides no graphical functions like the his-
tory diagrams. It just allows a small view on the database tables. Apart from the interface
to the client application, both can use the same functions to do measurements, parsing,
storing in the database, to connect to the server application and to query the gmond for

measurement values.

The console client has mainly the task to do measurements, without any interactions.
During the measurement, the console client will draw console tables to acknowledge the
arrival of a new measurement. For further information about the measurements, the user
should use the GUI. After the measurement has been stopped manually or automatically
by reaching the maximum number of measurements, the application closes. A small
feature of the console client will be the console tables. It is a little bit cumbersomely to
go through the tables by using ids, but sometimes no GUI might be available. Therefore,

it is just for exceptional circumstances.

The GUI has two different main dialogs with Single Document Interfaces (SDI). SDI
handles only one main window. An example for an SDI GUI is the Microsoft Internet
Explorer 6.0. The opposite is the Multiple Document Interface (MDI), which is often
used by word processors like the Mozilla browser 1.5. This allows handling more than

one Document at the same time.

The first dialog is to configure the measurement and browse through the tables. Therefore,
it consists of two different frames. This dialog will start the second dialog if the user wants
to measure and draw the dynamic graph or to see an old measurement cycle in a static
graph. Furthermore, the GUI can start and stop measurement cycles. The measurement
cycle will be supported with a dynamic graph. The diagram changes, whenever new
values have been written to the database. The user can configure the configuration file
over the GUI. This is a feature, which abandons the user from an extra editor to change

the configuration of a measurement cycle.

5.1.3 Measurement Sequence

The programme flow chart 5.3 on the following page should give another view on the

interaction between the server and the client application. In addition to the tasks, which

45

Design 5.1 System Architecture

have been already mentioned in the last two sections, the flowchart diagram will show the
distribution of some tasks. Because the server and the client need an additional thread dur-

ing the measurement sequence. The first important thing is to start the monitoring server

Create a socket
and wait for a
client

Parse the
configuration file

A

Get SRB-Port
from ./MdasEnv

Listen for the
client

measurement?

no
A 4

Connect to the
servers

Accept connection |«

A A 4

Send application
names and if set
send the SRB port

Get the
information

i ’7&% test-application thread
. mond with
Start gmond | Start thread »| query gmo <
. telnet
Write gmond.conf
t—Start thread
and start gmond
Measure applications L
and put data with A4 Seepliniliing
Co interval passed
gmetric in gmond User can use the
A v GUI to display old 4
diagrams Parse the XML v
Wait for stop [¢——| data and put data
in database Test-application

runs

I

Stop refreshing

Y

No

A 4

All
measurements done or
ser want to stop?

Y Send stop query
to the server

Stop the
clientsocket

Stop test-application thread

fig. 5.3: Programme flow chart

on the server machine, so the client is able to connect to it. Afterwards the server waits

for a connection from the client. Before the client is able to start any connections, one has

46

Design 5.2 Database

to know to which servers the client should connect. Therefore, the client uses the con-
figuration file and parses it. Afterwards, the client is configured for a new measurement

cycle.

The next step is to test if the servers are reachable. If not the measurement will not start.
If the SRB flag is set the client programme has to get the SRB port from the “.MdasEnv”
file from the ““.srb”-folder in the home directory. Now the client can connect to the servers
and send the application names and the SRB port. The server will write the “gmond.conf™
with the IP from the client and start gmond. Furthermore, the server measures the appli-
cations, which have been given by the client and passes them with gmetric in gmond. The

client can now get measurement data from the gmond daemon running on the client side.

The client queries gmond via telnet for new values from the servers. Furthermore, the
client gets standard metrics, without any application metrics from its own machine as
well. All values will be parsed and afterwards saved in the database. When the first

measurements have arrived and all servers sent data, the test application will be started.

The measurements of the SRB servers are now available for the history diagrams. When-
ever a new measurement arrives the history diagram will be updated and show all mea-
surements of the measurement cycle. This will be continued until the maximum number
of measurements has been reached or the user at the client side stopped the measurement
cycle. During the measurement, the server updates the gmond, frequently. Nevertheless,
the server has to wait for a “clientquit” message from the client. Therefore, the monitor-
ing of the applications has been outsourced to a new thread. So the server can do both,
wait for a message from the client and update the data for gmond. The client starts also a
thread for the measurement cycle. This allows the user to work with the GUI at the same

time.

When the client has finished the measurement cycle, it sends the “clientquit” message and
the server stops at first the thread and then the connection to the client. Afterwards the

server waits again for a new connection from a client.

5.2 Database

One of most intensive research topics was to find an appropriate way of storing the mea-

surements in the database. The Entity Relationship Model (ERM) 5.4 on the next page

47

Design

5.2 Database

will give the first prospect of the database. All connections between the entities are one

to many relationships.

5.2.1 Entity Relationship Model - ERM

The Entity Relationship model in figure 5.4 gives only a short insight to the finally imple-

mented database. The measurements need to be stored in a particular hierarchy, so the user

project title

!

failed flag

test title

AN
AN
AN
AN
N /
U\

description ’

srbport

A

srbserver

-

hostname

memory
(RAM)

N cpu speed

fig. 5.

project

=)

“Naa”
n @ 1

tester

surname

iteration
(measurement timestamp
cycle)

1
CPU load

<

*
N\
\
N\
total processes application name
o
open file
descriptors
%
/ AN
/ AN
/ AN
CPU efficiency memory usage

measurements

applications
n

4: Entity Relationship Model

48

Design 5.2 Database

can find their measurements as fast as possible. The top-level entity is the project entity
and every other entity is subordinated to it. Every project can have more than one test, but
a test cannot be in more than one project. The tests will be created by a tester, which wants
to do some measurements. The iteration entity stores the start of a measurement cycle and
is connected to every measurement within a cycle. The measurement cycles represent the
content of the diagrams, which will be displayed later in the GUI of the client application.
A test stores the measurement cycles, which a tester has created. The measurement cycles
run on one or more SRB servers. The SRB server entity runs on a host, which can have
more than one of the SRB servers. The measurement entity stores the standard metrics,
which depend on the machine and not on an application. The application entity stores the
application specific data for one application. More than one application can be measured
at one time. Therefore, the relationship between measurement and application is one to

many.

5.2.2 Relational Data model - (RDM)

The Relational Data Model in Figure 5.5 shows the full database with all attributes, pri-
mary and foreign keys. The project table is identified through the project title, which is set

tester v host = application v
@ tester_id: INTEGER i host_id: INTEGER # application_id: INTEGER
project ~4 ¢ forename: VARCHAR ¢ hostname: INTEGER 4 measurement_id: INTEGER (FK)
project_id: INTEGER & surname: VARCHAR % ip_address: INTEGER ¢ name: VARCHAR
@ title: VARCHAR ¢ email: VARCHAR % Ccpu_speed: INTEGER ¢ command: VARCHAR
¢ description: VARCHAR A ¢ memory: INTEGER ¢ memory: INTEGER
9 A ¢ fd: INTEGER
¢ cpu: INTEGER
20 & <& 1]
[1,1]
[1,1] [1,1] <>
srbserver v
== ™ @ sbserver_id: INTEGER [,

j testid: INTEGER & host_id: INTEGER (FK)
tester_id: INTEGER (FK) & stbport: INTEGER measurement v

4p test_id: INTEGER (FK)
¢y time: VARCHAR
¢y application: VARCHAR

server_cpu_nice: INTEGER
server_proc_total: INTEGER
time: INTEGER

4 iteration_id: INTEGER (FK)
4 srbserver_id: INTEGER (FK)

i}
@
& project_id: INTEGER (FK) @ measurement_id: INTEGER
& title: VARCHAR (1, & is_id: INTEGER (FK)
¢ description: VARCHAR ¢ client_cpu_idle: INTEGER
¢ failed_flag: INTEGER ¢ client_cpu_system: INTEGER
i, O wi ¢ client_cpu_user: INTEGER
' ¢ client_cpu_nice: INTEGER
<> i, 1] ¢ client_proc_total: INTEGER
[t,1] & server_cpu_idle: INTEGER
iteration v teration_ srbserver = 0 ¢ server_cpu_system: INTEGER
¢ iteration_id: INTEGER 1, [1,1] 7 |57|d:_INTEGER 1, % ¢ server_cpu_user: INTEGER
@
@
@

fig. 5.5: Relational Database Model

49

Design 5.2 Database

as unique. Therefore, every project name can be taken only once. As the name implies,
the project description explains the motivation of the project. The test table has nearly
the same attributes, whereas the test name is not unique, because similar test names are
allowed, if the tests are part of different projects. The tester table needs the attributes sur-
name and forename to be identified, so these attributes have to be different from “NULL”.
The email address might be interesting for other users. The iteration table, which con-
sists of the measurement cycles, is defined by the starting time. This time presents the

beginning of a measurement cycle.

The srbserver is identified through the srbport and the host_id, which is the primary key of
the host table. The host table stores some standard information of a machine such as the
hostname, which identifies the machine, the CPU speed, the amount of Random Access
Memory (RAM) and the IP address of the machine.

To keep track of the database the two foreign keys srbserver_id and iteration_id have been
outsourced to a join table iteration_srbserver. Join tables are used to solve many-to-many
relationships, but in this particular situation it is just for a better overview and to disburden
the measurement table. Every measurement can be allocated to a particular iteration and
an SRB server. The is_id provides both srbserver_id and iteration_id. The measurement
table consists of the metrics for the server machine and the client machine. The metrics

are at the moment:

Table 5.2: Gmond metrics

Metric Description

cpu_system Percentage of the time the CPU ran system-level code

cpu_nice Percentage of applications runs with the nice command

cpu_idle Percentage CPU usage remaining while other processes
are running

cpu_user Percentage of the time the CPU ran user-level code

proc_total Total number of processes

The measurement table is just a recommendation and might be changed depending on the
values the user wants to measure. It is connected to the srbserver and iteration over the
foreign key is_id. The applications, which have been measured on the server machine, are

stored in an extra table application. The application table is connected over the foreign

50

Design 5.3 GUI Design

key measurement_id to the measurement table. The measured values for an application

are "fd" for open file descriptors, "cpu" for CPU usage, and "memory" for memory usage.

5.3 GUI Design

As already mentioned, the GUI consists of two dialogs. The first two sections explain
the main dialog, which has two different frames. The third section explains dialog for the

history diagrams and shows the different views.

5.3.1 Main Frame

The main frame is used to to configure a measurement and to browse through the tables,

which are needed to create a diagram. The figure 5.6 shows listboxes, which contain the

" SRB Benchmark: srh.db =

Menu Window

SRB database information

Projects | sthservers |
5pmié|:'t'-name S 1: linux_site i K
| 5544: linux.site

1: localhost.localdomain
1: theodore.anderi
! /
unset Project | set Srhserver |
Tests
[Test_new [[z006-02-01 20:45:47 iRy
|Testl 2006-02-02 10:12:58

2006-02-02 10:14:32
2006-02-02 10:15:25
2006-02-02 10:37:51

Z006-02-02 10:59:03 getMeasrements
2006-02-02 23:49:21
2006-02-03 00:00:21

2006-02-03 00:03:20
/ |2006-02-09 00:32:15 /

set Test |

database locked
database released
database locked
database released

Start

fig. 5.6: Main Frame

51

Design 5.3 GUI Design

project, srbserver, test and iteration table. The SRB server entries begin with the SRB port
followed by a colon and concluding with the hostname. For example, the entry “5544 :
linux.site” is the SRB server on port 5544 on the linux.site machine. If the SRB server
entry starts with a “1”, that means the machine was used for standard measurements with-
out monitoring the SRB. The buttons below the listboxes can be used to set a particular
value. At first only the project listbox and SRB server listbox are visible. The test table
depends on the project and the srbserver table, which can refine the selection of tests and
iterations. Afterwards the user can choose a test and the listbox for the iteration table will
open with associated measurement cycles. If the user wants to see only diagrams of one
SRB server, one should be set in the SRB server listbox. The iteration listbox is the only
one, which allows a multiple selection to compare different measurement cycles of one
test. The button “get measurements” will now produce one of the diagrams like in figure

5.8 for a single view or in figure 5.9 for a multiple view.

At the bottom of the dialog are the buttons to start and stop a measurement cycle. The
text field next to the buttons shows the standard error output (stderr) and standard output
(stdout) for verbose messages. The first menu “Menu” at the top of the dialog allows
the user to open a different database file, to save the current database in another file, and
to exit the programme. The second menu “Window” provides the possibility to change

between the main and configuration frame.

5.3.2 Configuration Frame

The configuration frame has all parameters of the configuration file, which is used to con-
figure the monitoring client. It provides a better view on the settings, which are necessary
for a measurement cycle. The server listbox at the top is used to set up the number of
servers, which shall be used for monitoring. For instance, if a user wants to set up two
servers, he chooses "2" in the listbox and the parameter server.host and server.port will
be available two times and can be configured. When the user has finished the setup, he
has to confirm the settings with the set button. Furthermore, it is possible to write the
configuration to a file by pressing the “Write” button. A small window will pop up and

the user can change the name of the file or take the standard “config.ini”.

52

Design 5.3 GUI Design

" SRB Benchmark: srb.db - 2

e

Menu Window

1
server.quantity 2 |§f

measurement.application |pythone 4 shomedck/programs/SpuiTests/sre/sputData py

measurement.poll_time |15

measurement.quantity |20

measurement.srh A
project.desc none
project.name project-name
test.application hash;gkrellm
test.desc none
test.name Testl
tester.email c.koghernick@rl.ac uk
tester.forename Carsten
tester.sumame Koehernick,
server.host_1 182.168.10.100
server.port_1 5000
Set Write Config I

database locked
Start ||qatobase released
database locked
databaze released

~|

fig. 5.7: Configuration Frame

5.3.3 Diagrams

The diagram dialog shows the measurement graph in the upper frame. The x-axis is the
time scale of the measurement cycle. The y-axis depends on the metric, which is shown.
The memory and CPU usage values will be displayed in percentage. The listbox allows
the user to switch between the different metrics. By double clicking in the listbox, a graph
will be created for the new metric. The two sliders next to the listbox allow the zooming
of the x-axis. The upper slider sets the center of the scale and the lower slider sets the
number of values, which shall be shown. The zooming is also possible by using the left
and right mouse button. A doubleclick on the left button zooms in on the current position
and the right button zooms out. The “Save graph” button opens a little dialog, where the

user can set a name for a postscript file to store the current graph. The button below the

53

Design 5.3 GUI Design

“Save Graph” button creates a legend in the “Graph” frame, which makes it simple to

recover a particular measurement cycle.

The first view in figure 5.8 is for a single measurement cycle on one SRB server. This

wIozaozE
=
m

1.0
0.5 \

0,0
‘6.6 3.5 5.6 95,3 13l.0 163.9 196.7 £29.4 Dem.2 E95.0
TIME in sec
P SR Y memory_|
| postmast:e:r' |
| srk
cpu_system 1]
;:::u_user et o B Save graph |
| 20
|proc_total / Zoom infout: !_I_l Legend |
|[Ready

fig. 5.8: Single View Diagram

view can be used to compare the efficiency of different programs and the efficiency of
the client and server machine. The figure shows the memory usage of three different
applications. The “fd”, “cpu” and “memory* links in the listbox are application metrics,
whereas the “cpu_system”, “cpu_user”, “cpu_nice”, “cpu_idle” and “proc_total” links
are machine depended metrics and used to compare the server and the client with each
other. The legend shows the for an application comparison, the name of the application
and for a machine comparison it shows only the colour of the client graph and the server

graph.

The multiple view in figure 5.9 on the following page is able to show multiple measure-
ment cycles of one SRB server, one measurement cycle of many SRB servers, or multiple
measurement cycles of many SRB servers. It allows the comparison of different ma-
chines or SRB servers. The application metrics are not in one graph anymore. The links
are constructed by starting with the application name and ending with the metric name.
For instance the application “bash” would have three links: “bash_fd”, “bash_memory”,

“bash_cpu”. Furthermore, the machine metric links have the same structure for the client

54

Design

5.4 Modularisation

and the server values. For instance the “server_cpu_idle” compares all idle times of every

different SRB server or measurement cycle. The legend shows for this view the SRB port,

hostname and measurement

cycle time.

" server_proc_total - &

140
135

130
125
120
115
110
108
100

95

90

WOt 00T FALT AN

|bash_memory
|client_cpu_idle
|client_cpu_nice

20

/ Zoom infout: |_|_|

=] S——
——

2 n n n " " n n n n n n n n " i
L) 33.2 BE .4 99,7 132,92 166,1 199,3 232,56 266,58 299,40
TIME in sec

port | machine | time |
1 llocalhost, localdomain | 2006-02-01 20303145 |
1 llecalhost,localdomain | 2005-02-01 19316168 |
11 theodore,anderl | 2005-02-01 19 2|
11 linux,site | 2006-02-01 19316358 |
|bash_cpu]
|bash_fd 1
lbash & s G Save graph

Legend |

||DouhIeClick Left Mouse Button to zoom in and Right Button to zoom out

fig. 5.9: Multiple View Diagram

5.4 Modularisation

The monitoring client and the monitoring server have some similarities. Both use Ganglia

and need a socket connection. So obviously, it makes sense to write modules, which can

be used by both applications. Furthermore, the console client and the GUI client can

use the same measurement functions and it would not again make any sense to write the

functions twice. Therefore, the project has been divided into modules. A Python file

is a module, which can be reused by importing the classes of the file in other modules.

The project is divided into several modules to allow an easier extension of measurement

system. The figure 5.10 on the next page shows the different modules of the system.

The modules with the associated code are located in the Appendix B on page XXI. The

55

Design 5.4 Modularisation

1 1
Bash Configuration
Scripts file
1 1 1
Ganglia console gui2_ui
_| _l 1
python_ser @—— T
ver > python_client
1 T 1 1
SocketCon . *>—
nection gui2 & myplot
1
tooltip
1

_| Graphs

utils

fig. 5.10: Modules

execution modules are “console” for the Console client, “gui2” for the GUI client and

python_server for the server application.

python_server The server application uses the python_server, socket connection and
the ganglia modules. The socket_connection provides the server socket to connect
that the client can connect to the server. The ganglia module provides all Ganglia
functions, which means start, stop, and configure Ganglia. Furthermore the refresh-
ment functions for gmond are included. The Bash scripts for the measurement of
the SRB application are no modules, but stored in extra files. So single values can

be measured without the measurement system.

console The console module uses the python_client module for measurement cycles and
the database queries. The python_client module needs the socket_connection mod-
ule and the ganglia module for the connection to the server and the own gmond

daemon, which collects the measurement data of the other daemons.

gui2 The gui2 module uses similar to the console client the python_client module for
measurements and database queries. But a lot more functions are needed to create
the GUI. Therefore, the gui2_ui module provides the main dialog to browse through

the tables and configure the measurement. It connects to the myplot module to draw

56

Design 5.5 Object Models

the history diagrams in another dialog. Finally, the drawing of the diagrams will be
made by the Graph and utils module, which have been provided. Dr. Adil Hasan
was so kind to provide these modules to finish the project in the given time period.
The Graph Module has been edited to adapt the module to the measurement system.
Besides that, the module has been extended with a legend function to describe the

diagrams.

5.5 Object Models

The section will explain the modules in detail by describing the classes of the measure-
ment system. The associated code is located in section B on page XXI in the appendix.
All classes are displayed without the constructor function “__init__()” and the member
variables. It would be to complex and for the monitoring client, it would exceed the space

of a page.

5.5.1 Monitoring Server

The server consists of a “main” function and three classes, which are shown in figure 5.11.
The main function reads at first the parameter from the command line with the “Cgetopt”
class. The functions of the class are very trivial. The start function of the Cgetopt class
gets the parameter and analyses them. It uses the standard module “getopt” from the Py-
thon library. Only three parameters are allowed, “-v” for verbose messages,’-h” for a little
help output about the usage of the monitoring server, and “-p” to set up the connection
port for the client. The “CSocketServer” class consists of all necessary functions to cre-
ate, listen, read and write to a socket. After the parameter have been analysed the main
function creates an object of the CSocketServer class to create a socket. Afterwards the
“listen” function waits for a client connection. When the client connects to the server and
sends the application names, the main function of the server starts the gmond daemon
by calling the “start_gmond” function of the “Cinitialisation” class. In front of starting
gmond the gmond.conf has to be adapted with the new IP address of the client. When
gmond has been started, the main function will create an object of the “Refresh_Ganglia”
class, which consists of a thread function that calls the “refresh_gmond” function. The

Refresh_Ganglia class inherits from the Python standard class “threading.Thread” to use

57

Design 5.5 Object Models

Ganglia::Cinitialisation

+start_gmond()
+refresh_gmond()
+write_gmond_conf()
+get_gmond_output()

+set_pid()
+kill_gmond()
python_server::Cgetoptions tility python_server::RefreshGanglia
« »
+start() ¢ main function ¢ +run()
-__usage() +stop()

SocketConnection::CSocketServer

+listen()
+send()
+receive()
+clientclose()
+socketclose()

fig. 5.11: Server Object Model

thread functions. The refresh_gmond function monitors the applications with standard
UNIX commands such as “ps” and “Isof”. If an SRB port has been sent before the ap-
plication names, the refresh_gmond function will also use the three Bash Scripts called
“average.sh”,’average_mem.sh” and “num_fd.sh” to measure the CPU efficiency, mem-
ory usage and number of open file descriptors of the SRB server applications. The Bash

scripts are attached in the appendix in chapter C on page XC.

The return values of the Bash scripts will be passed with gmetric to update the measure-
ments for the client. The main function of the monitoring server waits for a “clientstop”-
string to stop the Refresh_Ganglia thread, stop gmond with the “kill_gmond” function,
and to close the socket with the function “clientclose”. The “set_pid” function stores
the process ID of the gmond daemon. The kill_gmond function will need it to stop the
gmond after the measurement cycle has been finished. Afterwards the main function
waits again for a new connection from a client. When server has been stopped by press-
ing “CTRL+C”, everything will be closed and the socket will be stopped by using the

“socketclose’ function.

58

Design 5.5 Object Models

5.5.2 Monitoring Client

Caused by the complexity of the client and its modules, the class diagrams are separated
into two parts. The first part consists of the client functionalities and the console applica-

tion.

5.5.2.1 Operations and Console

The figure 5.12 on page 61 shows all classes of the python_client and the console module.
The console module consists only of one class, which provides the tables and gets the
parameter from the command line. The start function of the “Cnogui” class filters the
parameters and catches incorrect inputs. The following parameters are allowed for the

console client:

Table 5.3: Console Client Parameter

Parameter Exercise

primary-keys

-p, —project-id <id> passing a project id

-t, —test-id <id> passing a test id

-1, —iteration-id <id> passing an iteration id

-s, —srbserver-id <id> pass a srbserver id

tables

—projectlist draw a project-table

—testlist draw a test-table

—iterationlist draw an iteration table

—srbserverlist draw a srbserver table (including host pa-
rameter)

—measurementlist draw a measurement table

other parameter

-s, —startday <YYYY-MM-DD> used in combination with endday to get
measurements between two dates

-e, —endday <YYYY-MM-DD>

-d, —database <file> pass a database (standard:srb.db)

-c, —config-file <file> pass a config file (standard: config.ini)

Continued on next page

59

Design 5.5 Object Models

Parameter Exercise

-f, —config-dump <file> store an config example in a new config
file

-g, —gauge start a measurement

-h, —h, -help draw the usage of the client

-v, —verbose draw more messages during the process

of the client application

The list parameters start the associated list functions, for example the parameter “—testlist”
starts the “__test_list” function. These functions create the command line table. Only the
project table is included in the “__console__” function. The primary keys refine the tables
to see only particular information. The “-g” parameter starts the measurement by starting
the “__measure” function. Furthermore, a configuration file can be passed with the “-c”

parameter and the configuration file can be displayed with “-f ™.

The Cnogui class creates at first an object of the “Cconfigparser” class to parse the con-
figuration file. Therefore three functions are needed. The “load_config” function loads a
particular configuration, the “write” function writes and the “get_config_file” function re-
turns the name of the current configuration file. The second class is the “CMeasurement”
class. It connects the main classes, which are needed for a measurement cycle, together.
The function “__get_srbport” of the CMeasurement class parses the “.MdasEnv”-file to
get the SRB port of the running SRB system. The constructor of the CMeasurement class
creates at first an object of the “Cdatabase” class to provide all other classes with the
same database pointer. The “run_measurement” function starts a measurement cycle and
creates a “ServerConnect” object to connect and assure the connection to the monitoring
servers. This class uses the “CSocketClient ” class of the “socket_connection” module
to listen, receive, send and stop the server. After the connection has been established, an
object of the “GangliaThread” class will be created to finally start the measurement cy-
cle. The Thread will start its own gmond daemon with the Cinitialisation class and parse
the frequently measured output of the gmond daemon with the “Cxmlparser” class. The
parser will be explained with more details in section 6.3 on page 73. The “Crunapp” class
starts the test application, which should run during the measurement cycle and to create
load on the SRB system. The application will be started as a thread and will run until the
measurement cycle has stopped. If the test application is not finished with its task, it will

be "killed" by the monitoring client.

60

Design

5.5 Object Models

SocketConnection::CSocketClient

python_client::Crunapp

run()
L

ganglia::Cinitialisation

start_gmond()
refresh_gmond()
kill_gmond()
write_gmond_conf()
get_gmond_output()
set_pid()

connect()
send()
receive()
close()

python_client::ServerConnect

connect()
stop_connection()

python_client::Ctimestamp

get_timestring()
get_timetuple()

python_client::Cdatabase

__create_database__ ()
__check_database()

_get_db()

‘ set_new_db()
lock_it()
python_client::CMeasurement rlock()

python_client::GangliaThread set_config() N g get_measurements()
run() - @|9et_config() insert_measurement()

stop() stop() insert_srbserver()
run_measurements() insert_project()

__get_srbport() insert_test()
insert_tester()
— select_table()
python_client::Cxmlparser i select_measurement()
parse_string()

console::Cnogui

start()
|__console__ ()
__srbserverlist()

| testlist()
__iterationlist()
___measurementlist()
|__measure()
__usage()

__explore_childs()

python_client::Cconfigparser
& load_config()

get_config_file()

write()

«utility»
console::main function ¢

fig. 5.12: Client Object Model

The run_measurement function is finished after the GangliaThread object has been cre-
ated and the “run” function has been started with the “start” command. That is the
usual way to start a thread function of a threading class. It is similar to Java thread-
ing. The CMeasurement class can stop the GangliaThread with the “stop” function. The
“set_config” and “get_config” function are used to handle the configuration between the

file and the classes.

The Cdatabase class provides all necessary database functions. If a client has been
started and no database file is available, the “_ create_database " function creates a
new “srb.db” database file with all necessary tables. The “__check_database__" function
verifies the given database, whether the file is broken or not. The “set_db” and “get_db”
functions set and get a new database file. All different insert functions insert a new row
in the table and return the current primary key of the row. As mentioned in the SQLite
section 3.6.4, it is not advisable to use one database pointer in different threads, but with

more than one database pointer write locks may happen, if more than one database pointer

61

Design 5.5 Object Models

wants to write in the database at the same time. Therefore only one database pointer will
be used, which has been created in the Cdatabase class. The functions “lock_it” and
“rlock” are threading functions, which lock the database before a query, and release it af-
terwards. This “Mutual exclusion” (Mutex) or binary semaphore allows the threads to use
one database pointer. A Mutex is used to synchronise processes and restrict them to use
a special part of the code at the same time. This avoids inconsistent states. Furthermore,
the Cdatabase class uses a “Ctimestamp” object to create a time string, which sorts the

measurements and measurement cycles by time.

5.5.2.2 GUI classes

The classes of the Graphical User interface are shown in figure 5.14 on page 64. These
classes use the Tkinter library to create the GUI. The two dialogs are separated in two
modules. The complete main dialog of the GUI is stored in the gui2_ui module and the

diagram dialog is stored in the myplot module.

The gui2 module starts the GUI with “Cguistart” class. The “start” function parses the
arguments passed by the user, which are the same as in the console client, but without
any parameters to create a table in the command line. The “usage” function displays a
help for the GUI client. The “CPrintinGUI” class overwrites the “write” function of the
stderr and stdout descriptor. The overwritten write function of the descriptors passes the
messages to the text widget of the main frame. The “stop” function disables the passing

and recreates original write function.

The “Dialog” class of the gui2_ui module is the top-level class, which creates the main di-
alog. As the names imply, the “button_start_command” and “button_stop_command” can
start and stop a measurement cycle. The same applies to the “open_db” and “save_db”
functions, which can open a database file and save a current database under a different
name. The “_test_stop” function waits for the end of a measurement cycle. If the maxi-
mum number of measurements has been reached, the function enables the “Start” button
and disables the “Stop” button. The function runs in an additional thread, which only runs

3

when a measurement cycle is running. The “_change_text_in_console” function is used
for the CPrintinGUI class of the gui module to finally write the output of the stdout and
stderr into the text widget of the main dialog. The last function of the Dialog class is the

“_gui_quit” function, which stops the GUI and closes every open diagram dialog.

62

Design 5.5 Object Models

Menu | Yindov

Open db Window

Save db as Main

Exit Configuration
(a) “Menu” (b) “Window”

fig. 5.13: Menus

The “Mymenu” class provides the menus for the main dialog, which are shown in fig-
ure 5.13. The first menu is created by the “__create_menu_1" function, which connects
the GUI to the _open_db, _save_db and the _gui_quit function. The “__create_menu_2"
function provides the functionality of the “Window” menu. It is used to change between
the “graph_choice” class and the “Configuration” class, which both provide a different
frame for the main dialog. Both frame classes use the “Mainframe” class. The frame
that will be created in the Mainframe class can be scrolled, because it consists of a Tkin-
ter “Canvas” widget, which is normally used as a draw environment, with an embedded
“Frame” widget. Therefore, the graph_choice and the Configuration classes are devel-
oped on top of that scrollable frame. The “canvas_reload” function has to be executed,
whenever a frame has been changed to update the dimensions. The Mainframe class uses
the “AutoScrollbar” class, because it creates scrollbars at the left and lower side of the
frame, but only when they are needed and an inner widget of the frame ran out of space.
Furthermore, the text widget at the bottom of the GUI uses the automatic scrollbars as

well.

The graph_choice class provides the main frame for the main dialog. It allows to browse
through the tables and to choose a particular measurement cycle, which should used to
generate a history diagram. The “config” function creates the main frame with the first two
list boxes project and SRB server. The list boxes will be created with Tkinter widget “Lis-
box”. The “__set_test” function creates the test list box and the “__set_test_command”
function creates the iteration list box. The functions “srb_server_table”, “ test_table”,

99 ¢

“__project_table”, srbserver_table” create an overview of the table content by drawing

simple GUI table. These functions are obsolete, but have been used during the implemen-
tation of the measurement system and might help for a further development. The overview

tables are still available in the GUI. By pressing a button over one of the list boxes, the

63

Design 5.5 Object Models

tooltip::Tooltip myplot::StatusBar

«utility» guiZ_ui::Mymenu show() set()
—] gui2::main function | |-_create_menu_1() ‘

-__create_menu_2()
myplot::dyn_table myplot::Graph
python_client stop_table() config()
|_show_table() |__create_view_multiple()

__create_view_single()
gui2_ui::Dialog gﬁg;ﬁrov_back()

- - _button_start_command legend_toggle!
gui2:Cguistart _button_stop_commandé)) pr?nt it() o9l
©[9ui) @ | change_text_in_console() @ close_me()
usage() _qui_quit() |__quantity_get_index_()
start() _test_stop() _cur_selec()
_open_db() callback()

gui2::CPrintinGUI _save_db() on_leave()

write() on_after()

stop() on_enter()
|__show_graphs()

gui2_ui::graph_choice
config()

|__set_test()
|_project_table()
gui2_ui:Configuration gui2_ui::AutoScrollbar| |_test_table()

set() |_srbserver_table() GraphLine
|_create_table()
|__get_project()

_configuration_frame()
__button_set_command()
__button_write_config_command()
“cur_selec() |__get_srbserver()

"~ quantity_get_index() |__set_test_command()

__get_measurements()
T— _set_test_flag() GraphBase
gui2_ui::Mainframe Q legend_show()

config()
|_canvas_reload()

fig. 5.14: GUI Object Model

particular table will be created. The “get_" functions gather the content of a list box, if

one of the “Set ...” buttons below a list box has been pressed.

The Configuration class contains five functions. The *“_configuration_frame” function
and the constructor create all necessary “Label” and “Text” widgets to show the content
of the configuration file. The “Set” button of the configuration frame uses the “_but-
ton_set_command”, which configures the measurement cycle with the current information
from the frame. The *“_button_write_config_command” writes the configuration to the
current or to a new file. The last two functions “_cur_selec” and “__quantity_get_index”

are used to get the number of the “server.quantity” list box.

The myplot module is the second GUI module, which contains the classes of the diagram

dialog. The “Graph” class creates the dialog with all needed widgets. The main task

‘

of the Graph class is to create the two particular views. The *“_create_view_single” and

(X3

_create_view_multiple” are responsible for the lists, which are necessary to draw the di-

agrams. Both functions get the content of the measurement table from the python_client

64

Design 5.5 Object Models

module and have to prepare the data for the “Graphs” module. The “show_graphs” func-
tion finally passes the lists to the Graphs module. The “config” function decides, which
view function must be used and connects the functions with the widgets. The “call-
back” function is responsible for the x-axis zooming within the diagram. The “on_enter”,
“on_after”, and “on_leave” function create, show and destroy a tool tip with the “Tooltip”
class and change the content of the status bar with “StatusBar” class. Both classes are
used to provide auxiliary information about the widgets of the Graph class. A tool tip
will be displayed, when the mouse has been moved over a widget. The mouse movement
will be recognized with the “mouse_mov” function, which uses the Tkinter “Event” wid-
get. The “colors” function assigns a colour to a graph. The legend also uses the colour
to connect a single row with a particular graph. The legend will be drawn by the “leg-
end_show” function in the GraphBase class, which is part of the Graphs module. The
“legend_toggle” function starts and stops the legend and is connected with the “Legend”
button in the diagram dialog. The “Save graph” button executes the “print_it” function,
which opens a small dialog to choose the target for a postscript file, which contains the

current graph. The last function “_close_me” of the myplot module destroys the dialog.

The “dyn_table” class is used to start the dynamic graph for a running measurement cy-
cle. The “_show_table” function will be started as thread by the _button_start_command
function of the Dialog class. The function gets every second new measurements from the
database and passes them to a Graph object from the myplot module. Therefore, whenever
new measurements arrive the diagram dialog will be redrawn. The “stop_table” function

destroys the diagram dialog and stops the thread.

65

Chapter 6

Implementation

The following sections describe five code examples in detail. These sections deal with the
socket connection, the measurement of the applications, the parsing of the Ganglia XML

output, and the preparation of a list for a multiple view in the diagram dialog.

6.1 Socket Connection

A socket connection has been used between the monitoring server and the client. This
enables the client to configure the server remotely. The Python socket module provides the
funcionality and is very easy to use and is similar to the C socket connection. The socket
module will be imported with the command import socket. The “Csocketserver” and
“Csocketclient” classes use their constructor to create a TCP socket. The listing 6.1 shows

a code snippet of the constructor with the three main commands.

Listing 6.1: Create Socket

def __init__(self)
self.p_sock = socket.socket(socket.AF_INET, socket.SOCK _STREAM)
self.p_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1);
self.p_sock.bind ((socket.gethostname (), self.i_port))

The first parameter “socket. AF_INET” of the socket function indicates that the socket
uses the Internet Protocol (IP). The second parameter “socket. SOCK_STREAM” indi-
cates that a stream should be send over socket. If nothing else has been set, the socket
uses TCP. The UDP parameter would be “socket. SOCK_DGRAM”. The “setsockopt”

function is not necessary, but useful if a socket is stuck while it is connected to another

66

Implementation 6.1 Socket Connection

host. The function allows reusing the socket, even though it is set as engaged. But the
setsockopt function has many other functionalities, which are not used in this command,
but can be refered in the UNIX man pages [21]. The bind function applies only to the
server, because a server socket has to be bound to a local address. The bind function
needs a "tupel" as parameter, which is a collection of other objects and these objects are
not changeable. [22]. The first parameter in the "tupel” is the hostname and the second

parameter opens the port for remote connections.

Listing 6.2: Listen function

def listen (self):
self.p_sock.listen (1)
self.p_conn, i_remote_host = self.p_sock.accept()

return i_remote_host[0]

The listing 6.2 shows the listen function of the Csocketserver class, which waits for a
connection from a client. The listen function of the socket module takes one parameter,
which indicates how much connections the server handles at one time. Finally when a

client tries to connect, the accept function establishes the connection.

Listing 6.3: Connect function

def connect(self, i_remote_host = ’’, i_remote_port = 0):
self.p_sock.connect((str(self.i_remote_host), int(self.i_remote_port)))

return 0

The connect function in listing 6.3 is used by the Csocketclient class to connect to the
server. The parameters are the remote host and port of the server. The host parameter can

be an IP address or a host name.

The “send” and “receive” function in listing 6.4 are similar in the Csocketclient and
Csocketserver class. Before sending the data from the client to the server, it is neces-
sary to get the string length of the data. It is necessary to send the length, because if the
send function has been executed several times in series and different data packages have
been send, it is possible that the receive function get more than one package at one time
and it would not be possible to assign the data to its task. By converting the string length
to network byte order, the code is kept independent from the machine architecture. There
are two different versions of byte orders, Big-endian (IBM mainframes) and Little-endian
(most PC’s). Therefore, the "htonl" command converts the integer in Big-endian format,

which is the same as the network order, to unify the byte order. The receive function on

67

Implementation

the client side converts it back to an integer with the "ntohl" function. The pack function
of the "struct" module has to wrap the number again, because the send function normally
sends only strings. The function converts the Big-endian integer into a binary string. The
first parameter “L” indicates an unsigned long integer. On a normal PC architecture the

unsigned long is four Bytes, which means the number can be up to

Listing 6.4: Send & Receive function

def

def

send (self , data):

s_content = str(data)

n_length= socket.htonl(len(s_content))
size = struct.pack("L", n_length)

sent = self.p_sock.send(size+s_content)

return 0

receive (self):
size = struct.calcsize("L")
size = self.p_conn.recv(size)

size = socket.ntohl(struct.unpack("L", size)[0])

data_send = data = ""

size_decrement = size

while len(data_send) < size:

if size_decrement < 1024:
receive_size = size_decrement

else:
receive_size = 1024
size_decrement —= 1024

data = self.p_conn.recv(receive_size)

data_send = data_send+data

return data_send

The send function transmits the string length and the data at the same time. The receive
function gets the first four Bytes to know the length of the following string. The length of
the data will be unwrapped and unpacked as already described and afterwards the while

loop of the receive function gets the data in 1024 Byte slices and connects the partial

strings to one string together.

68

6.1 Socket Connection

Implementation 6.2 Application Measurements

6.2 Application Measurements

6.2.1 Standard Application

The measurement of standard application calculates three particular values, the CPU, the
memory usage, and the number of open file descriptors. To measure the three new met-
rics, the monitoring server needs the application names from the client. The names were
passed in a string, where a semicolon divides the applications. The “refresh_gmond”
function of the “Cinitialistation” class in the ganglia module parses the string, monitors

the applications and passes the results with gmetric to gmond.

The main part for the standard application measurement is listed in 6.5 on the next page.
Before the application can be measured, the string with the application names from the
client has to be split and stored in a list. Afterwards the “for” loop uses the list as a
parameter to do the measurements individually for every application. The line 14 shows
the first bash command, which gets the data for the memory and the CPU usage at once.

The command returns the measurements in the following way:

1.0 2.0
3.0 1.0
1.3 2.1

Every row of the return string from the bash consists of the memory and CPU usage for
one process of the application. Therefore, all values will be separated and the memory
usages will be added to one value and CPU usages to another one. The separation and

summation will be done in the lines 15 till 22.

Calculating the number of open file descriptors is a bit different. At first, it is necessary
to gather all running Process IDs (PID) of an application. This will be done with bash
command in line 37. The next step is using a “for” loop to get all open file descriptors
of every PID. The line 45 contains the bash command, which counts the lines of the
“fd” file in the “/proc/<PID>/" directory. Every line in this file indicates an open file
descriptor with exception of the heading. Therefore, the line 46 adds the number of open

file descriptors together and subtracts one line for the heading. When the "for" loop has

69

22
23
24
25
26
27
28
29
30

Implementation 6.2 Application Measurements

finished with all PIDs, the number of file descriptors is certain. Now all three metrics for

one application are finished and can be passed with gmetric to gmond.

The new metrics for the gmond daemon need a name with which one can regain them.
Therefore, the new metric name consists of the application name and the meaning of the
measurement. For instance, the CPU usage of the “bash” application would be stored in
the metric “bash_cpu”. The XML snippet below shows the content of a “METRIC” tag

for the “bash_cpu” metric.

<METRIC NAME="bash_cpu" VAL="0.1" TYPE="float" UNITS="Byte" TN="0" TMAX="60" DMAX="0"
SLOPE="both" SOURCE="gmetric" / >

The three gmetric commands, which have to be executed to pass the data to gmond, will
be connected to one string and executed with one “os.system”-command. This command

finally executes the three gmetric commands in line 69.

Listing 6.5: Server application measurement

if application != '':

apps = application.split(’;’")

if apps[—1]=="":
delete the last member of the list if it is empty
del apps[—1]
delete the first empty spaces of the command

p = re.compile(’" ")
s_app = []
for i in range(0,len(apps)):
apps[i] = p.sub("",apps[il])
f_cpu = f_mem = 0.0
s_cpu_mem = commands. getoutput("""ps -C "%s" -o pmem,pcpu | awk ’{print $1 " "
$2}1"""" % apps[i])
if s_cpu_mem != "":

cpu_mem = s_cpu_mem. split("\n")

for x in cpu_mem:
if re.match("[0-9.]",x):
X = x.split(" ")
f_cpu += float(x[1])
f_mem += float(x[0])

s = re.compile(’ [a-zA-20-9_-]+")
s_app.append(s.match(apps[i]))
s_app[i] = s_app[i].group()
i_count =0
for x in range(0,i):
if s_app[x].find(s_app[i]) != —1:
i_count +=1

70

31
32
33
34
35
36

37

38
39
40
41
42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63
64
65
66
67
68
69
70

Implementation 6.2 Application Measurements

if i_count != 0:
print "not two commands of the same application"

continue

""" set the used file_descriptor value of the srb_server """

1_pid = []

s_pid = commands. getoutput("ps u -C ’"+apps[i]+"’ | grep S$USER | awk ’{print $2
}I").

#""" just the open application of the wuser will be measured """

I_pid = s_pid.split("\n");
#""" divide the different application pids"""
i_number_fd = 0
for s_single_pid in 1_pid[0:]:
try:
s_number_fd = commands. getoutput("ls -1 /proc/"+s_single_pid+"/fd | wc -
1)
""" get the number of open file descriptors"""
i_number_fd += int(s_number_fd)—1
""" the header should not be counted """
except ValueError:

print "Programme %s cannot be monitored!"™ % apps[i]

break
stringer = self.ganglia_folder+"""bin/gmetric -c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name """+s_app[i]+"""_mem \
--value "%s" --type float --units Byte""" % f_mem
stringer = stringer+";"+self.ganglia_folder+"bin/gmetric -c " \

+self.ganglia_folder+"sbin/gmond_test.conf --name "+s_app[i]+"_fd --type intlé
\

--value "+str (i_number_fd)

stringer = stringer+";"+self.ganglia_folder+"""bin/gmetric -c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name """+s_app[i]+"""_cpu \
--value "%s" --type float --units Byte""" % f_cpu

stringer = stringer+";"+self.ganglia_folder+"""bin/gmetric -c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name """+s_app[i]+"""_cmd \
--value "%s" --type float --units Byte""" % apps[i]

os.system(stringer)

6.2.2 SRB Application

The measurement of the SRB application is slightly different. The “srbMaster” process

of an SRB system creates for a new query to the SRB system a new process. Therefore,

71

R - ¥ N T

Implementation 6.2 Application Measurements

it is necessary to get the PID of the stbMaster process. The srbMaster is the Parent
PID (PPID) of all other SRB server processes of one SRB system. Whereas more than
one SRB system could run on one machine, it is necessary to find the correct srbMaster
process. The line 7 of the listing 6.6 uses the Linux tool “Isof” to get the srbMaster
process of the SRB system to which the monitoring client belongs. The Isof tool shows
all open descriptors of the current machine. By passing the srbMaster process with the
parameter “-c” to Isof, the output will be limited. Now, it is possible to pipe the output
to the“grep” command and search for the SRB port of the SRB system. The pipe means,
that the standard output (stdout) of Isof will be used for the standard input (stdin) of the
grep command. “awk” will finally get the PID of the srbMaster process from the stdout
of grep.

The PID is used to get the CPU efficiency of the SRB server processes. Line 15 executes
“ps” and gets the CPU usage of all processes, which have the PID of the srbMaster process
as PPID. Afterwards the for loop in line 18 adds all CPU usages together and the sum is

the return value for gmetric.

Listing 6.6: CPU usage of the SRB server

-
if ! [$1]
then
exit —1;
else
var=$1
fi
ppid=$(lsof —c srbMaster | grep —i $var | awk *{print $2}°)
#1 sed —e s /x://")
if 1 [$ppid]
then
echo "0"
echo "no srbMaster found"
exit 0
fi
list=(‘ps —o pcpu —ppid $ppid *)
sum=0.0
list_length=${#1ist[@]
for ((i=$list_length —1;i>0;i——))
do
sum=‘echo ${1list[${i}]}+Ssum | bc*
done
echo $sum
exit 0

-

72

© N L R W N =

- N T SO VU R

S

Implementation 6.3 XML Parser

6.3 XML Parser

The XML parser consists of two main functions, where the first, parse_string gets the
XML string and parses it with the Python xml.dom.mindom module. The “parseString”
function of the inbuilt module returns a particular object in line 7 of listing 6.7. This

object needs to be converted for a further use.

Listing 6.7: “parse_string function”

-
def parse_string (self, s_xml):

""" parse the string start the xml-string to dictionary function"""

self.__d_xmlstream = {}
self.__s_xml = s_xml
if self.__i_verbose:

print "XML-String:\n%s" % (s_xml)
self.__doc = xml.dom.minidom. parseString (self.__s_xml)

self.__explore_childs ()

return self.__d_xmlstream

The second function “__explore_childs” in listing 6.8 on the next page will be executed
by the “parse_string” function to convert the object into a dictionary. This function is
recursive, which means it starts itself again and again. It opens the nested XML output
and gathers the important attributes. For converting the XML output, it is necessary to

have a closer look on the gmond XML structure:

<GANGLIA_XML>

<HOST NAME=<hostname> IP=<IP address> REPORTED=<Time of Transfer> ...>
<METRIC VAl=<value> TYPE=<type> UNITS=<units> ...>

</METRIC>

<METRIC ...>

</HOST ...>
<HOST>
</HOST>

</GANGLIA_XML>
L

The first important tag is the “HOST”, which surrounds all measurements of one machine.
Therefore, it is the first key of the dictionary. The second key are the attributes of the
metric tag. Five different keys are possible. The “VAL” attribute is the only one that
is important for storing in the database, but the “TYPE” and “UNITS” attributes have
been parsed as well between line 18 till 21. This might be useful for a future use, with
a different database model. Furthermore the “REPORTED” and “IP” attributes of the
“HOST” tag are second keys, because the “REPORTED” attribute contains the time of

73

23
24
25

Implementation 6.4 Client Measurement Thread

the last added metrics, which helps to find out if the values of the XML output are up
to date and the server on the other side still passes new measurements with gmetric into
gmond. The “IP” attribute is the IP address of the host and will be stored for every new

machine in the host table of the database.

Listing 6.8: XML convert function

def __explore_childs(self):

""" get the xml_stream in a dictionary (recursive function)"""

nodelist = self.__doc.childNodes #get the childs of a tag
for subnode in nodelist:
if (subnode.nodeType == subnode.ELEMENT NODE) :

if (subnode.tagName == "HOST"):
create the first key of the dictionary
self.host = subnode.getAttribute ("NAME")
self.__d_xmlstream[self.host] = {}
self.__d_xmlstream|[self.host]["IP"] = subnode.getAttribute ("IP")
self.__d_xmlstream|[self.host]["REPORTED"] = \

subnode . getAttribute ("REPORTED")

if (subnode.tagName == "METRIC"):

save the VAL, TYPE and UNITS attribute in the dictionary
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME")] = {}
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME")]J['VAL'] = \
subnode . getAttribute ("VAL")
self.__d_xmlstream|[self.host][subnode. getAttribute ("NAME") J['TYPE'] = \
subnode . getAttribute ("TYPE")
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME")]J["UNITS'] = \
subnode . getAttribute ("UNITS")

self.__doc = subnode

self.__explore_childs ()

6.4 Client Measurement Thread

The Measurement Thread needs the XML parser of the last section to parse data during
a measurement cycle. The use of a thread offers the possibility to interact with the GUI
during a measurement cycle. One way to create a thread in Python is using the threading

module. The GangliaThread class inherits from the Thread class of the threading module:

Listing 6.9: GangliaThread constructor

class GangliaThread (threading . Thread):
def __init__(self, ...):

threading . Thread. __init__(self, name = "Refresh_gmond")

74

© o N LU R W N =

= 3

Implementation 6.4 Client Measurement Thread

The next step is starting the constructor of the superclass to enable the thread functionality
for the GangliaThread class. Afterwards it is possible to create a run function, which will

run as a thread. The “start” command will execute the run function.

The Thread, which is in fact the run function, is shown in listing 6.10. The function
starts at the first the gmond daemon with start_gmond function of the Cinitialisation class.
Afterwards gmond needs a little time to configure and provide all the data. Thus in line
four, the thread sleeps ten seconds to give Ganglia some time. The "while" loop in line ten
starts the measurement cycle by querying the local gmond with telnet. The XML output
can be parsed after the XML string has been cut out of the telnet output.

The next step is to write the data into the database. The "for"-loop in line 17 verifies
that every monitoring server is represented in the XML data. Afterwards the line 22
checks if a particular server has sent its data. If all measurements have been sent, the
Thread tries to find the SRB server in the database. If the machine is not available, a new
entry will be created. If the remote computer has sent all necessary measurements and
machine information, the line 36 creates a new row in the join table "iteration_srbserver".
Afterwards, the line 39 verifies that the Ganglia output is up to date. For example, if the
"REPORTED" attribute from the "HOST" tag has the same value as the “REPORTED”
attribute from the last query, the measurements are old and an error message will be
returned. The "srbserver_id" of the iteration_srbserver table will be used in line 43 to
finally insert the current measurement in the "measurement" and "application" table. If
every remote gmond has provided its measurements, the run function will start in line 49
an extra thread, which starts the "test_application". The "while" loop will be closed, if the
maximum number of measurements has been reached or the user has pressed the “Stop”
button, which will be recognised through the "_stopevent" variable. This variable will be

set, if the user wants to stop the measurement cycle, manually.

Listing 6.10: run function of “GangliaThread” class

-
def run(self):

""" Thread which polls Ganglia"""
self.__ganglia.start_gmond (gmond_conf="gmond_client.conf")
time . sleep (10)

application_started = 0

counter = 0

srbserverid_set = {}

last_insert = {}

while not self._stopevent.isSet():

s_xml_content = self.__ganglia.get_gmond_output()

75

23
24

25
26
27
28
29
30
31

32

33
34
35

36

37
38
39

40

41
42
43
44
45
46
47

48

49

50
51
52
53
54
55
56

Implementation 6.4 Client Measurement Thread

i_xml_start = s_xml_content. find ("<GANGLIA_XML");
i_xml_end = s_xml_content. find ("</GANGLIA_XML>")+14;
d_xml = self.__parse_object.parse_string (s_xml_content[i_xml_start:i_xml_end])

host_count =0

for machine in d_xml.keys():
if machine == ’localhost’:
continue

if not srbserverid_set.has_key(machine):

if d_xml[machine].has_key("cpu_speed") and d_xml[machine]. has_key ("
hostname™"):
self.__db_obj.lock_it()
srbserver_id = self.__db_obj.insert_srbserver (d_xml[machine], self.
__srb_port)
srbserverid_set[machine] = srbserver_id
self.__db_obj.rlock ()
else:
if self.__i_verbose:
print "no data there for machine:",machine
if last_insert.has_key(machine):
if last_insert[machine] == d_xml[machine]["REPORTED"]:
print "No fresh data from Ganglia for %s, maybe server lost
" % machine

break

self.__db_obj.lock_it()

is_id = self.__db_obj.insert_iteration_srbserver (self.__iteration_id ,

srbserverid_set[machine])

if last_insert.has_key(machine):
if last_insert[machine] == d_xml[machine]["REPORTED"]:
print "No fresh data from Ganglia for %s, maybe server lost" %
machine
last_insert[machine] = d_xml[machine]["REPORTED"]
host_count +=1
self.__db_obj.insert_measurement(d_xml[machine], is_id ,d_xml[’localhost’])
self.__db_obj.rlock ()

if host_count==len (d_xml.keys())—1:
self.__db_obj.set_all_measurements_there ("set")
if (self.__measurement_app != "none" or self.__measurment_app != "") and
application_started ==
self.__run_app_thread = Crunapp(self.__measurement_app, self.__i_verbose
)
self.__run_app_thread. start ()
if self.__i_verbose:
print "Test application started!!"

application_started = 1

counter += 1

76

57
58
59
60
61
62
63
64
65
66
67
63
69
70

Implementation 6.5 Multiple Measurement Diagram

if counter > int(self.__quantity):
if self.__i_verbose:
print "stop the measurement"
self.stop ()
time.sleep (2)
break
sleep_counter =0
while sleep_counter != self.__poll_time:
time . sleep (1)
if self._stopevent.isSet():
break
sleep_counter +=1
if self._stopevent.isSet():
break

6.5 Multiple Measurement Diagram

The last section of the “Implementation” chapter shows how a list will be created for
the Graph module to draw a history diagram. As already mentioned before, there are two
different views and this section will confine itself on the “Multiple view”. This view draws
diagrams for more than one measurement cycle, more than one SRB server, or both. The
"__create_view_multiple" function in listing 6.11 on page 79 is part of the Graph class and
is stored in the myplot module. The function receives a list parameter from the database
with all measurements of the measurement cycle, which have been done so far. The task
is to convert the given list into a prepared list for the external "Graphs" module. The list
has to store the values of the monitored applications and machines. That means, the list
combines the measurement values of the application table and the measurement table are

for one measurement cycle.
The Graphs module needs at the end a list, which has the following structure:
list = [(30, 2), (31, 4), (32, 4),

(33, 2), (34, 2), (35, 2), (36, 2),
(37, 2), (38, 2), (39, 3), (40, 3)]

Therefore, a two element “tupel” has to be stored in an one dimensional list. The first

element represents the x-value and the second the y-value of a point in the graph. The

given list example looks like figure 6.1.

77

Implementation 6.5 Multiple Measurement Diagram

4.0

3.8

3.8

3.4

3.2

3.0

2.8

2.6

2.4

2.2

2.0

fig. 6.1: GUI Example

The function __create_view_multiple converts the measurements and structures them in
several lists. The function starts in line 13 with a “for” loop, which has length of the given
measurement cycles. The line 15 till 23 get main values from the host, srbserver and
iteration table for one particular measurement cycle and SRB server combination in the
database. There are different metrics, which all have to be sorted in different lists. Hence,
all the list will be stored in a dictionary, where all values are sorted by the metric name and
the is_id of the iteration_srbserver table. The self.__itersrbserv_comb dictionary stores
all the list and the first key will be the metric name and the second the is_id. The is_id
points at a couple of measurements, which finally represent the graph. The ID is used,
because it allows to recover the SRB server and measurement cycle from one particular
measurement. In line 26 the start time of the measurement cycle will be stored, because
all other times will be subtracted from this time to create the x-value for the graph. The

line 33 creates the different dictionaries for every metric of the measurement table.

self.__itersrbserv_comb[server_cpu_system] [10]
= [(0, 2), (15, 4), (30, 4)]
self._ itersrbserv_comb[server_cpu_system] [14]

= [(0, 2), (15, 4), (30, 4), (45, 1)]

78

R - N R N VU R

Implementation 6.5 Multiple Measurement Diagram

The example shows a list for the metric server_cpu_system and two different is_id keys.
Both graphs will be shown in one diagram and the first graph is three and the second four
points long. That is the way all measurements are stored in one dictionary and it allows

to change the database to add more metrics without any need of modifying of the GUI

modules.
The for loop in line 35 stores all metrics of the
measurement table in the dictionary. Afterwards in
bash_cpu : line 44, the application table will be queried and
hash_fd all application metrics will be stored in the dictio-
bash_memory . nary from line 50 till 60. The key, which will be

client_cpu_idle

.) used to store the application metrics, is built out
client_cpu_nice

of the application name and the metric. For exam-
ple the bash application and the open file descrip-

fig. 6.2: Listbox o
tor metric is stored under the “bash_fd” key. The

last part of the function is to save the first key of the
self.__itersrbserv_comb dictionary in the list box of the diagram dialog. So the picture 6.2
shows the keys, which are used to browse through the different diagrams. The picture 5.9
on page 55 of the Design chapter will help to understand the diagram dialog, because
it shows a multiple view with graphs of different machines and different measurement

cycles in one diagram.

Listing 6.11: Multiple view

def __create_view_multiple(self ,list):

""" Create the view for more than one test (reused test)"""

set the view to multiple view

self.__view = "multiple"
self.__itersrbserv_comb = {}
count = 0

self.start_time = {}

self. multilegend = {}

get some information for the legend, so the graphs can be relocated
furthermore store the data in a dictionary for the graphs

for list_elem in list:

self.__db_object.lock_it()

self.__db_object.db_cursor.execute ("""SELECT I.time, H.hostname, S.srb_port,
I_S.is_id FROM

iteration_srbserver AS I_S, srbserver AS S, iteration AS I, host AS H, test

AS T

79

21
2
23
24
25
2
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44

45
46
47
48
49
50
51

52

53
54

55

56
57

58
59

60
61
62

Implementation 6.5 Multiple Measurement Diagram

where I_S.is_id = %s AND I_S.srbserver_id = S.srbserver_id
AND S.host_id = H.host_id AND I.iteration_id = I_S.iteration_id
AND I.test_id = T.test_id """ % list_elem["M.is_id"])#, T.name,

test_time = self.__db_object.db_cursor.fetchone ()

self.__db_object.rlock ()
is_id = str(test_time [3])
if not self.start_time.has_key(is_id):
self.start_time[is_id] = list_elem["M.time"]
self . multilegend[is_id] = (test_time[0O],test_time[1l],test_time[2])
if count == 0:
count = 1
keys = list_elem .keys ()
s = re.compile(" (.*) (time|_id$) ")
for x in keys:
if not s.match(x):
self.__itersrbserv_comb[x[2:]] = {}
for x in keys:
if not s.match(x):
if not self.__itersrbserv_comb[x[2:]].has_key(is_id):
self.__itersrbserv_comb[x[2:]][is_id] = []
self.__itersrbserv_comb[x[2:]][is_id].append((time.mktime(time .
strptime (list_elem[’'M.time’],’$Y-%m-%d $H:$M:%S’))\

o©
jas]
oe
=
oe
wn

—time . mktime (time . strptime (self.start_time[is_id],’%Y-%m-%d
"N
,float (list_elem[x])))

self.__db_object.lock_it()

self.__db_object.db_cursor.execute ("SELECT A.* FROM application AS A,
measurement AS M WHERE A.measurement_id = %s \
and M.measurement_id = A.measurement_1id" %list_elem["M.measurement_id"])
applications = self.__db_object.db_cursor. fetchall ()

self.__db_object.rlock ()

store the values for the particular time in is_id
for x in applications:

for key, item in x.items():

if key != "A.name" and key != "A.command" and key != "A.
application_id" and key != "A.measurement_id":
if not self.__itersrbserv_comb.has_key(x[’A.name’]+"_"+key[2:]):
self.__itersrbserv_comb [Xx[’A.name’]+"_"+key[2:]] = {}
if not self.__itersrbserv_comb[X['A.name’]+"_"+key[2:]].has_key(
is_id):
self.__itersrbserv_comb[Xx['A.name’ J+"_"+key[2:]][is_id] = []

self.__itersrbserv_comb[x[’A.name’ J+"_"+key[2:]][is_id].append ((
time . mktime (\

time.strptime (list_elem ['M.time’],’$Y-%m-%d %$H:%M:%S’))\

—time . mktime (time . strptime (self . start_time[is_id],’%Y-%m-%d %H:%
M:%S7))\

,float (item)))

count = 0

80

63
64
65
66
67
68
69
70
71
72
73
74
75
76

Implementation

6.5 Multiple Measurement Diagram

setup the listbox with possible graphs
if self.__listb.size() == 0:
for x in self.__itersrbserv_comb.keys():
self.__key_list.append(x)
self.__key_list.sort ()
for x in self.__key_list:
self.__listb.insert("end",x)
active = X
store the current graph in self.__active
if self.__active == None:
self.lists = self.__itersrbserv_comb[active]
self. __active = active

81

Chapter 7

Tests

The measurement system has been tested with one and three machines. Unfortunately, a
testing SRB system could not be provided until the end of the project. Furthermore, the
development and the finished prototype of the project needed more time than expected.
At least the measurement system was tested on an SRB system running on one machine
with a monitoring client and a monitoring server. The following test scenarios have only

the purpose to show that the required functionality has been achieved.

7.1 Test with one Server

The test environment is a Samsung P35 notebook with a 1.6 Giga Hertz (GHz) Intel®
centrino processor. A Linux Suse distribution version 9.3 is installed on the machine and
will be used to perform the test. All necessary tools are installed in the way as it has
been described in the "Installation and Configuration" section A.2 on page XIII. The SRB

server, the monitoring client, and the monitoring server are running on this machine.

7.1.1 Configuration

At first, the SRB server needs to be started. Thus, the SRB server will be executed with the
command “perl install.pl start”. Afterwards the monitoring server will be started
without any parameter that the network port will be set by default to 5000. The last step
is to start the GUI client and to configure the measurement in the configuration file or

directly in the client. The most important setting in the configuration file is the IP address

82

© o N L R W N =

Tests 7.1 Test with one Server

and the network port of the monitoring server. The configuration file used for the test has

been adjusted as follows:

Listing 7.1: Test Configuration for 1 Machine

-
[test]

application = python2.4; postmaster

name = lasttest

desc = none

[project]

name = Testproject
desc = none

[tester]

surname = Koebernick
email = c.koebernick@rl.ac.uk
forename = Carsten
[server]

host_1 = 192.168.12.14
port_1 = 5000

quantity = 1

[measurement |

srb = 1

application = python2.4 /home/ck/programs/SputTests/src/sputData.py
poll_time = 15

quantity = 28
L

It is important to set the measurement — srb value to 1 for measuring the SRB server. For
more information about the configuration file, please have look back in the table 5.1 on

page 43.

By pressing the “Start” button the test begins in the monitoring client. For testing the
measurement of the SRB application, a given script from the RAL has been used. The
script creates load on the SRB application for approximately four minutes. Therefore,
the test will measure for seven minutes to see how the applications behave during and
after the measurement has finished. The monitoring client measures will measure the the
applications every 15 seconds, which means the maximum number of measurements must
be 28. Three applications will be measured, the SRB application, the “Postgres” database,
which is part of the SRB application, and the test application from the RAL.

83

Tests 7.1 Test with one Server

7.1.2 Results

The picture 7.1 shows that the SRB server does not create the main load. The biggest
load will be created by the “postmaster” process, stands for the Postgres database. The

“Python2.4” graph is the test application and creates also less load than Postgres.

_

0

=)

50

om0

40

30

20

10

=i
0.0 47,2 94,4 141,7 488,9 236,1 2B3IZ 3I0.6 IFT.E 4260
TIHE in sec

| puthonZ. 4 |
| postmaster |
| srh |
Eocpu 1 95
Ecpu_w!le J oo |—| Save graph |
|Cpu_nice
[cpu_system 28
|cpu_user / Zoom infout: [T Legend |
[Ready

fig. 7.1: Test Single View

The maximum values of the measurement cycle are listed in table 7.1.

Table 7.1: Maximum values of the applications

Application CPUload Memory File descriptors

Test application 1.3 0.2 9
SRB 0.2 1.0 32
Postgres 68.1 2.7 306

Unfortunately the complete load is on one machine, which means the measurement sys-
tem will be influenced by the load of the SRB server. Hence, the 15 seconds between two
measurements cannot be maintained. Mostly the time interval between two measurements

is 16 seconds, but up to 19 seconds are possible.

84

Tests 7.1 Test with one Server

The table 7.2 shows that the measurement has used a maximum of 75% CPU system
capacity. Furthermore it is interesting that a system, which runs a Standard Suse 9.3

1

distribution with a few programmes and an X server, runs over 100 processes on a Linux

operating system. The other results just show that the application works properly.

Table 7.2: Maximum values of the machine
Metric Value
cpu_system 75.0

cpu_nice 0.0
cpu_user 22.0
cpu_idle 83.1
proc_total 131

Furthermore, a measurement cycle with 200 measurements has been tested and success-
fully finished. So, if someone needs a measurement system running on a single machine,
which collects the CPU load and other metrics from the SRB server and other applications

and provides history and real time graphs, this measurement system can be used.

X window system provides an API between hardware and a desktop systme to provide a GUI on Unix
based systems[23]

85

Tests 7.2 Test with three Servers

7.2 Test with three Servers

As mentioned before, this test runs no SRB server application and measures only standard
applications in a network with three computers. The monitored application is bash, be-
cause this application ran on all machines. All computers are in a C-class network, which
is in the range of 192.168.1.0 and 192.168.1.254. The used computers are in table 7.3.

Table 7.3: Machine Specification

Component IBM T42 IBM T22 Samsung P35

CPU Pentium M 1.6 GHz Pentium 3 900 MHz Pentium M 1.6 GHz

Memory 512 MB 256 MB 1280 MB

Chipset Intel 855PM Intel 440BX Intel 855PM

IP address 192.168.1.102 192.168.1.103 192.168.1.106

Host name theodore.anderl localhost.localdomain linux.site

Distribution Suse 9.3 Debian sarge Suse 9.3

Task monitoring server monitoring server monitoring server &
client

7.2.1 Configuration

The server machines, which are all three computers, need to have Ganglia and a standard
Python version running the monitoring server. The Samsung computer runs again the

monitoring client, which connects to its own monitoring server and to the other ones.

It is very important, before testing the measurement system in a network, to look for
the distribution firewall of Linux. Sometimes a Firewall is running, which blocks the
Ganglia UDP transmission. For example, the “SuseFirewall” of Suse 9.3 has blocked
Ganglia, but not the TCP connection between the monitoring client and the monitoring
server. Therefore, the user might wonder why the measurement system does not receive
any data, whereas it is connected to the servers. So, either stopping, or configuring the

firewall is necessary that the system is able to work properly.

The configuration file has to be adjusted again. The application, which should be mon-

itored, must be changed to “bash” to monitor both applications. The srb flag can be set

86

R - ¥ N T

Tests 7.2 Test with three Servers

to zero, because no SRB server is running and the three servers must be configured with

port and IP address.

s

[measurement |
stb = 1

application = none

[test]
application = bash; gkrellm
srb = 0

[server]

host_1 = 192.168.1.106
port_1 = 5000

host_2 = 192.168.1.102
port_2 = 5000

host_3 = 192.168.1.103
port_3 = 5000

7.2.2 Results

The Maximum values of all three machines are shown in table 7.4. If the monitored
applications occur mistakes, all measurements will be 0. All three servers idle most time
and the Bash runs on the computers with less CPU usage. The test results show that it
might be useful to know how much processes are running of the respective application.
For example the “T42” has 84 open file descriptors, which means for the Bash that many

processes are running of the application.

Table 7.4: Maximum Values of 3 Machines

Metric IBM T42 IBM T22 Samsung P35
bash_cpu 2.1 1.8 0.7
bash_mem 4.1 2.8 0.5

bash_fd 84 21 23
server_cpu_idle 90.0 77.0 80.0
server_cpu_nice 0.0 0.0 0.0

Continued on next page

87

Tests 7.2 Test with three Servers

Metric IBM T42 IBM T22 Samsung P35
Server_cpu_user 4 40 28
server_cpu_system 3.6 6.0 6.5
server_proc_total 113 87 139

The picture 7.2 shows the associated graph for the “server_cpu_system”. The user should
not use more than 4 graphes in one diagram, because the diagram would become to com-

plex.

~ server_cpu_system 2

=
e
Lol
M
5
L ad
c
P
"
H
4
=
t
o
Ll
G0 4.0 68,0 12,0 13E.0 17,0 20,0 EEERT 2720 06,0
TIME in sec
port | machine | time |
11 theodore,ander]l | ZO0G-0Z-0L 20103145 |
11 line,site | 200G-02Z-0L 20103145 |
1 llocalhost,localdomain | 2006-02-01 20303145 |
server_cpu_idle 1]
Server_cpu_hice Contoron: |] Save graph |
server_cpu_system
SErver_Cpu_user _ 20
server_proc_total i Zoom infout: I—l—l Legerd |
|Ready

fig. 7.2: Test Multiple View

88

Chapter 8

Conclusion

The project has finished with a prototype measurement system that allows to monitor SRB
and standard applications. The measurement system is based on a client server approach,
which is one possibility to meet the task of the project. Many features were developed dur-
ing the implementation of the project. For example, the dynamic graph was not part of the
project, but helps getting a general survey over the current measurements. Furthermore,
two client applications have been developed to work with and without a Graphical User
Interface. So, the measurement system can be used independent from a Linux Desktop
environment and the TK programming language. Both clients can be used for long-run
measurements to monitor machines for hours and days. The amount of measurements can
be adapted over the time interval between two measurements and the maximum number
of measurements. So after the system has been configured it can run without any inter-
action of the user. Imaginable uses are that the console client does the measurement and
the user checks the current measurement cycle with the GUI client. Besides the use of
the applications the code has been divided into modules, that for example the socket con-
nection can be used for other projects as well. Furthermore two dialogs were developed
to separate diagrams and main GUI. So, the system can open endless diagram dialogs to
compare every different measurement cycle and machine from every project or test with

each other.

The development has also shown that other approaches are also qualified to solve the
project. The client server approach needs to start and stop a monitoring server on the
server machines. Instead of using a monitoring server, a daemon could be started, which

would be configured with a configuration file. That means, the measurement system could

89

Conclusion 7.2 Test with three Servers

abandon on the additional socket connection to configure the server machines. But, there

are always many ways leading to Rome.

Unfortunately, not all targets have been achieved. The adding of new metrics needs little
code and database changes, which is not efficient. However, the main target was at first
to finish all features. So, for the improvements of the system was no time at the end of
the project. The now following "Future Prospect” shows a new database approach, which

would solve the problem.

90

Chapter 9

Future prospect

The following chapters gives some suggestions for an improvement of the measurement
system. Most important changes are necessary in the database model and from it follow-
ing code changes. Furthermore, some features will be given, which could improve the

handling of the measurement system.

Debugging and Testing As already mentioned, the measurement system needs more
tests and debugging sessions. Especially an SRB system is needed, where some
measurements run with more than monitoring server. The programme needs also

more security queries to develop a more reliable system.

Look & Feel The usability of the main dialog can be improved in many parts. For exam-
ple, the opening and closing of the list boxes in the main frame might be confusing
for a new user. Furthermore, a simple view, which allows a closer look on the ta-
bles, has already been started, but not finished until the end of the project. It would
be nice, if the user could edit the entries of the test, project, tester, and host table,

so that it is possible to change for instance the description of a particular project.

User help inside of the GUI application If the measurement system should get more ac-
knowledgments, it would be nice to have a Help screen in the GUI, which explains
the main features directly in the application. A help frame would give the user a lit-
tle introduction into the measurement system and the user will get a simpler access

to the system.

Smaller functions in the gui2_ui module The gui2_ui module, which contains the clas-

ses for the main dialog, needs smaller functions. Especially the creation of the list

91

Future prospect 7.2 Test with three Servers

boxes within the graph_choice class has to long functions, which makes it hard to

extent the dialog with more functionality. Therefore, this module needs a review.

Add y-axis zooming to the Graph dialog Now, the measurement system allows zoom-
ing into the history diagrams, but only within the x-axis. The y-axis zooming would
be good to scale into the diagram and take accurate measurements. If a measure-
ment cycle consists of values with big value differences, only inaccurate metering

is possible.

Change the timing behaviour The timing between two measurements is not accurate in
comparison to the value in the configuration file. The load of other applications can
effect the time. Thus, it is better to create a time manager, which uses clock time
instead of using the sleep function. Furthermore, the latency that occurs between
two measurements effects every further measurement. For instance, if the time in-
terval between two measurements is set to 15 seconds and the first measurement has
been done at 14:30:15, the measurement system would wait until 14:30:30 before

the next measurement will be made.

Migrate the application to newer versions of Python, SQLite and Pysqlite Some func-
tions missed during the development, which would allow a foolproof implementa-
tion of the measurement system. For instance, the socket module of Python 2.3
supplements with a function to set a connection timeout. If a particular IP address
is available, but the port is not open, the connection waits until the operating system
returns that the connection has not established. However, the connection timeout
can be set to a particular time interval with Python 2.3. For example, if the server
and the client have no connection within that time interval, the function would stop

the connection establishment after the time ran off.

If a new version of Python would be used, the SQLite and Pysqlite versions should
be upgraded as well. SQLite version 3 allows writing and reading at the same time.
There are still some bugs with multithreaded environments, but the “Changelog”
says that SQLite3 at least deals better with threading [24]. If it works better, it
should be considered to abandon on the exclusive locks for every database com-
mand. This might improve the speed of the application, because sometimes the
main dialog of the measurements needs many database queries successively and
this means many locks and releases. The old SQLite 2 databases can be kept, be-

cause database files can be converted to the new SQLite3 format and back:

92

Future prospect 7.2 Test with three Servers

sqglite3 olddb.db .dump |
sglite olddb.db .dump |

sqglite newdb.db (sglite3->sqglite2)
sglite3 newdb.db (sglite2->sqglite3)

A good side effect is that the file size would be decreased between 25% and 35%.

The used Pysqlite 1.0 for SQLite2 is outdated. The new version Pysqlite 2.1 should
be used for the SQLite3 datbase. Other interfaces between Python and SQLite
become available with the new versions, such as “apsw”[25], which is smaller than

Pysqlite.

Database revision The database needs a little more normalisation, because there are still

some redundancies in the database. For example, the measurement table stores the

host v
¢ host_id: INTEGER metric v

tester v

project v la tester_id: INTEGER

l? project_id: INTEGER
¢y title: VARCHAR

¢y forename: VARCHAR
¢ surname: VARCHAR

¢y hostname: INTEGER
¢y ip_address: INTEGER
¢ cpu_speed: INTEGER

¢ metric_id: INTEGER
¢y name: VARCHAR

¢y description: VARCHAR

¢y description: VARCHAR ¢y email: VARCHAR

& memory: INTEGER

1% 1,
[1,]

[1,1] [1,1]
[1,1] [1,1]
e = measurement_values v
e < § srbserver_id: INTEGER §§ velld: INTEGER
§ test_id: INTEGER & host_id: INTEGER (FK) ¢ metric_id: INTEGER (FK)
& tester_id: INTEGER (FK) & srbport: INTEGER & measurement_id: INTEGER (FK)
4 Project_id: INTEGER (FK) ¢y value: VARCHAR
¢y title: VARCHAR [1,%]
1,1
¢y description: VARCHAR o1
¢ failed_flag: INTEGER
on O O
1,1
ey [1,1] [1,%]
iteration v
iteration_srbserver v measurement v
@ Iiteration_id: INTEGER
¥ - 17 1 @ is_id: INTEGER 7 1 f# measurement_id: INTEGER

& test_id: INTEGER (FK)
¢ time: VARCHAR
@

4p Is_id: INTEGER (FK)
¢y time: INTEGER

4 iteration_id: INTEGER (FK)

4p srbserver_id: INTEGER (FK)
application: VARCHAR

fig. 9.1: New Database Approach

measurements for every SRB server and a few measurements for the client. If more
than server will be measured in one measurement cycle, the data of the client will be
stored in every measurement row of the measurement table for every SRB server.
This means the number of servers determines the number of redundancies. So a
possible solution is to create an own measurement row for a client and abandon the
client columns from the measurement table. The data would be independent from

the SRB server measurements.

93

Future prospect 7.2 Test with three Servers

Furthermore, complete new tables are conceivable. For example a metric table,
which stores all types of metrics so far used and will be advanced if new types of
metrics have been used. The value table would store the values of the measurement
and a foreign key would link the value to the type of metric. The figure 9.1 on
the page before shows the new approach. The modification of the database would
need many changes in the code, but the measurement system would be very easy to

extent with new type of metrics.

Plugin Module for new metrics Another improvement could be a new Python module,
which parses two folders containing Bash scripts. The first folder consists of scripts
to monitor applications and the other one to monitor the machine. This enables an

easy extension of new metrics.

94

Abbreviations

APLl Application Programming Interface
bash Bourne Again Shell

gmetad Ganglia meta daemon

gmond Ganglia monitor daemon

GPL General Public License

Gtk ... Gimp Toolkit

GUI Graphical User Interface

MFC Microsoft Foundation Classes
SDSC ... San Diego Supercomputer Center
SQL ... Structured Query Language

SRB ... Storage Resource Broker

TCL ...l Tool Command Language

TCP ... Transmission Control Protocol
TK oo Toolkit

UDPooiit. User Datagram Protocol

XDR ... External Data Representation
XML ... Extensilbe Markup Language

IX

Bibliography

[1]

[7]

[12]

[13]

[14]
[15]

[16]

Perl Snapshot - Kurzer Prozess. http://www.linux-magazin.de/Artikel/
ausgabe/1999/02/Proc/proc.html.

Ganglia webpage. http://www.ganglia.info.

Nagios webpage. http://www.nagios.org.

Genral Public License. http://www.gnu.org/licenses/gpl.html.
Wikimedia Ganglia Server. http://ganglia.wikimedia.org.

RRDtool. http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/.
NagiosExchange Portal. http://www.nagiosExchange.org.

PerfParse - Addon for Nagios. http://perfparse.sourceforge.net/.
mySRB. http://www.sdsc.edu/srb/mySRB/mySRB.html.

inQ. http://www.npaci.edu/dice/srb/inQ/inQ.html.

Grid Security Infrastructure. http://security.sdsc.edu/help/pki/gsi.
shtml.

SDSC, SRB - Scommands. http://www.sdsc.edu/srb/srbcommands.html.

Understanding file permissions on Unix: a brief tutorial. http://www.dartmouth.

edu/~rc/help/fag/permissions.html.
Tkinter. http://wiki.python.org/moin/TkInter.
SQOL development tutorial. http://www.cachemonitor.de/sqgl.html.

SQLite documentation, 2005. http://www.sglite.org/docs.html.

http://www.linux-magazin.de/Artikel/ausgabe/1999/02/Proc/proc.html
http://www.linux-magazin.de/Artikel/ausgabe/1999/02/Proc/proc.html
http://www.ganglia.info
http://www.nagios.org
http://www.gnu.org/licenses/gpl.html
http://ganglia.wikimedia.org
http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
http://www.nagiosExchange.org
http://perfparse.sourceforge.net/
http://www.sdsc.edu/srb/mySRB/mySRB.html
http://www.npaci.edu/dice/srb/inQ/inQ.html
http://security.sdsc.edu/help/pki/gsi.shtml
http://security.sdsc.edu/help/pki/gsi.shtml
http://www.sdsc.edu/srb/srbcommands.html
http://www.dartmouth.edu/~rc/help/faq/permissions.html
http://www.dartmouth.edu/~rc/help/faq/permissions.html
http://wiki.python.org/moin/TkInter
http://www.cachemonitor.de/sql.html
http://www.sqlite.org/docs.html

Bibliography

[17] MySQL for Python. http://dustman.net/andy/python/python-and-mysql.
[18] Pysqlite homepage. http://initd.org/tracker/pysqglite.

[19] XML Meta languages. http://www.brics.dk/ixwt/IXWT_CO04c.pdf.

[20] SQOL - FAQ. http://sqglite.org/faqg.html#qg8.

[21] UNIX ON-LINE Man Pages. http://unixhelp.ed.ac.uk/CGI/man-cgi.

[22] Mark Lutz & David Ascher. Learning Python. O’Reilly, 2. edition, 2004.

[23] X window system. http://www.xfree86.o0rg/.

[24] SQLite 3. http://www.sqglite.org/version3.html.

[25] APSW - Another Python SQLite Wrapper. http://www.rogerbinns.com/apsw.
html.

[26] Bash Reference Manual. http://www.gnu.org/software/bash/manual/
bashref.html.

[27] Ethereal webpage. http://www.ethereal.com.

[28] The Ganglia Distributed Monitoring system. http://www.clusterworld.com/
CWCE2004/Matt_Massie_presentation.pdf.

[29] fraendz - Install Sqlite. http://www.stud.uni-goettingen.de/~s291325/

cgi-bin/run-cvstrac.cgi/wiki?p=InstallSqlite.
[30] KDE.org. http://www.kde.de/index.php.
[31] Python homepage. http://www.python.org.

[32] Helmut Herold. Linux/Unix-Kurzreferenz (short reference). Addison Wesley, 2.
edition, 2003.

[33] SQLite download. http://www.sqlite.org/download.html.

[34] SDSC, http://www.sdsc.edu/srb/CurrentSRB/SRB.htm. SRB - Storage Re-

source Broker, current edition. San Diego Supercomputer Center.

XI

http://dustman.net/andy/python/python-and-mysql
http://initd.org/tracker/pysqlite
http://www.brics.dk/ixwt/IXWT_C04c.pdf
http://sqlite.org/faq.html#q8
http://unixhelp.ed.ac.uk/CGI/man-cgi
http://www.xfree86.org/
http://www.sqlite.org/version3.html
http://www.rogerbinns.com/apsw.html
http://www.rogerbinns.com/apsw.html
http://www.gnu.org/software/bash/manual/bashref.html
http://www.gnu.org/software/bash/manual/bashref.html
http://www.ethereal.com
http://www.clusterworld.com/CWCE2004/Matt_Massie_presentation.pdf
http://www.clusterworld.com/CWCE2004/Matt_Massie_presentation.pdf
http://www.stud.uni-goettingen.de/~s291325/cgi-bin/run-cvstrac.cgi/wiki?p=InstallSqlite
http://www.stud.uni-goettingen.de/~s291325/cgi-bin/run-cvstrac.cgi/wiki?p=InstallSqlite
http://www.kde.de/index.php
http://www.python.org
http://www.sqlite.org/download.html
http://www.sdsc.edu/srb/CurrentSRB/SRB.htm

A Handbook

A.1 Files

The following subsections list all necessary files to use the measurement system.

A.1.1 Monitoring server

Table A.1: Files of the monitoring server

File Language Task

python_server.py Python executable

ganglia.py Python connection to gmond

socket_connection.py Python provides a socket connection

average.sh Bash measures the CPU efficiency of the SRB
server

average_mem.sh Bash measures the memory efficiency of the SRB
server

num_fd.sh Bash measures the open file descriptors of the
SRB server

A.1.2 Monitoring client

Table A.2: Files of the monitoring client

File Language Task

gui2.py Python executable for the GUI client

Continued on next page

X1II

Handbook

A.2 Installation and Configuration

File Language Task

console.py Python executable for the console client
python_client.py Python main functions for the measurement cycle
gui2_ui.py Python main dialog of the GUI

myplot.py Python second dialog for the diagrams

tooltip.py Python tooltip class for the diagram dialog
Graphs.py Python provides the diagrams for the myplot module
utils.py Python small scripts for the Graphs module
config.ini Text configuration file

ganglia.py Python connection to gmond

socket_connection.py Python provides a socket connection

srb.db SQLite database file; can be created with the exe-

cutables

A.2 Installation and Configuration

The installation of the necessary tools was one of the first investigations of the project. All

these applications have to be installed in user mode. This means no precompiled binary

packages, which are common for Linux distributions such Suse, Red Hat, or Debian, can

be used for the installation. The source packages of Ganglia, SQLite, Python, and Pysqlite

have been downloaded from the respective homepages and the following versions have

been used:

Table A.3: Application Versions

Application Version Reference

Python
Ganglia
SQLite
Pysqlite

223 [31]
3.3.1 [2]

2.8.16 [33]
1.0 [18]

The monitoring server needs only a Python and Ganglia installation, but the client needs

all four.

XIII

Handbook A.2 Installation and Configuration

The standard progress for installing applications in Linux is to configure the sources,
build the sources with make and install them with make install. Many applications can
be installed in user mode by adding a single parameter to the configure command. The
parameter —-with-prefix="/<directory>/" sets a new directory for the installation
path and allows to install the sources into a folder with user rights. The following progress

works for most applications:

./configure --prefix=/home/<username>/<program folder>
. /make

./make install

Not every application provides a configure script. Some source packages use installation
files written in particular script languages. Therefore, the following subsections show the

installation of the used tools in more detail.

A.2.1 Ganglia

The installation of Ganglia is the same as it has been explained before. Just use the

following commands to install it:

./configure --prefix=/home/%username%/%program folder$%
make

make install
Afterwards it is necessary to create “gmond.conf” to test the correct installation:
$ganglia-folder%/sbin/gmond -t > gmond.conf

After the creation one need to change the parameter setuid=yes to setuid=no and delete
the line user=nobody in the file. Furthermore, Ganglia should not use a multicast chan-
nel, because measurement system uses direct connections to minimise the traffic. Oth-
erwise all measurement data would be send to every monitoring server and client. By
substituting the mcast option with the host=<hostname or IP> option, Ganglia will be
ready for the first test. The host option can be set to the localhost address: 127.0.0.1.

The following command starts the gmond with configured “gmond.conf:

X1V

Handbook A.2 Installation and Configuration

./gmond -c gmond.conf

An additional parameter -d %debug-level$% starts the gmond as a standard applica-
tion and not as daemon. Afterwards, the gmond shows verbose messages, which can
be analysed, if problems occur. To gather the output of Ganglia, a telnet query can be

used to test the functionality.
telnet 8649 localhost

The command queries the localhost address on port 8649 for any messages and if the
gmond runs properly it will return an XML string with the standard metrics that are set in

the “gmond.conf”.

A.2.2 Python

Python is also very easy to install, because it works with the standard installation. The
only parameter, which should be given to the configure script is ——with-Tkinter. This
enables the installation of the Tkinter library, which is by default part of the Python library.
It is necessary if the user wants to use the GUI monitoring client. This installation manual
supposes that TK has been installed, before Python. It is normally the case on standard

Linux distributions. The Python installation needs only the TK libraries.

A.2.3 SQLite and Pysqlite

SQLite needs no further explanation, because it works with the standard installation. It is
wise to use the option --enable-threadsafe, because the client application uses threads

to parallelise tasks.

Pysqlite uses an Python script for installation, which needs some adjustments:

edit setup.py
* include_dirs[’/%sglite-folder%/include’]

* library_dirs[’/%$sqlite-folder%/1lib’]

* runtime_library_dirs=[]

XV

Handbook A.2 Installation and Configuration

* runtime_library_dirs=library_dirs

$python_path%/bin/python2.2 setup.py build
$python_path%/bin/python2.2 setup.py install

At first the user has to edit the “setup.py” script and change the SQLite directory paths
with the one on his system. Afterwards the “setup.py” has to be started with option build
and then with the option install. It is very important to use the Python version that has been
installed by the user. There might be a root version already on the system. Therefore, it is
recommendable to use the complete Python path for the installation of Pysqlite. To test the
installation of Pysqlite the tool “pydoc” is very useful. Pydoc is in the binary folder of the
Python directory and can be started with the command line pydoc -p <port>. All the
installed packages, modules, and classes can be accessed with a browser and the target
“localhost:<port>". If Pysqlite has been installed correctly, there should be an “sqlite”
package. [29]

A.2.4 Measurement system

Before starting the monitoring client and server, both applications need to know where
Ganglia is located. Therefore, a small change in the python_server and python_client
module is necessary. Both modules begin with the import of particular library modules
and afterwards the assignment of the global variable ganglia_directory follows. It is
necessary to change the value to the main Ganglia folder on the machine. For example:

ganglia_directory = "home/userl/programs/ganglia/"

Furthermore the python_client module needs the name of the gmond configuration file,

which must be located in the sbin directory within the main ganglia folder.
gmond_conf_file = "gmond_test.conf"

Those are all necessary changes on the modules and the measurements can begin.

XVI

Handbook A.5 GUI Client
A.3 Monitoring Server
A.4 Console Client
Table A.4: Console Client Parameter
Parameter Exercise

primary-keys

A.5

-p, —project-id <id>
-t, —test-id <id>
-1, —iteration-id <id>

-s, —srbserver-id <id>

passing a project id
passing a test id
passing an iteration id

pass a srbserver id

tables

—projectlist draw a project-table

—testlist draw a test-table

—iterationlist draw an iteration table

—srbserverlist draw a srbserver table (including host pa-
rameter)

—measurementlist draw a measurement table

other parameter

-s, —startday <YYYY-MM-DD>

-e, —endday <YYYY-MM-DD>
-d, —database <file>

-c, —config-file <file>

-f, —config-dump <file>

-g, —gauge
-h, —h, —help
-v, —verbose

used in combination with endday to get

measurements between two dates

pass a database (standard:srb.db)

pass a config file (standard: config.ini)
store an config example in a new config
file

start a measurement

draw the usage of the client

draw more messages during the process

of the client application

GUI Client

XVII

Handbook

A.5 GUI Client

" SRB Benchmark: srh

Menu Window

SRB database information

Projects |

srhservers |

project-name

unset Project |
Tests

e

1: linux.site

aadd: linux. site

1: localhost.localdomain
1: theodore.ander

set Srhserver |

L1

Test_new
Testl

set Test |

|

2006-02-01 20:45:47
Z2006-02-02 10:12:58
2006-02-02 10:14:32
2006-02-02 10:15:25
2006-02-02 10:37:51
2006-02-02 10:59:03
2006-02-02 23:49:21
2006-02-03 00:00:21
2006-02-03 00:03:20
Z2006-02-09 00:32:18

get Measurements

Start

database locked
database released
database locked
database released

fig. A.1: Main

XVIII

Handbook

A.5 GUI Client

SRB Benchmark: srb.db

Menu Window

server.quantity

measurement.application
measurement.poll_time
measurement.quantity
measurement.srh
project.desc
project.name
test.application
test.desc
test.name
tester.email
tester.forename
tester.sumame
server.host_1
server.port_1

Set

1
2

pythanz 4 shamesck/programs/SpufTests/srossputData py

13

20

none

project-name

bash;gkrelln

none

Test

c.koebernick@rlac.uk

Carsten

koehernick

19216810100

S000

Write Config |

database locked

Start || database releassd

database locked
database released

~|

fig. A.2: Configuration

XIX

Handbook

A.5 GUI Client

bash_memory
client_cpu_idle
client_cpu_nice

/

Center on: I—I—I

20

Zoom infout: |_|_|

140]
——
16 4
130 4
126 1
=
= 1zn 1
"
w 115 1
e
T f
5 106 1
r
o o0 j
o a5 i
t e 1
o Bzpa®
S| T 1
2 S
L 2 n n n " n " " n n n n n n n " n i
L) 33.2 6.4 99.7 132,92 166,1 199,3 232,56 266,58 299,40
TIME in sec
port | machine | time |
1 llocalhost, localdomain | 2006-02-01 20303145 |
1 llocalhost, localdomain | 2006-02-01 19316162 |
11 theodore, anderl | 2006-02-01 191161652 |
11 linux,site | 2006-02-01 193163828 |
bhash_cpu 1]
hash_fd |

Save graph |

Legend |

||DouhIeClick Left Mouse Button to zoom in and Right Button to zoom out

fig. A.3: Diagram Dialog

XX

50

B Python Scripts

B.1 python_server.py

#!/usr/bin/env python
5 """ Performance test program (Server) to catch
information about applications running on the SRB """
_author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
_date__ = "07.09.2005"
10 __version__ = "0.1"
_revision__ = "1.0"
####HH S H#H##### never use more than one server on one machine
""" the module commands is necessary to get the output from the telnet into a variable """
15 import commands
""" import the server class from the file socket_connection.py """
from socket_connection import CsocketServer
""" sys is used to stop the application with sys.exit () """
20 | import sys
import getopt
import threading
25
import re
from ganglia import Cinitialization
from time import sleep
30
i_portnumber = 5000
change here to setup another ganglia folder
ganglia_directory = "~/programs/ganglia/"
35 class Cgetoptions
""" get options and parameter from the command line"""
def __init__(self):
""" constructor for Cgetoptions: initialise the parameter"""
try:
self.__opts, self.__args = getopt.getopt(sys.argv[l:], ’"p:hv’, ["help", "port=", "verbose"])
except getopt.error
print "argument mistakes"
self.__usage()
sys.exit(—1)
45
def usage(self):
""" Help output for new users """
print "Usage"
def start(self):
W

start the parameter verification

W

XXI

55

60

65

70

75

80

85

90

95

100

105

110

115

120

Python Scripts

B.1 python_server.py

d_commands = {}
d_commands[’ verbose’] = 0
for s_option, s_argument in self.__opts:
if s_option in ("-p", "--port"):
d_commands[’port’] = s_argument
reg_obj = re.match(" ([*0-9]) | ((\D) *(\d)+(\D)+)", s_argument)
just numbers are allowed for the port

if reg_obj != None:
print "port needs to be a number"
sys.exit(0)
i_argument = int(s_argument)
if (i_argument < 1025) or (i_argument > 65535):
print "the port needs to be between 1025 and 65535"
sys.exit(0)
#print verbose messages
elif s_option in ("-v","--verbose"):
d_commands[’ verbose’] =1

#print help (self.usage())

elif s_option in ("-h", "--help"):
print self.__usage()

sys.exit(0)
#parameter were not correct
else:
print "bad parameter"
print self.__usage()
sys.exit(0)
if d_commands.has_key(’port’) == False:
d_commands[’port’] = 5000
print "set port to 5000"
return d_commands

class RefreshGanglia(threading . Thread):
""" Thread to refresh the information of Ganglia """

def __init__(self, init_obj, srb_port, application_name, i_verbose = 0):

""" constructor to initialise the thread and create the stop event """

threading . Thread.__init__(self , name = "Refrehsgmond")
self.i_verbose = i_verbose
self.init_obj = init_obj

self.application =application_name
print self.application
self.srb_port = srb_port

self._stopevent = threading.Event()

def run(self):
""" thread function to refresh the gmond data """

while not self._stopevent.isSet():

print "refresh gmond_data"

self.init_obj.refresh_gmond(application = self.application, srb_port =
sleep_counter = 0
while sleep_counter != §5:

if self._stopevent.isSet():
break
sleep (1)

sleep_counter+=1

def stop(self):
""" stop the thread """
if not self._stopevent.isSet():
if self.i_verbose:
print "ClientDataThread stopped"
self._stopevent.set ()
self . join(timeout=1)

self.init_obj.kill_gmond ()

main function of the server

XXII

self.srb_port)

125

130

135

140

145

150

155

160

165

170

175

180

185

190

Python Scripts

B.1 python_server.py

def main():

main function which controls the connection to the client
command = Cgetoptions ().start ()

init_obj = Cinitialization (command[’verbose’], ganglia_folder =

application_name = None
try:

i_portnumber = int(command[’port’])
except ValueError:

print "bad port given take 5000"
5000

CsocketServer(i_verbose = command[’verbose’],

i_portnumber =
serversocket = i_port
try:

while True:

if init_obj.set_pid() != "":
try:
init_obj.kill_gmond ()
except:
if command[’verbose’]:
print "gmond is not running"
ip_address = serversocket.listen ()

i_receive_counter = 0

i_srbport = None

while True:

data_received = serversocket.receive ()
#print serversocket.p_conn.getsockname ()
if command[’verbose’]:

print data_received

if (data_received == "quit"):
if command[’verbose’]:
print "kill server"
break

#elif (data_received.count("hostname")):

elif (data_received.count("srbport")):
i_srbport = data_received[len("srbport™)+1:]
if command[’verbose’]:
print "gotsrbport: ", i_srbport
elif (data_received == "clientquit"):
if command[’verbose’]:
print "client wants to go"
refresh_gmond . stop ()
break
elif (data_received.count("application")):
client_hostname = data_received[len("hostname")+1:]
if command[’verbose’]:
print "Client hostname:", ip_address
init_obj.write_gmond_conf(ip_address)
init_obj.start_gmond ()
application_name =
if command[’verbose’]:
print "application name: ", application_name

refresh_gmond = RefreshGanglia(init_obj, i_srbport,

refresh_gmond. start ()

else:
if command[’verbose’]:
print "got waste from the client"
i_receive_counter = i_receive_counter + 1
if (i_receive_counter == 3):
break
serversocket.clientclose ()
if (data_received == "quit"):

try:

XXIII

ganglia_directory)

= i_portnumber)

data_received [(len("application")+1):]

application_name , i_verbose =

9]

195

200

205

210

20

25

30

35

40

Python Scripts B.2 socket_connection.py

refresh_gmond . stop ()
except:

print "gmond refreshing thread is not running"
break

except KeyboardInterrupt:
print "Server will be closed"
serversocket.socket_close ()

if init_obj.set_pid() != "":

try:
refresh_gmond . stop ()
except:
print "gmond refreshing thread is not running"
sys.exit(0)

serversocket.socket_close ()

if __name__ == ’'__main__"':

sys.exit(main())

-

B.2 socket_connection.py

~
#!/usr/bin/env python

""" performance test program (Server) to catch information about applications running on the SRB

author = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "07.09.2005"
__version__ = "0.1"
__revision__ = "1.0"

""" socket function to provide the connection between the Client and the Server process

import socket
import sys

import struct
import select
import thread
import threading
import os

import time
i_portnumber = 5511

i_hostname = "127.0.0.1"

class CsocketServer:

""" create a server socket to allow connections to this machine """

def __init__(self, i_host = "localhost’, i_port = 5555, i_verbose = 0):
""" constructor for CsocketServer class """
self.i_host = i_host
self.i_port = i_port
self.i_verbose = i_verbose
self .p_conn = 0
try:
if self.i_verbose:

print ’Socket: Creating SocketServer’
self.p_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.p_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1);
except socket.error:

print Exception+’Failed to create SocketServer object!!’

try:

if self.i_verbose:

XXIV

45

50

55

60

65

70

75

80

85

90

95

100

105

110

Python Scripts

def

def

def

print ‘Socket: Binding Socket’
self.p_sock.bind ((socket.gethostname (), self.i_port))
#self .p_sock.setblocking (False)

except socket.error:
print "SocketError: Port may be already used or device not ready"
self.socket_close ()

sys.exit(0)

listen(self, msg = "Accepted Connection from:’):

""" listen for client which want to connect to our server """

if self.i_verbose:
print 'Socket: Listening to port’, self.i_port
self.p_sock.listen (1)
self .p_conn, i_remote_host = self.p_sock.accept()
print self.p_sock.getsockname ()
if i_remote_host[0]:
if self.i_verbose:
print ’Socket: Got connection from’, i_remote_host[0]
print msg, i_remote_host[0]

return i_remote_host[0]

send (self , data):

""" send data to clients via the connection socket

(first listen to get a connection to a clientbefore send)"""

if self.i_verbose:

print ’Socket: Sending data of size ', len(str(data))

s_content = str(data)

n_length= socket.htonl(len(s_content))

size = struct.pack("L", n_length)
try:

sent = self.p_conn.send(size+s_content)
except:

print "SocketError: Cannot send %s" % (s_content)
return —1

if self.i_verbose:
print 'Socket: Data sent!!’
return 0

receive (self):
""" receive data from the client via the connection socket
(first listen to get a connection to a client)"""
data_send = ""

if self.i_verbose:

print "Receiving length..."

size = struct.calcsize("L")
try:

size = self.p_conn.recv(size)
except:

print "Socket: Cannot receive the length"
return "quit"
try:

size = socket.ntohl(struct.unpack("L", size)[0])
except:

print "Socket: Bad format for send size"

return "quit"

XXV

B.2 socket_connection.py

115

120

125

130

135

140

145

150

155

160

165

170

175

180

Pyth

on Scripts B.2 socket_connection.py

de

de

de

class

de

de

data_send = data = ""
size_decrement = size
if self.i_verbose:
print ’Socket: Receiving data...’

while len(data_send) < size:
try:
if size_decrement < 1024:
receive_size = size_decrement
else:
receive_size = 1024
size_decrement —= 1024
data = self.p_conn.recv(receive_size)
except Exception:
print "SocketError: Receive Error"

return "quit"

data_send = data_send+data

return data_send

f clientclose (self):
""" close the connection to client client (connection socket will be killed) """
self.engaged = 0
self.p_conn.close ()

f socket_close(self):
""" close the main socket to completely release the open socket """
if self.i_verbose:
print 'Socket: Closing socket!!’
self.p_sock.close ()
if self.i_verbose:

print ’Socket: Socket Closed!!’

f __str__(self):
""" get the port and the host from the server --- just debugging """
return ’SocketServer:\nSocket bound to Host='+str(self.i_host)+’,Port="+str(self.i_port)
CsocketClient:
" connection to a server via a connected client socket """
f __init__(self, i_remote_host = ’’, i_remote_port = 5000, i_verbose = 1):
""" constructor for CsocketClient class """
self.i_verbose = i_verbose
self.i_remote_host = i_remote_host
self.i_remote_port = i_remote_port
try:
if self.i_verbose:
print ’Socket: Creating Socket’
self .p_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
self.p_sock.settimeout(5)
except socket.error:
print Exception+’SocketError in Socket Object Creation!!’
f connect(self, i_remote_host = ', i_remote_port = 0):

""" connect to a server port """

#print i_remote_host " ,i_remote_port
if i_remote_host == "'
print "Socket: no host is given, try localhost"
i_remote_host = "localhost™"
if i_remote_port == 0:
print "no port is given, try %s" % self.i_remote_port
i_remote_port = self.i_remote_port
try:
self.i_remote_host, self.i_remote_port = i_remote_host, int(i_remote_port)
except:
print "SocketError: Wrong parameter for host or port"
return —1
print "host", self.i_remote_host, "port", self.i_remote_port
try:
if self.i_verbose:

print ’Socket: Connecting to ‘+str(self.i_remote_host)+’ on port ’+str(self.i_remote_port)

self.p_sock.connect((str(self.i_remote_host), int(self.i_remote_port)))

if self.i_verbose:

XXVI

185

190

195

200

205

210

215

220

225

230

235

240

245

250

Python Scripts

B.2 socket_connection.py

print ’'Socket: Connected !!!’
return 0
except socket.error:
print "SocketError: Connection refused to %s on port %i

return —1
except KeyboardInterrupt:

print "SocketError: Could not connect KeyboardInterrupt"
return —1

def send(self, data):
""" send data to the servers via the connection socket

(first listen to get a connection to a clientbefore send)"""

if self.i_verbose:

print ’Socket: Sending data of size ', len(str(data))

s_content = str(data)

n_length= socket.htonl(len(s_content))

size = struct.pack("L", n_length)
try:

sent = self.p_sock.send(size+s_content)
except:

print "SocketError: Cannot send %s" % (s_content)

return —1

if self.i_verbose:
print ’Socket: Data sent!!’
return 0

def receive(self):
""" receive data from the client via the connection socket
(first listen to get a connection to a client)"""
data_send = ""
if self.i_verbose:

print "Receiving length..."

size = struct.calcsize("L")
try:

size = self.p_sock.recv(size)
except:

print "Socket: Cannot receive the length"

return "quit"

try:
size = socket.ntohl(struct.unpack("L", size)[0])
except:
print "Socket: Bad format for send size"
return "quit"
data_send = data = ""
size_decrement = size
if self.i_verbose:

print 'Socket: Receiving data...’
while len(data_send) < size:
try:
if size_decrement < 1024:
receive_size = size_decrement
else:
receive_size = 1024
size_decrement —= 1024
data = self.p_sock.recv(receive_size)
except Exception:
print "SocketError: Receive Error"

return "quit"

data_send = data_send+data

return data_send

XXVII

" % (self.i_remote_host,

self.i_remote_port)

255

260

20

25

30

35

40

45

50

Python Scripts B.3 ganglia.py

def close(self):
""" close the connection to the server """
#print "close"
self.p_sock.close ()

def __str__(self):
""" get the remote host and the remote port --- just debugging"""
return ’SocketClient\nClient connected to Host='+str(self.i_remote_host)+\

', Port="+str(self.i_remote_port)

B.3 ganglia.py

#!/usr/bin/env python

""" GANGLIA module to start refresh and stop the daemon """

__author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "17.10.2005"

__version__ = "0.1"

__revision__ = "1.0"

""" the module os is necessary to start several programs by calling os.sytem("%program%")
import os

""" sleep function is needed to give ganglia a particular amount of time to get the system-values that are needed
from time import sleep

import re

from telnetlib import Telnet

import commands

class Cinitialization:

""" Class to initialise the gmond server and to set all necessary variables """

def __init__(self, i_verbose=0, ganglia_folder = None):
""" constructor of the Cinitialization class"""
self.pid = 0

self.__i_verbose = i_verbose
if (ganglia_folder == None):
self.ganglia_folder = "~/programs/ganglia/"
else:
self.ganglia_folder = ganglia_folder
def start_gmond(self ,gmond_conf = "gmond_test.conf"):

""" start the ganglia monitoring daemon """
os.system(self.ganglia_folder+"sbin/gmond -c " \
+self.ganglia_folder+"sbin/"+gmond_conf)

self .set_pid (gmond_conf)

def

—_-

set_pid(self ,gmond_conf = "gmond_test.conf"):

""" get and set the pid for the own gmond process to kill it at the end"""

self.pid = commands. getoutput("ps -o pid,command -C gmond | grep "+gmond_conf+" | awk ’{print $1}'")
return self.pid

def __no_application(self):
""" this function will be used if no application has send """
stringer = self.ganglia_folder+"""bin/gmetric —c """ \

+self.ganglia_folder+ sbin/gmond_test.conf —mname cpu_used_srb_server \

—value 0.0 —type float —units %

os.system(stringer)
no filedescriptors

stringer = self.ganglia_folder+"""bin/gmetric —c """ \

H#H ¥ ¥ H H R O K K H

+self.ganglia_folder+ sbin/gmond_test.conf —name number_filedesc_srb_server \

XXVIII

55

60

65

70

75

80

85

90

95

100

105

110

115

120

Python Scripts

B.3 ganglia.py

—value 0 —type intl6 """
#
os.system(stringer)
no memory use of srb
stringer = self.ganglia_folder+"""bin/gmetric —c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf —name mem_used_srb_server \
—value 0.0 —type float —units Byte"""
#
s.system(stringer)
def refresh_gmond(self, application = None, srb_port = None):
""" refresh_gmond refreshes the values of Ganglia """
if (srb_port!=None and self.__i_verbose):
if self.__i_verbose:
print "srb_application: ", srb_port
s.system(self.ganglia_folder+"bin/gmetric -c " \
+self.ganglia_folder+"sbin/gmond_test.conf --name hostname \
--value ‘hostname -f' --type string ")
get the information for srb application of the srb_server
if srb_port != None:
#print """srb—port without application"""

os.system(self.ganglia_folder+"bin/gmetric -c " \

+self.ganglia_folder+"sbin/gmond_test.conf --name srb_fd \
--value ‘./num_fd.sh "+srb_port+"' --type intlé ")
vy
--name srb_cpu \
float™")

os.system(self.ganglia_folder+"bin/gmetric -c
+self.ganglia_folder+"sbin/gmond_test.conf
--value ‘./average.sh "+srb_port+"' --type
stringer = self.ganglia_folder+"""bin/gmetric -c """ \

+self.ganglia_folder+"""sbin/gmond_test.conf --name srb_mem \
--value ‘./average_mem.sh """+srb_port+"""' --type float --units Byte"""

s.system(stringer)

\
+self.ganglia_folder+"""sbin/gmond_test.conf --name srb_cmd \

stringer = self.ganglia_folder+"""bin/gmetric -c

--value srb --type float --units Byte"""

os.system(stringer)

i=-1

get the information for the normal applications
if application != "’:
apps = application.split(’;")

if apps[—1]=="":
del apps[—1]

p = re.compile(’” ')
s_app = []
for i in range(0,len(apps)):
#print i
apps[i] = p.sub("",apps[i])
f_cpu = f_mem = 0.0
#print "appsi ",apps[i], 1
s_cpu_mem = commands. getoutput("""ps -C "%s" -o pmem,pcpu | awk ’{print $1
if s_cpu_mem != "":
cpu_mem = s_cpu_mem.split("\n")

for x in cpu_mem:
if re.match("[0-9.]",x):

X = x.split("™ ")
f_cpu += float(x[1])
fomem += float(x[0])

s = re.compile(’ [a-zA-20-9_\-\.]+")

s_app.append(s.match(apps[i]))

XXIX

"

$217 " % apps[i])

125

130

135

140

145

150

155

160

165

170

175

180

185

190

Python Scripts

B.3 ganglia.py

def

—_-

s_app[i] = s_app[i].group ()
i_count =0
for x in range(0,i):
if s_app[x].find(s_app[i]) != —1:
i_count +=1
if i_count != 0:
print "not two commands with the same application"

continue
stringer = self.ganglia_folder+"""bin/gmetric -c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name """+s_app[i]+"""_mem \
--value "%s" --type float --units Byte""" % f mem

""" set the used file_descriptor value of the srb_server """
1 _pid = []

s_pid = commands. getoutput("ps u -C ’""+apps[i]+"’ | grep $USER | awk '{print $2}’'");

#""" just the open application of the user will be measured"""
1_pid = s_pid.split("\n");
#""" divide the different application pids"""
i_number_fd = 0
for s_single_pid in 1_pid[0:]:

try:

s_number_fd = commands. getoutput("ls -1 /proc/"+s_single_pid+"/fd | wc -1")

""" get the number of open file descriptors"""
i_number_fd += int(s_number_fd)—1
""" the header should not be counted """

except ValueError:
print "Programme %s cannot be monitored!"™ % apps[i]
break

stringer = stringer+";"+self.ganglia_folder+"bin/gmetric -c¢ " \
+self.ganglia_folder+"sbin/gmond_test.conf --name "+s_app[i]+"_fd --type intlé6

--value "+str (i_number_fd)

stringer = stringer+";"+self.ganglia_folder+"""bin/gmetric -c¢ """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name """+s_app[i]+"""_cpu \
--value "%s" --type float --units Byte""" % f_cpu

stringer = stringer+";"+self.ganglia_folder+"""bin/gmetric -c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name """+s_app[i]+"""_cmd \
--value "%s" --type float --units Byte""" % apps[i]

os.system(stringer)

if i 1= —1:
i+=1
if srb_port != None:
i+=1
stringer = self.ganglia_folder+"""bin/gmetric -c """ \
+self.ganglia_folder+"""sbin/gmond_test.conf --name num_of_apps \
--value "%s" --type float --units Byte""" % i

os.system(stringer)
#else:
self.__no_application ()
#sleep that gmond can catch all the variables
sleep (0.1)

kill_gmond(self):
"""debug: kill gmond before start it new"""
if self.pid ==
self.set_pid ()
print self.pid

XXX

\

195

200

205

210

215

220

225

230

235

240

245

250

255

260

Python Scripts

B.3 ganglia.py

if self.pid != "":
try:
commands. getoutput("kill -9 "+str(self.pid));
except:
print "gmond daemon already killed"
""" wait a 0.2 second until we can restart the gmond daemon"""
sleep (0.2)

def get_gmond_output(self):
""" catch the XML output of gmond """
tn = Telnet(’localhost’, 8649) # connect to finger port
telnet_data = tn.read_all ()
tn.close ()

return telnet_data

def write_gmond_conf(self ,client_hostname):
""" create a new gmond conf, which says where ganglia has to send the data """
output = open(os.path.expanduser(self.ganglia_folder+"sbin/gmond_test.conf"),’ w’)
output.write("""/* This configuration is as close to 2.5.x default behavior as possible

The values closely match ./gmond/metric.h definitions in 2.5.x */

globals {
setuid = no
/* user = nobody */

cleanup_threshold = 300 /*secs */

/* If a cluster attribute is specified, then all gmond hosts are wrapped inside
* of a <CLUSTER> tag. If you do not specify a cluster tag, then all <HOSTS> will
* NOT be wrapped inside of a <CLUSTER> tag. */

/* Feel free to specify as many udp_send_channels as you like. Gmond

used to only support having a single channel */

udp_send_channel {
host = %s
port = 8649

~

* You can specify as many udp_recv_channels as you like as well. */

/* You can specify as many tcp_accept_channels as you like to share
an xml description of the state of the cluster */

~
*

The old internal 2.5.x metric array has been replaced by the following
collection_group directives. What follows is the default behavior for
collecting and sending metrics that is as close to 2.5.x behavior as

possible. */

/* This collection group will cause a heartbeat (or beacon) to be sent every
20 seconds. In the heartbeat is the GMOND_STARTED data which expresses

the age of the running gmond. */
/* This collection group will send general info about this host every 1200 secs.

This information doesn’t change between reboots and is only collected once. */

/*collection_group {
collect_once = yes
time_threshold = 90

b/

/* This collection group will send the status of gexecd for this host every 300 secs */

/* Unlike 2.5.x the default behavior is to report gexecd OFF. */
/* This collection group will collect the CPU status info every 20 secs.

The time threshold is set to 90 seconds. In honesty, this time_threshold could be

set significantly higher to reduce unneccessary network chatter. */

XXXI

265

270

280

285

290

295

300

310

Python Scripts

B.4 python_client.py

collection_group {
collect_every = 10
time_threshold = 10
/* CPU status */

metric {
name = "cpu_speed"
value_threshold = "1.0"
}
metric {
name = "mem_total"
value_threshold = "1.0"
}
metric {
name = "machine_type"
value_threshold = "1.0"
}
metric {
name = "cpu_user"
value_threshold = "1.0"
}
metric {
name = "cpu_nice"
value_threshold = "1.0"
}
metric {
name = "cpu_system"
value_threshold = "1.0"
}
metric {
name = "cpu_idle"
value_threshold = "1.0"
}
metric {
name = "proc_total"
value_threshold = "1.0"
}
metric {
name = "load_one"
value_threshold = "1.0"

}

/* The next two metrics are optional if you want more detail...
since they are accounted for in cpu_system.

*/

/* This group collects the number of running and total processes */

/* This collection group grabs the volatile memory metrics every 40
sends them at least every 180 secs. This time_threshold can be
significantly to reduce unneeded network traffic. */

/* Different than 2.5.x default since the old config made no sense

secs and

increased

*/ "ww % client_hostname)

B.4 python_client.py

#!/usr/bin/env python

nnn

* Python client to set and get gmond output from servers

*

* sipOdck

*

nnn

XXXII

20

25

30

35

40

45

50

55

60

65

70

75

Python Scripts B.4 python_client.py

__author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "07.09.2005"

__version__ = "0.1"

__revision__ = "1.0"

import commands
""" start application """
import xml.dom.minidom
""" minidom is used to parse the ganglia-gmond-xml-file """
import sqlite

""" sglite --> database connection between sglite and python (pysglite) """
import os

""" os is used for shell commands"""
import sys

""" sys is used to start shell commands and get a return value """
import threading

""" threading is used to start a singular thread to every server """
from socket_connection import CsocketClient

""" socket connection is provided by the socket_connection file """
import ConfigParser

""" the config.ini will be parsed with the Config Parser class """
import time

""" the time class 1is used to create timestamps """
import cpu_load

wnn

pattern matching """
import re

from ganglia import Cinitialization

import socket

change here to setup another ganglia folder
ganglia_directory = "~/programs/ganglia/"
o

mond_conf_file = "gmond_client.conf"

class Ctimestamp:
""" set a timestamp format which will be stored in the database """
def __init__(self):
""" initialize the timestamp format """
self.__format = "%Y-%m-%d %H:3M:%S’
def get_timestring(self):
""" get the time-string format """

return time.strftime (self.__format)

def get_timetuple(self, time_string):
""" get the time as a tuple """

return time.strptime (time_string , self.__format)

class Cconfigparser:
""" parse the config.ini file to get the main arguments"""
def __init__(self, i_verbose = 0)
""" initialize the config dictionary """
self._ConfigDefault = {

"server.quantity": 1
"test.application": "grep",
"server.port_1": 5000,
"server.host_1": "localhost™",
"project.name": "test",
"project.desc": "none",
"test.name": "test",
"test.desc": "none",
"tester.forename": "Carsten",
"tester.surname": "Koebernick",
"tester.email": "c.koebernick@rl.ac.uk",
"measurement .quantity": 10,
"measurement.application": "bash",
"measurement.srb": 0,
"measurement.poll_time": 15,

}

self.__config_file = None

XXXIII

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

Python Scripts

def

def

def

self.__i_verbose = i_verbose

load_config(self, config_file):

""" parse function to extract the information of the config.ini """

if config_file == None:

config_file = "config.ini"
self.__config_file = config_file
if self.__i_verbose:

print "The config-file: %s" % (self.__config_file)

config = self._ConfigDefault.copy ()
try:
cp_object = ConfigParser.ConfigParser ()
cp_object.read(config_file)
if cp_object.sections () == []:
print "config file does not exist or is empty, take built in config"
else:
for scction in cp_object.sections ():
name = section.lower ()
for option in cp_object.options(section):
config[name + "." + option.lower()] = cp_object.get(section, option).strip ()
if self.__i_verbose:
print "config-file successfully scanned"
except Exception:
print "bad config file - use standard config"

print "Shall I write the standard config to "+config_file+ " 2 (y/anykey)"

input =

s_input = sys.stdin.read (1)
if s_input == "y’:
self.write(config_file, config)
if self.__i_verbose:
print "take standard config for the application"

return config

get_config_file(self):
""" send the config_file name """
return self.__config file

write (self , file_name, config = None):

wan

given a dictionary with key’s of the form ’section.option: value’
write () generates a list of unique section names

creates sections based that list

use config.set to add entries to each section

if config == None:

config = self._ConfigDefault
try:

file_desc = open(file_name, 'w’)

except IOError:
print "Cannot open the file for writing: permission denied"
return —1
conf_parser_obj = ConfigParser.ConfigParser ()
#a little string hacking because our section names are un—normalized
#this builds a list of all the sections names
sectionslst = []
sections = []
for k in config.keys():
sectionslst.append(k.split(".")[0])
#get unique entries

sections = self.__uniquer(sectionslst)
for sec in sections:
#make the headers
conf_parser_obj.add_section(sec)
#for each item in dictionary

#it splits the key in two and uses that for the first and second "set" args
#then it uses the item.value for the 3rd arg

from ’section.option:value’

XXXIV

B.4 python_client.py

155

160

165

170

175

180

185

190

195

200

205

210

215

220

Python Scripts

B.4 python_client.py

for k in config.items():
conf_parser_obj.set(k[O].split(".")[0], k[O].split(".")[1], k[1]
conf_parser_obj.write(file_desc)
file_desc.close ()
if self._

print "written to ",

_i_verbose:

file_name

return 0

def

—_-

__uniquer(self,

wn

seq):
get unique entries """
seen = {}
result = []
item in

for seq:

if item in seen:
continue

seen[item] = 1

result.append(item)

return result

class Cdatabase:

def

database class provides some essential sglite functions like connect,
__init__(self, db =

None, i_verbose = 0):

constructor for database class test if database is available,

self.__i_verbose = i_verbose
self.__wait_for_all_measurements = threading.Event()
self.d_measurement_table = {
"is_id": "INTEGER",
"time": "VARCHAR (30) ",
"server_cpu_system": "VARCHAR (10) ",
"client_cpu_system": "VARCHAR (10) ",
"server_cpu_user": "VARCHAR (10) ",
"server_cpu_idle": "VARCHAR (10) ",
"server_cpu_nice": "VARCHAR (10)",
"server_proc_total": "VARCHAR (10) ",
"client_cpu_system": "VARCHAR (10) ",
"client_cpu_user": "VARCHAR (10) ",
"client_cpu_idle": "VARCHAR (10) ",
"client_cpu_nice": "VARCHAR (10) ",
"client_proc_total": "VARCHAR (10) ",
}
self.d_application_table = {
"name": "VARCHAR (30) ",
"memory": "VARCHAR (10) ",
"cpu": "VARCHAR (10) ",
"fd": "VARCHAR (10) ",
"measurement_id": "INTEGER",

"command":

}

"VARCHAR (100) ",

self.__l_measurements = []
if (db == None):
self.__db =
else:
self.__db = db
self.

"./srb.db"

_timestamp = Ctimestamp ()
if (self.__check_database__() == 0):
if self.__
print "create a new database"
=0

i_verbose:

self.db_con

print create a new database:
while 1:

try:

"Database file not existent,

user_answer = raw_input("(Y/n)?")

if user_answer == "y" or user_answer == "Y"

self._

_create_database__ ()

XXXV

if not create one

"tself.

or user_answer

)

create and check database """

_db4 20

225

230

235

240

245

250

255

260

265

270

275

280

285

290

Python Scripts

B.4 python_client.py

break
elif user_answer == "n":
print "Programme stops"

sys.exit(0)
except KeyboardInterrupt:

print "Programme stops"

sys.exit(0)
else:
if self.__i_verbose:
print "take the existent datbase srb.db"

self.db_con = sqlite.connect(self.__db, autocommit=1);

self.db_cursor = self.db_con.cursor();
try:
self .db_cursor.execute ("""SELECT * FROM project""")
except:
print "bad db file"
sys.exit(—=1)
self .

__lock = threading.Lock()

def set_new_db(self ,db):

self.db_cursor.close ()

self.db_con.close ()

self.__db = db

if (self.__check_database__() == 0):
if self._

print "create a new database"

self.db_con = 0;
self .

i_verbose:

__create_database__ ()

else:
if self.__
print "take the existent datbase srb.db"

i_verbose:

try:

self .db_con = sqlite.connect(self.__db, autocommit=1);

self.db_cursor = self.db_con.cursor();

except sqlite.Error:
print "cannot open the db"
return —1

try:
self.db_cursor.execute ("""

self.db_cursor. fetchall ()

SELECT * FROM project

ey
return 0

except sqlite.DatabaseError:
print "bad database"

return —1

def _get_db(self):
return self.__db
def __create_database__ (self):

database creation if the srb.db file is not there

self.db_con = sqlite.connect(self.__db, autocommit=1);

self.db_cursor = self.db_con.cursor ()

self.db_cursor.execute (' CREATE TABLE project
description TEXT)’)

(project_id INTEGER PRIMARY KEY,

self.db_cursor.execute (' CREATE TABLE tester
VARCHAR (30), email VARCHAR (100))")

(tester_id INTEGER PRIMARY KEY,

F.db_cursor.execute (' CREATE TABLE test (test_id INTEGER PRIMARY KEY,
failed_flag INTEGER, tester_id INTEGER,

XXXVI

surname

name VARCHAR (100),
project_id INTEGER)')

title VARCHAR(100) UNIQUE,

forename

VARCHAR (30) ,

description TEXT, \

295

300

305

310

315

320

325

330

335

340

345

350

355

Python Scripts

def

def

def

def

self

self

.db_cursor.execute (' CREATE TABLE host (host_id INTEGER PRIMARY KEY, hostname VARCHAR (100) UNIQUE,
ip_address VARCHAR (20), \
cpu_speed INTEGER, memory INTEGER)')

.db_cursor.execute (' CREATE TABLE srbserver (srbserver_id INTEGER PRIMARY KEY, srb_port INTEGER, host_id
INTEGER) ')

self.db_cursor.execute (' CREATE TABLE iteration_srbserver (is_id INTEGER PRIMARY KEY, iteration_id INTEGER,

srbserver_id INTEGER)’)

self.db_cursor.execute (' CREATE TABLE iteration (iteration_id INTEGER PRIMARY KEY, test_id INTEGER, time
VARCHAR (30), application VARCHAR (100))’)

s_meas_create = s_app_create = ""

for key, value in self.d_measurement_table.items():

self

for

self

s_meas_create += " %s %s," %(key, value)

.db_cursor.execute (' CREATE TABLE measurement (measurement_id INTEGER PRIMARY KEY, %s)’ % (s_meas_create
[:=11))

key, value in self.d_application_table.items():

s_app_create += " %s %s," %(key,value)

.db_cursor.execute (' CREATE TABLE application (application_id INTEGER PRIMARY KEY, %s)’ % (s_app_create
[:=11)

if self.__i_verbose:

print "database created"

__check_database__(self):
""" check if the file accessable """
access_flag = os.access(self.__db, 0s.F.OK);

return access_flag

lock_it(self):

lock the datbase """

self.__lock.acquire ()

if self. i_verbose:

print "database locked"

rlock (self):

self

release the lock from the database """

.__lock.release ()

if self.__i_verbose:

print "database released"

insert_measurement (self, d_xmlstream, is_id ,clientload):

""" insert a measurement into the database """

time_stamp = self.__timestamp.get_timestring ()

self.d_measurement_table = {

"is_id": is_id ,

"time": "rgs’ " 9% time_stamp ,
"server_cpu_system": float (d_xmlstream["cpu_system"]J["VAL"]),
"server_cpu_user": float (d_xmlstream["cpu_user"]J["VAL"]),
"server_cpu_idle": float(d_xmlstream["cpu_idle" J["VAL"]),
"server_cpu_nice": float (d_xmlstream["cpu_nice"™]["VAL"]),
"server_proc_total": float (d_xmlstream["proc_total™]["VAL"]) ,
"client_cpu_system": float(clientload ["cpu_system"J["VAL"]),
"client_cpu_user": float(clientload ["cpu_user"]J["VAL"]),
"client_cpu_idle": float(clientload ["cpu_idle"]["VAL"]),
"client_cpu_nice": float(clientload ["cpu_nice"™]["VAL"]),

XXXVII

B.4 python_client.py

360

365

370

375

380

385

390

395

400

405

410

415

420

Python Scripts B.4 python_client.py

def

def

def

"client_proc_total": float(clientload ["proc_total™]["VAL"]),
)

key_match = re.compile(" (.*)_(fd|mem|cmd|cpu)$")

key_found = {}

s_keys=s_items =""
for key,item in self.d_measurement_table.items():

s_keys += " %s," % key

s_items += " %s," % item
self.db_cursor.execute ("""INSERT INTO measurement (%s) VALUES (%s)""" % (s_keys[:—1],s_items[:—1]))
self.db_cursor.execute("""SELECT M.* from measurement AS M, test AS T where M.is_id = ’"%s’ AND M.time = '%s’ "

"M Q(is_id , str(time_stamp)))
measurements = self.db_cursor. fetchall ()
for key in d_xmlstream.keys():
if key_match.match(key):
key = re.sub("_(fd|mem|cmd|cpu)$","" key)
if d_xmlstream.has_key(key+"_fd") and d_xmlstream.has_key (key+"_cpu") \
and d_xmlstream.has_key (key+"_mem") and d_xmlstream.has_key(key+"_cmd") and not key_found.has_key (key)

key_found[key] =1

self.d_application_table = {

"name": "rss'" % key,

"memory": "rgs’" 9% d_xmlstream [key+"_mem"]["VAL"],
"cpu": "r%s’" % d_xmlstream [key+"_cpu"]["VAL"],
"fd": "rgs’" % d_xmlstream [key+"_£d"]J["VAL"],
"command": "rgs’" % d_xmlstream[key+"_cmd"]["VAL"],
"measurement_id": measurements [0]["M.measurement_id"],

}

s_keys=s_items =""
for key,item in self.d_application_table.items():

s_keys += " %s," % key

s_items += " %s," % item
self.db_cursor.execute (""" INSERT INTO application (%s) VALUES (%s) """ % (s_keys[:—1],s_items
[:=1D)

measurements.reverse ()

self.__l_measurements.append(measurements [0])

if self.__i_verbose:

print "measurement saved in database"

set_all_measurements_there(self ,set_var = None):
if set_var == None:
if self.__i_verbose:

print "clear"

self.__wait_for_all_measurements.clear ()
else:

self.__wait_for_all_measurements.set ()

if self.__i_verbose:

print "set"

get_measurements (self):

""" return the last insert measurements"""

if not self.__wait_for_all_measurements.isSet():
return []

print_measurements = self.__l_measurements

self.__l_measurements =[]

return print_measurements

insert_srbserver (self , d_xmlstream, srbport=1):

""" insert a new srbserver to the database """

if (d_xmlstream|["hostname"]["VAL"] == None or len(d_xmlstream|["hostname"]J["VAL"]) == 0):
print "the hostname is needed to get the srbserver_id"
print " cannot insert the srbserver "
return —1
else:
select_cmd = """ SELECT host_id FROM host WHERE hostname = ’%s’ """ % d_xmlstream["hostname"]J["VAL"]

XXXVII

425

430

435

440

445

450

455

460

465

470

475

480

485

Python Scripts B.4 python_client.py

self.db_cursor.execute(select_cmd)

host_id = self.db_cursor.fetchone ()
if host_id == None:
self.db_cursor.execute (""" INSERT INTO host (hostname,cpu_speed,memory,ip_address) VALUES (’%s’,’%s
roresr ragrynnn g\
TR

(d_xmlstream["hostname" J["VAL"], d_xmlstream["cpu_speed"]J["VAL"], d_xmlstream["
mem_total"J["VAL"],d_xmlstream["IP"]))
self.db_cursor.execute (select_cmd) # can be replaced with host_id = self.db_cursor.lastrowid

host_id = self.db_cursor.fetchone ()

select_cmd = """ SELECT srbserver_id FROM srbserver WHERE srb_port = ’%s’ and host_id = ’"%s’ """ % (
srbport, host_id[0])
self.db_cursor.execute (select_cmd) # can be replaced with srbserver_id = self.db_cursor.lastrowid
srbserver_id = self.db_cursor.fetchone ()
if (srbserver_id == None):
#print "srb:", srbport

self.db_cursor.execute ("""INSERT INTO srbserver (srb_port, host_id) VALUES \
("%s’,"%s")""" % (srbport, host_id[0]))

self.db_cursor.execute(select_cmd)
srbserver_id = self.db_cursor.fetchone ()
if self.__i_verbose:
print "try to insert a srbserver with hostname %s" % (d_xmlstream["hostname"]J["VAL"])
else:
if self.__i_verbose:
print "found the hostname: %s of the srbserver with the id: %s" % (d_xmlstream["hostname"]["VAL"],
srbserver_id [0])
return srbserver_id [0]

def insert_iteration_srbserver(self, iteration_id, srbserver_id):

""" insert a new iteration_srbserver combination to the database """

select_cmd = """ SELECT is_id FROM iteration_srbserver WHERE iteration_id = %s and srbserver_id = %s """ % (

iteration_id , srbserver_id)

self.db_cursor.execute(select_cmd)
is_id = self.db_cursor. fetchone ()
#print tester_id+" "+project_id+" "
if (is_id == None):

self.db_cursor.execute ("""INSERT INTO iteration_srbserver (iteration_id, srbserver_id) VALUES (%d, %d)"""

% (iteration_id , srbserver_id))
might be replaced with is_id = self.db_cursor.lastrowid
self.db_cursor.execute (select_cmd)

is_id = self.db_cursor.fetchone ()

if self.__i_verbose:

print "insert a new srbserver: %d and test: %d combination in the iteration_srbserver table" % (
srbserver_id , iteration_id)

return is_id[0]

def insert_project(self, s_project_title, s_project_desc):

"""insert a new project"""

project_id = self.db_cursor.execute("""SELECT project_id from project WHERE title = ’%s’""" % (s_project_title
)
project_id = self.db_cursor. fetchone ()
try:
if (project_id == None):
self.db_cursor.execute ("""INSERT INTO project (title, description) VALUES (’%s’, ’'%s’)""" % (

s_project_title , s_project_desc))

self .db_cursor.execute ("""SELECT project_id FROM project WHERE title = ’%s’""" % (s_project_title))
can be replaced with project_id = self.db_cursor.lastrowid

XXXIX

Python Scripts B.4 python_client.py

project_id = self.db_cursor.fetchone ()
if self.__i_verbose:
print "new project: %s inserted in database with the project_id: %s" % (s_project_title ,
project_id [0])
490
return project_id [0]
except Exception:
print Exception
495 print "bad config file options cannot check the project_id"
return —1
def insert_test(self, s_test_title, s_test_desc, project_id, tester_id, s_application):
500 """insert a new test"""
select_cmd = """ SELECT test_id FROM test WHERE project_id = %d AND name = ’'%s’""" % (project_id, s_test_title
)
self.db_cursor.execute (select_cmd)
test_id = self.db_cursor.fetchone ()
505 if (test_id == None):
self.db_cursor.execute ("""INSERT INTO test (name, description, project_id, tester_id, failed_flag) VALUES
\
("%s’ , "%s’, %d, %d ,3%d)""" % (s_test_title , s_test_desc, project_id,
tester_id , 0))
510 self.db_cursor.execute ("""SELECT test_id FROM test WHERE name = ’'%s’ AND project_id = %i""" % (
s_test_title , project_id))
test_id = self.db_cursor.fetchone () # can be replaced with test_id = self.db_cursor.lastrowid
if self.__i_verbose:
print "new test: %s inserted in database with the test_id: %s" % (s_test_title , test_id[0])
time_stamp = self.__timestamp.get_timestring ()
515 self.db_cursor.execute (""" INSERT INTO iteration (test_id , time, application) VALUES (%d ,’%s’, '%s’) """ % (
test_id [0], time_stamp, s_application))
self.db_cursor.execute ("""SELECT iteration_id FROM iteration WHERE test_id = %d AND time = ’'%s’""" % (test_id
[0], time_stamp))
iteration_id = self.db_cursor.fetchone () # can be replaced with iteration_id = self.db_cursor.lastrowid
return iteration_id[0]
520
def insert_tester(self, s_tester_forename , s_tester_surname , s_tester_email):
""" insert a tester to the database and return the id """
if (len(s_tester_surname) == 0 or len(s_tester_forename)==0): #obsolete
525 print "the surname and the forename are needed to put the tester in the database"
sys.exit(—1)
else:
select_cmd = """ SELECT tester_id FROM tester WHERE surname = ‘%s’ AND forename = ’'%s’""" % (
s_tester_surname , s_tester_forename)
self.db_cursor.execute(select_cmd)
530 tester_id = self.db_cursor.fetchone ()
if (tester_id == None):
self.db_cursor.execute ("""INSERT INTO tester (surname, forename, email) VALUES\
("%s’, "%s', '%s’)""" % (s_tester_surname , s_tester_forename , s_tester_email))
535
self.db_cursor.execute(select_cmd)
tester_id = self.db_cursor.fetchone ()# can be replaced with tester_id = self.db_cursor.lastrowid
if self.__i_verbose:
print "new tester: %s,%s inserted in database with tester_id: %s" % (s_tester_surname ,
s_tester_forename , tester_id [0])
540 return tester_id [0]
def select_table (self, s_table_name, s_column, s_where_column = None, s_where_content = None):
""" select all from a table and a particular row """
545
if (s_where_column != None):

XL

550

555

560

565

570

575

580

585

590

595

600

605

610

615

Python Scripts B.4 python_client.py

s_select = """ SELECT %s from %s where %s = %s""" % (s_column, s_table_name, s_where_column,
s_where_content)
else:
s_select = """ SELECT %s from %s""" % (s_column, s_table_name)
self.db_cursor.execute(s_select)
select_vars = self.db_cursor.fetchall ()
if self.__i_verbose:
print "get table: %s " % (s_select)

return select_vars

def select_measurement(self, s_columns, d_where_column):

""" select a particular measurement, depending on time, test-id or srbserver-id """

s_select_part = ""
for d_column in d_where_column:
s_select_part += d_column[’column’]+ d_column[’innerconnect’]+ d_column[’content’]+ "™ "+d_column[’connect’

]
s_select = "Select %s from measurement where %s" % (s_columns, s_select_part)

self.db_cursor.execute(s_select)
select_vars = self.db_cursor. fetchall ()
if self.__i_verbose:
print "get measurement: %s " % (s_select)

return select_vars

class ServerConnect:

connects the client to the running server to send the application names """

def __init__(self, i_port = ’’, s_host = ', i_quantity = 0, \
s_application = "bash", i_server = 1, srbport = None, i_verbose = 0):
self.__i_verbose = i_verbose
self.__clientsocket = CsocketClient(i_verbose)
if s_host == "127.0.0.1" or s_host == "localhost":
print "Please use real hostnames or IP-addresses no localhost or 127.0.0.1"
self.connected = —1
else:
self.connected = self.__clientsocket.connect(i_remote_host = s_host, i_remote_port = i_port)
if self.__i_verbose:

print "Server %s connection status: %s" % (i_server, self.connected)

if self.connected != —1I:
self.__srbport = srbport
if self.__srbport != None:

if self.__i_verbose:

print "Send the srb_port, because a srb_application will be measured"

data = "srbport %s" % (str(srbport))

self.__clientsocket.send(data)
self.__application = s_application
self.__i_server = i_server

def stop_connection(self):

send the server a clientquit to stop the connection """

if self.__i_verbose:

print "Stop connection to Server %s" % (self.__i_server)
self.__clientsocket.send(data = "clientquit™")
self.__clientsocket.close ()

def connect(self):

""" conect to the server, to send the application which should be measured"""

data = "application "
if self.__application == "none" or self.__application == "":
if self.__srbport == None:

data += "bash"
#if self.__i_verbose:

print "send: %s to Server: %s" % (data, self.i_server)

else:

XLI

620

625

630

635

640

645

650

655

660

665

670

675

680

685

Python Scripts B.4 python_client.py

data += self.__application
#self.clientsocket.send(data)

if self.__i_verbose:
print "send: %s to Server: %s" % (data, self.__i_server)
self.__clientsocket.send(data)

MUN kK kKKK KK KKKK KKK KKK KX KA *k* % GANGLIA QUERY THREAD ****kakxxkkkakxxkkktkxxsxnmn

class GangliaThread (threading.Thread):

de

de

f

-

class to query the ganglia with telnet, furthermore the content of Ganglia will be stored in SQLite"""

__init__(self, database,srbport, iteration_id , poll_time ,quantity , measurement_app, i_verbose):
""" Constructor which sets the poll_time of gmond (l5sec at least) and the number of queries to ganglia (at
least 2)"""
self.__i_verbose = i_verbose
if int(poll_time) > 15:
self.__poll_time = int(poll_time)
else:
self.__poll_time = 15
self.__quantity = quantity
if self.__quantity < 2:
self.__quantity = 2
threading.Thread.__init__(self, name = "Refresh_gmond")
self._stopevent = threading.Event()
if srbport != None:
self.__srb_port = srbport
else:
self.__srb_port =1

self.__run_app_thread = None

self.__iteration_id = iteration_id

self.__measurement_app = measurement_app

self.__db_obj = database

self.__ganglia = Cinitialization (self.__i_verbose, ganglia_folder = ganglia_directory)
self.__parse_object = Cxmlparser ()

self.__db_obj.set_all_measurements_there ()

#self.setDaemon(True)

run(self):

""" Thread which polls Ganglia"""
self.__ganglia.start_gmond (gmond_conf=gmond_conf_file)
time.sleep (10)

application_started = 0
counter = 0
srbserverid_set = {}
last_insert = {}

#no_external_data = 0
while not self._stopevent.isSet():
s_xml_content = self.__ganglia.get_gmond_output()
i_xml_start = s_xml_content.find ("<GANGLIA_XML");
i_xml_end = s_xml_content. find ("</GANGLIA_XML>")+14;
d_xml = self.__parse_object.parse_string (s_xml_content[i_xml_start:i_xml_end])

host_count =0

for machine in d_xml.keys():
if machine == ’"localhost’:
continue

if not srbserverid_set.has_key(machine):

if d_xml[machine].has_key("cpu_speed") and d_xml[machine].has_key("hostname"):
self.__db_obj.lock_it()

srbserver_id = self.__db_obj.insert_srbserver (d_xml[machine],self.__srb_port)
srbserverid_set[machine] = srbserver_id
self.__db_obj.rlock ()
else:
if self.__i_verbose:

print "no data there for machine:",machine
if last_insert.has_key(machine):
if last_insert[machine] == d_xml[machine]["REPORTED"]:

print "No fresh data from Ganglia for %s, maybe server lost" % machine
break

XLII

690

695

700

705

710

715

720

725

730

735

740

745

750

755

Python Scripts B.4 python_client.py

self.__db_obj.lock_it()

is_id = self.__db_obj.insert_iteration_srbserver(self.__iteration_id, srbserverid_set[machine])

if last_insert.has_key(machine):
if last_insert[machine] == d_xml[machine]["REPORTED"]:
print "No fresh data from Ganglia for %s, maybe server lost"™ % machine
last_insert[machine] = d_xml[machine]["REPORTED"]
host_count +=1
self.__db_obj.insert_measurement (d_xml[machine], is_id ,d_xml[’localhost’])
self.__db_obj.rlock ()
if host_count==len(d_xml.keys())—1:
self.__db_obj.set_all_measurements_there("set")
if (self.__measurement_app != "none" and self.__measurement_app != "") and application_started ==
self.__run_app_thread = Crunapp(self.__measurement_app, self.__i_verbose)
self.__run_app_thread.start ()
if self._

print "Test application started!!"

_i_verbose:
application_started = 1

counter += 1

if counter > int(self.__quantity):
if self._
print "stop the measurement"

_i_verbose:
self.stop ()
time.sleep (3)
break

sleep_counter =0

while sleep_counter != self.__poll_time:
time.sleep (1)
if self._stopevent.isSet():

break

sleep_counter +=1

if self._stopevent.isSet():
break

def stop(self):
""" Stop the Ganglia Query Thread """

if not self._stopevent.isSet():
if self.__i_verbose:

print "GangliaThread stopped"

self._stopevent.set ()
#threading . Thread. join (self , 1)
if self.__run_app_thread != None:
self.__run_app_thread.stop ()
self.__ganglia.kill_gmond ()

MWN kKKK KKK KKK KKKKKKAAAA XML, PARSER FHRKKAAAAAAAAAA A XK KK KKK KKKKAAA AKX H NON

class Cxmlparser:

mmw XML parsing class with two functions, which parses the string and change the xml string into a dictionary"""

def __init__(self, i_verbose = 0):
""" constructor for the Cxmlparser class """
self.__i_verbose = i_verbose
self.__doc = ""
self.__d_xmlstream = {}
self.__s_xml = ""

def parse_string(self, s_xml):
""" parse the string start the xml-string to dictionary function"""

self.__d_xmlstream = {}
self.__s_xml = s_xml
if self.__i_verbose:

print "XML-String:\n%s" % (s_xml)
self.__doc = xml.dom.minidom. parseString (self.__s_xml)

self.__explore_childs ()

XLIII

760

765

770

775

780

790

795

800

805

810

815

820

825

Python Scripts B.4 python_client.py

return self.__d_xmlstream

def __explore_childs(self):

""" get the xml_stream in a dictionary (recursive function)"""

nodelist = self.__doc.childNodes
for subnode in nodelist:
if (subnode.nodeType == subnode.ELEMENT NODE) :

if (subnode.tagName == "HOST"):

self .host = subnode.getAttribute ("NAME")
print "host",self.host
self.__d_xmlstream[self.host] = {}
self.__d_xmlstream[self.host]["IP"]=subnode. getAttribute ("IP")
self.__d_xmlstream[self.host]["REPORTED"]=subnode. getAttribute ("REPORTED")

if (subnode.tagName == "METRIC"):
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME")] = {}
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME") J[’VAL’] = subnode. getAttribute ("VAL")
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME")][’ TYPE’] = subnode. getAttribute ("TYPE")
self.__d_xmlstream[self.host][subnode. getAttribute ("NAME")][’ UNITS’] = subnode.getAttribute ("UNITS

")
self.__doc = subnode
self.__explore_childs ()

WUk kk kK kA kKA E KKK Ak K** MEASUREMENT CLASS * %% %4k % %4k k a4k % x4k k44 k% %4k kA% kX %k kKA MUN
class CMeasurement:

""" measurement class which is able to start and stop the measurement and insert the data in the database

def __init__(self, database_file, i_verbose = 0):
""" constructor to initialize the essential values like the config file, the thread and the database """

self.__i_verbose = i_verbose
self.__servcon_obj = {}
self.db_object = Cdatabase(database_file, self.__i_verbose)

self.__d_config = ""

def set_config(self, config):
""" set config for measurement """
if self.__i_verbose:
print "set a new config: \n%s" % (config)

self.__d_config = config

def get_config(self):
""" return the config """

return self.__d_config

def stop_connections(self):

""" stop every open connection to a server"""

range_var = int(self.__d_config["server.quantity"])
#print range_var

for i_server in range(range_var):

if self.__servcon_obj.has_key(i_server):
if self.__servcon_obj[i_server].connected != —1:
if self.__i_verbose:

print "close the connection of Server: %s" % (i_server)

self.__servcon_obj[i_server].stop_connection ()

def run_measurements(self):

""" run the measurements in dependency of the amount of measurements"""

exit_var = 0
i_srbport = None
for i_server in range(int(self.__d_config["server.quantity"])):

XLIV

830

835

840

845

850

855

860

865

870

875

830

885

890

Python Scripts B.4 python_client.py

""" start as much server as it is set in server.quantity """

s_server_id = str(i_server + 1)

try:
#s_server_poll_time = int(self.__d_config["server.poll_time_"+s_server_id])
i_port = self.__d_config["server.port_"+s_server_id]

s_host = self.__d_config["server.host_"+s_server_id]
except KeyError:

print "Wrong parameter in ini-file"

return —1
except Exception:

print "bad parameter set poll_time,host and port"

return —1

if self.__d_config["measurement.srb"] == "1":
i_srbport = self.__get_srbport()

if self.__i_verbose:

print "initialise Thread for Server: %s" % (i_server)

self.__servcon_obj[i_server] = ServerConnect(i_port = i_port, \
s_host = s_host, \
i_quantity = self.__d_config["measurement.quantity"], \
s_application = self.__d_config["test.application"], \
i_server = i_server ,srbport = i_srbport, i_verbose = self.

_i_verbose)
"nt create the thread_objects """
if (self.__servcon_obj[i_server].connected == —1):
""" test if the server can be connected """

print "The server number %s cannot be connected" % (s_server_id)

i_exit_var =1
#self . failed = i_server
return —1
self.__servcon_obj[i_server].connect()
if (i_exit_var == 0):
if self.__d_config["project.name"] == "" or self.__d config["test.name"] == "" or self.__d config["tester.
surname"] \
== "" or self.__d_config["tester.forename"] == "":
print "essential config-fields are empty like project.name, test.name or tester.name "
return —1
project_id = self.db_object.insert_project(str(self.__d_config["project.name"]), str(self.__d_config["
project.desc"]))
""" get project_id """
tester_id = self.db_object.insert_tester(s_tester_surname = str(self.__d_config["tester.surname"]),
s_tester_forename = \
str(self.__d_config["tester.forename"]), s_tester_email = str(
self. _d_config["tester.email™]))
""" get the tester_id """
iteration_id = self.db_object.insert_test(str(self.__d_config["test.name"]), str(self.__d_config["test.

desc"]), project_id, int(tester_id),self.__d _config["test.application"])
""" oget test_id """
if iteration_id == —1:
#print "bad test"
return —1

self.ganglia_obj = GangliaThread(self.db_object,i_srbport ,iteration_id ,self.
poll_time"],\

_d_config["measureme

quantity = self.__d_config["measurement.quantity"], measurement_a
self.__d_config["measurement.application"], i_verbose = self.__i
self.ganglia_obj.start ()
return 0
def stop(self):
""" stop the measurement """
for i_server in range(int(self.__d_config["server.quantity"])):

XLV

nt.

pp =\
_verbose)

895

900

905

910

915

920

925

930

935

940

945

950

955

960

Python Scripts B.4 python_client.py

self.ganglia_obj.stop ()
if (self.__servcon_obj != {} and self.__servcon_obj[i_server].connected == 0):

#print "Hallo"

self.__servcon_obj[i_server].stop_connection ()

def __get_srbport(self):

""" parse for a srbport in the user folder + .srb/.MdasEnv """

s_buf = "»
srb_path = os.path.expanduser("~/.srb/.MdasEnv")
try:
file_desc = open(srb_path, 'r’)
except:

print "cannot find any SRB-Port"
return None
s_buf = file_desc.readlines ()
for line im s_buf:
#if x.find ("srbPort"):
srbport_begin = line.find("srbPort")

if srbport_begin != —1 and (srbport_begin ==0 or line [0:srbport_begin].find("#") == —1):
srb_port = line[(line.find("t")+1):line.find("#’')]
stb_port = srb_port.replace (""r/nwn waw wwny

srb_port = srb_port.replace('"’,")
srb_port = srb_port.strip ()
if self.__i_verbose:

print "found the following srb-Port: %s" % (srb_port)

file_desc.close ()

return srb_port

class Crunapp(threading.Thread):
""" start the application in a new Thread """
def __init__(self, app,i_verbose = 0):
""" Constructor to setup the Thread and the application """
threading . Thread. __init__(self)
#self .setDaemon(True)

#self . _set_daemon ()

self.__application = app
self.__s_pid = ""
self.__i_verbose = i_verbose
def run(self):
""" start the application in a new Thread """
self.__s_pid = commands. getoutput("ps u -C ’"+self.__application+"’ | grep SUSER | awk '{print $2}'");
if self.__s_pid == "":
#print self.isDaemon ()
try:
if self.__i_verbose:
print "application will be started"
print commands. getoutput(self.__application)
except:
print "Cannot start the application"
else:
print "programme already running"
if self.__i_verbose:
print "Crunapp is dead"
def stop(self):

self.__s_pid = commands. getoutput("ps u -C ’"+self.__application+"’ | grep S$SUSER | awk '{print $2}'");
if self.__i_verbose:
print "PID of test application: ", self.__s_pid
if self.__s_pid != "':
print commands. getoutput("kill -9 %s" % self.__s_pid)
if self.__i_verbose:
print "Test application killed"

self.__s_pid = "

XLVI

20

25

30

35

40

45

50

55

Python Scripts

B.5 console.py

else:
if self._

print

i_verbose:

"No Test application killed"

B.5 console.py

#!/usr/bin/env python

console application to connect to other server and get

__author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "18.10.2005"

__version__ = "0.1"

__revision__ = "1.0"

import sys

import getopt

import python_client

import re

import threading

import time

class CnoGUI:

ww wun

class for console work

def _ _init__(self):
""" Constructor to get the options and declare the
try:
self.__opts, self.__args = getopt.getopt(sys.argv[1l:],
iterationlist™, "testlist", "srbserverlist",
except getopt.error:
print "argument mistakes"
self.__usage()
s exit(—1)
self._i_verbose = 0

self._cparser = ""
self._measure_obj = ""
self.__d_startoptions = {}

def start(self):

ww

list_set =0
config_file = None
database_file = None

for s_option, self.
if (s_option.find(’list’) !=

if list_set

s_argument in __opts:
—1):
== 1:

print "ArguemnentError:
self .

sys.exit(0)

_usage ()

parse the options and start the GUI or the command

information from the database"""

objects for the start function """

"hgi:t:p:m:d:s:e:c:f:v’, ["help",

"project-id=", \

"projectlist","
"measurementlist", "verbose",
"test-id=","iteration-id=", "srbserver-id=", "

database=","startday=","endday=", "

config-file=", "h"

"D

"config-dump=", ,"gauge

line programme """

just one list can be displayed"

self.__d_startoptions[s_option] = 1
list_set =1

elif s_option in ("-p", "--project-id"):
self.__d_startoptions[’project’] = s_argument

re.match (" (["0-9]) | ((\D)*(\d)+(\D

if reg_obj !=

reg_obj =
None:
print "project-id needs to be a number"

sys.exit(0)

)+)", s_argument)

XLVII

60

65

70

75

80

85

90

95

100

105

110

115

120

125

Python Scripts

B.5 console.py

def

elif s_option in ("-t", "--test-id"):
self.__d_startoptions[’test’] = s_argument
reg_obj = re.match(" ([*0-9]) | ((\D)*(\d)+(\D)+)", s_argument)
if reg_obj != None:

print "test-id needs to be a number"

sys.exit(0)
elif s_option in ("-i", "--iteration-id"):
self.__d_startoptions[’iteration’] = s_argument
reg_obj = re.match(" ([*0-9]1) | ((\D)*(\d)+(\D)+)", s_argument)
if reg_obj != None:

print "iteration-id needs to be a number"
sys.exit(0)

elif s_option in ("-s", "--startday"):
self.__d_startoptions[’startday’] = s_argument
var = re.match("[0-9]{4}\-[0-9]{2}\-[0-9]{2}", s_argument)
if var == None:

print "bad date, use e.g. 2005-11-01"
sys.exit(0)

elif s_option in ("-e", "--endday"):
self.__d_startoptions[’endday’] = s_argument
var = re.match("[0-9]1{4}\-[0-9]{2}\-[0-9]1{2}", s_argument)
if var None :
print "bad date, use e.g. 2005-11-01"
sys.exit(0)
elif s_option in ("-m", "--srbserver-id"):
self.__d_startoptions[’srbserver’] = s_argument

reg_obj = re.match(" ([*0-9]) | ((\D)*(\d)+(\D)+)", s_argument)

if reg_obj != None:
print "srbserver-id needs to be a number"

sys.exit(0)

elif s_option in ("-c", "--config-file"):
config_file = s_argument

elif s_option in ("-d", "--datbase"):
database_file = s_argument

elif s_option in ("-f", "--config-dump"):
cparser = python_client.Cconfigparser ()

cparser.write (s_argument)
sys.exit(0)
elif s_option in ("-v", "--verbose"):
self._i_verbose =1
elif s_option in ("-h", "--help", "--h"):
self.__usage ()
sys.exit(0)
elif s_option in ("-g","--gauge"):

self.__d_startoptions[’measure’] = s_argument

else:

"print not the correct options"

self.__usage()
sys.exit(0)
self._cparser = python_client.Cconfigparser(self._i_verbose)
self._measure_obj = python_client.CMeasurement(database_file , self._i_verbose)

self . _measure_obj.set_config(self._cparser.load_config(config_file))

if self.__d_startoptions == {}:
self.__usage ()

else:
self.__console__()

__console__(self):
WMk kK kKK K KKK K XKk KXk 0onSOle appliCation ®xkk kKK Rk k Kk kKK kK kkxkkkakk mnn

WU Kk kR KRR KA DT O et LISt KRR KRR KA KKK AR K KAk
if self.__d_startoptions.has_key(’--projectlist’) == True:
d_project_list = self._measure_obj.db_object.select_table("project","project_id,

print "*xx*kkk Project list krkxxkkkxw

XLVIII

title,

description");

130

135

140

145

150

155

160

165

170

175

180

185

190

Python Scripts B.5 console.py

print "\n| project-id | title description "
print " - "
for project in d_project_list:
print "| %10s | %20s | %30s |" % (project[’project_id’], project[’title’], project[’description’])
elif self.__d_startoptions.has_key(’'--testlist’) True:
self.__testlist()
elif self.__d_startoptions.has_key(’--iterationlist’) True:
self.__iterationlist ()
elif self.__d_startoptions.has_key(’--srbserverlist’):
self.__srbserverlist()
elif self.__d_startoptions.has_key(’--measurementlist’):

print "Measurements"

self.__measurementlist ()

elif self.__d_startoptions.has_key('measure’):
self.__measure ()

else:

print "The programme needs at least a project-id or it is able to return a projectlist"
self.__usage ()

sys.exit(0)

def __srbserverlist(self):

MWW Ak k kKKK KKKKKKKAAAAAY Create a Srbserver L1iSt FAAAEE A KKK KKKAKAAAAA KKK FF MMM

if self.__d_startoptions.has_key(’test’) == True:
self._measure_obj.db_object.db_cursor.execute (""" SELECT DISTINCT S.srbserver_id, H.hostname,

H.ip_address, H.cpu_speed, H.memory, S.srb_port
From srbserver AS S, host AS H
INNER JOIN iteration AS I, iteration_srbserver AS I_S ON
(I.test_id = """+self.__d_startoptions[’test’]+""")
AND I_S.iteration_id = I.iteration_id
AND I_S.srbserver_id = S.srbserver_id AND S.host_id = H.

host_id""n)
d_srbserver_list = self._measure_obj.db_object.db_cursor.fetchall ()
elif self.__d_startoptions.has_key(’project’) == True:
self._measure_obj.db_object.db_cursor.execute (""" SELECT DISTINCT S.srbserver_id, H.hostname, H.ip_address

, H.cpu_speed, H.memory, S.srb_port
From srbserver AS S, host AS H
INNER JOIN test AS T, iteration AS I, iteration_srbserver AS
I_S, project AS P
where P.project_id = """+self.__d_startoptions[’project’J+"""
AND T.project_id = P.project_id AND T.test_id = I.test_id
AND I.iteration_id = I_S.iteration_id AND
I_S.srbserver_id = S.srbserver_id AND S.host_id = H.host_id""

)
d_srbserver_list = self._measure_obj.db_object.db_cursor. fetchall ()
else:
self._measure_obj.db_object.db_cursor.execute (""" SELECT S.srbserver_id, H.hostname, H.ip_address, H.
cpu_speed,

H.memory, S.srb_port FROM

host AS H, srbserver AS S

WHERE H.host_id = S.host_id""")
d_srbserver_list = self._measure_obj.db_object.db_cursor.fetchall ()

print "\nUsed srbserver:"
print "\n| srbserver-id | hostname | srb-port | cpu-speed | memory "
print " "4+74s%"-"
for d_srbserver in d_srbserver_list:
print "| %12s | %24s | %8s | %9s | %7s |" % (d_srbserver[’S.srbserver_id’], d_srbserver[’H.hostname’],
d_srbserver[’S.srb_port’], \
d_srbserver["H.cpu_speed’], d_srbserver[’H.memory’])

print "\n"

def _ _testlist(self):

XLIX

195

200

205

210

215

220

225

240

245

250

Python Scripts

B.5 console.py

def

KKK KK KEKKKKKAAAANAA Croate a LESt LiSE XX AAAxx A KKK KKAAAAA L EKNNN

if self.__d_startoptions.has_key(’'project’) True:
if self.__d_startoptions.has_key(’srbserver’) == True:
print "\n****** Testlist for project: %s and srbserver: %s" % (self.__d_startoptions["project"], self.
_d_startoptions["srbserver"])
self._measure_obj.db_object.db_cursor.execute ("""SELECT DISTINCT T.test_id, P.title, T.name, T.
description
FROM test AS T, project AS P
INNER JOIN iteration AS I, iteration_srbserver AS I_S
where I_S.srbserver_id = ’'%s’ AND I_S.iteration_id = TI.
iteration_id
AND T.project_id = P.project_id AND I.test_id = T.test_id
AND
P.project_id = ’%s’""" \
% (self.__d_startoptions[’srbserver’], self.
_d_startoptions[’project’]))
else:
print "\n*****¥* Testlist for project: %s " % (self.__d_startoptions["project"])
self._measure_obj.db_object.db_cursor.execute (""" SELECT T.test_id, T.name, T.description, P.title
FROM test AS T, project AS P
WHERE T.project_id = ’%s’ AND T.project_id = P.project_id
Y
% self.__d_startoptions[’project’])
elif self.__d_startoptions.has_key(’srbserver’) True:
print "\n****** Testlist for srbserver: %s " % (self.__d_startoptions["srbserver"])

self._measure_obj.db_object.db_cursor.execute ("""SELECT DISTINCT T.test_id, P.title, T.name, T.description

FROM test AS T, project AS P
INNER JOIN iteration AS I, iteration_srbserver AS I_S
where I_S.srbserver_id = ’'%s’ AND I.iteration_id = I_S.

iteration_id

AND T.project_id = P.project_id AND I.test_id = T.test_id

\
% (self.__d_startoptions[’srbserver’]))
else:
print "Error: A project-id or an srbserver_id is needed for the testlist\nTry console.py --help\n"
sys.exit(0)
print testlist
d_test_list = self._measure_obj.db_object.db_cursor. fetchall ()
print "\n| test-id | title | project-title | description "
print " "4+73%"-"
for d_test in d_test_list:
if d_test != None:
print "| %7s | %15s | %15s | %25s |" % (d_test[’T.test_id’], d_test[’T.name’], d_test['P.title’],
d_test[’T.description’])
print "\n"
__iterationlist(self):
""" create a iteration list (reused tests) """
if self.__d_startoptions.has_key(’test’) == True:
if self.__d_startoptions.has_key(’srbserver’) == True:
self._measure_obj.db_object.db_cursor.execute("""SELECT I.*, T.name FROM iteration AS I, test AS T
INNER JOIN iteration_srbserver AS I_S WHERE
T.test_id = ’"%s’ AND I.test_id = T.test_id AND
I_S.srbserver_id = ’%$s’ AND I_S.iteration_id = I.iteration_id
"wn 9% (self.__d_startoptions["test"], self.__d_startoptions["
srbserver"]))
else:

self._measure_obj.db_object.db_cursor.execute ("""SELECT I.*, T.name FROM iteration AS I, test AS T

255

260

265

270

275

280

285

290

295

300

305

310

315

Python Scripts B.5 console.py

WHERE T.test_id = ’'%s’ AND I.test_id = T.test_id""" % self.
_d_startoptions["test"])
d_measurements = self._measure_obj.db_object.db_cursor. fetchall ()
#print d_measurements
print "\n| iteration-id | test-title time "
print " "4+60="-"

for d_test in d_measurements:

if d_test != None:
print "| %12s | %15s | %25s |" % (d_test['I.iteration_id’], d_test[’T.name’], d_test[’I.time’])
print "\n"
else:

self.__usage ()

def __measurementlist(self):

WHN Xk kkkkxXKKKKKXXKKKKXXX%X Create a Measurement List Fxxxxxkkkkxxxkkkhkxxxkkkkxxxkk MMM
if self.__d_startoptions.has_key(’iteration’) == True:
Hoowskokokx

sk ksescksokkrx measurementlist with only a srbserver —id s s s s s o sk s s sk s o o

self. _measure_obj.db_object.db_cursor.execute ("""SELECT I_S.srbserver_id,M.* FROM measurement AS M,
iteration_srbserver AS I_S
INNER JOIN iteration AS I
WHERE I.iteration_id = ’%s’ AND I.iteration_id = I_S.

iteration_id

AND I_S.is_id = M.is_id ORDER BY I_S.srbserver_id """ \
% self.__d_startoptions["iteration"])
d_measurements = self._measure_obj.db_object.db_cursor. fetchall ()

#print d_measurements

Hoeseworsrokkksss measurementlist with only a test —id s soororsrskok ok ok ok

elif self.__d_startoptions.has_key(’srbserver’) True:

self._measure_obj.db_object.db_cursor.execute ("""SELECT M.* FROM measurement AS M INNER JOIN
iteration_srbserver AS I_S

WHERE I_S.srbserver_id = ’'%s’ AND I_S.is_id = M.is_id""" %
self.__d_startoptions["srbserver"])
d_measurements = self._measure_obj.db_object.db_cursor. fetchall ()

Hoeseorsrokskss with start —day and endday s osooror i sk kol ok

elif self.__d_startoptions.has_key('startday’) == True and self.__d_startoptions.has_key(’endday’):

self . _measure_obj.db_object.db_cursor.execute ("""SELECT M.* FROM measurement AS M where M.time BETWEEN ’%s

' and ’%s’

nnn G(self.__d_startoptions[’startday’], self.
__d_startoptions[’endday’]))
d_measurements = self._measure_obj.db_object.db_cursor. fetchall ()

#print d_measurements
else:
print "ERROR: need at least a iteration-id or/and a srbserver-id "

self.__usage ()

sys.exit(0)

for d_measurement in d_measurements:
print ""
for s_key, s_value in d_measurement.items():
point_delete = s_key.find(".")
print "%$20s : %s" % (s_key[point_delete+1:], s_value)
print "\n--————-—-—----—--- "

def __measure(self):
""" start a measurement in the console """

i_measurement_return = self._measure_obj.run_measurements ()

a server connection failed, stop all other connections
if (i_measurement_return == —1):
print "no connection reached"
self._measure_obj.stop_connections ()
all server connected
else:

set all measurements to zero (for the dynamic table and the graph

LI

320

325

330

335

340

345

350

355

360

365

370

375

380

385

Python Scripts B.5 console.py

def

Usage:

ask for graphic support

config = self._measure_obj.get_config ()
measurement_counter = 0
try:
while not self._measure_obj.ganglia_obj._stopevent.isSet():
time . sleep (1)
I_measurement = self._measure_obj.db_object.get_measurements ()
if 1_measurement != []:

print |_measurement

measurement_counter += 1

or _measuremen in _measurement:
f d t 1 t
print ""
s_key, s_value i d_measurement.items B
for key 1 in d t.it

print "%20s : %s" % (s_key, s_value)

print "\n-
except KeyboardInterrupt:
#self . _measure_obj.servcon_obj.ststop_connections ()
print "closing the connection and the Threads PLEASE WAIT!!"
self . _measure_obj.stop ()
return 0
self._measure_obj.stop ()

#self . _measure_obj.stop_connections ()

__usage(self):
""" A little help for the user """
print "nn

pyhon_server.py

--projectlist

--testlist

(needs project-id and/or srbserver-id)

--srbserverlist

(can be used with project-id and/or test-id

--iterationlist

(needs test-id can be used with srbserver-id)
--measurementlist
(needs iteration or/and srbserver-id or

(-start and -endday))

Use the ids to get the lists

-p <project-id> --project-id=
-t <test-id> --test-id=

-i <iteration-id> --iteration-id=
-m <srbserver-id> --srbserver-id=

See the measurements between two days
-8 <YYYY-MM-DD> --startday=
-e <YYYY-MM-DD> --endday=

Set a database (standard srb.db)
-d <database> --database=

Set a config file

-c <config-file> --config-file=

Write a config-file

-f <config-file> --config-dump=

Start a measurement

-9 --gauge

See more information during the use of the application
-v --verbose

See this again

-h --help --h

LII

390

395

400

20

25

30

35

40

45

Python Scripts

B.6 gui2.py

def main():

o ww

main function

try:
CnoGUI() . start ()
except KeyboardInterrupt:
print "Hallo"
if __name__ == '__main__"':

sys.exit(main())

B.6 gui2.py

#!/usr/bin/env python

* Python gui to connect to a server application

*

* sip0dck

*

wnn

__author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "17.10.2005"
__version__ = "0.1"
__revision__ = "1.0"
import gui2_ui

import Tkinter

import sys

import getopt

import python_client

import re

import threading

import time

class CPrintinGUI:

""" print console output into gui console """

def _ _init__(self, func):
""" constructor to initiliaze variables """
self .out =1
self . func = func

def write(self, s_text):

overwrite write function of the stdout

self.func(s_text)

def stop(self):

wn ww

stop writing into the console
sys.stdout = sys.__stdout__
class Cguistart:
def __init__(self):
""" Constructor to get the options and declare the objects
try:
self . self .

__opts, __args =

IR

getopt. getopt(sys.argv[1l:],
config-dump=",
except getopt.error:
print "argument mistakes"
self.usage ()
sys.exit(—1)

self._i_verbose = 0

LIII

for the start function

"hd:c:f:v’,

["help", "database="

,"config-file=",

50

55

60

65

70

75

80

85

90

95

100

105

110

115

Python Scripts B.6 gui2.py

self._cparser = ""

self._measure_obj = ""
self.__d_startoptions = {}
self.threads_connected = threading.Event()

def start(self):
""" get the information from the commandline and start the gui"""
config_file = None
database_file = None
for s_option, s_argument in self.__opts:
if s_option in ("-c¢", "--config-file"):
config_file = s_argument
elif s_option in ("-d", "--datbase"):
database_file = s_argument
elif s_option in ("-f", "--config-dump"):
cparser = python_client.Cconfigparser ()
cparser.write (s_argument)
sys.exit(0)
elif s_option == "-v":
self._i_verbose =1
elif s_option in ("-h", "--help", "--h"):
self.usage ()
sys.exit(0)
else:
print "not the correct options"
self.usage ()
sys.exit(0)

self. _cparser = python_client.Cconfigparser(self._i_verbose)
self._measure_obj = python_client.CMeasurement(database_file , self._i_verbose)
self._measure_obj.set_config(self. _cparser.load_config(config_file))

self . gui()

def usage(self):
"ww A little help for the user """
print """
Usage: -d <database-file>
-f <config-dump>
-c <config-file>
-h

def gui(self):
wewstart the GUI MU

demo = gui2_ui.Dialog(self)

demo. protocol (' WM_DELETE_WINDOW’ , demo._gui_quit)
""" print the console output in the GUI """

var = CPrintinGUI(demo._change_text_in_console)
#sys.stdout = var

#sys.stderr = var

""" initialise the main window™""
#root. title (’SRB Benchmark *)
demo. geometry ("700x700+300+80")

try:
demo. mainloop ()

print "end"

except KeyboardInterrupt:

try:
self._measure_obj.stop ()
self . _measure_obj.db_object.db_cursor.close ()
self._measure_obj.db_object.db_con.close ()
except:

LIV

120

125

130

20

25

30

35

40

45

50

Python Scripts

print "SQLite db already closed"

print "quit now, please use the x or the exit button in the menu"

def main():

wew o pain function "M

Cguistart().start ()

if __name__ == ’'__main__"':

sys.exit(main())

B.7 gui2_ui.py

#!/usr/bin/env python

* Python second main_gui

*

* sip0Odck

*

wnn

__author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "17.10.2005"

__version__ = "0.1"

__revision__ = "1.0"

import Tkinter

import time

import thread

import tkFileDialog
import tkMessageBox
import tkSimpleDialog
import shutil

import myplot

import threading

import sys

class AutoScrollbar(Tkinter. Scrollbar):
""" a3 scrollbar that hides itself if it’s not needed. only
works if you use the grid geometry manager.
def set(self, f_low, f_high):
""" overwrite the set function of the Scrollbar class """
if float(f_low) <= 0.0 and float(f_high) >= 1.0:
grid_remove is currently missing from Tkinter!
self.tk.call("grid", "remove", self)
else:
self.grid ()
Tkinter. Scrollbar.set(self, f_low, f_high)

class Mainframe (Tkinter.Frame):
WUk kK x KKk Kk Rk MATN FRAME %% k& %k %k %k & ko %% %k & ko %K % k& ko %k % 000
def __init__ (self ,parent,app = None):

""Wconstructor to initialise the frame (autoscrollbars and canvas)

Tkinter.Frame. __init__(self, parent)
self._parent = parent
Tkinter .Frame. __init__ (self ,self._parent)

self.configure (

self._parent._root,

LV

B.7 gui2_ui.py

55

60

65

70

75

80

85

90

95

100

105

110

115

120

Python Scripts

B.7 gui2_ui.py

self.grid_columnconfigure (0, weight = 1, minsize = 10, pad = 0)
self.grid_rowconfigure (0, weight = 1, minsize = 10, pad = 0)
self.__vscrollbar = AutoScrollbar(self)
self.__vscrollbar. grid(

in_ = self ,

column =1,

row =0,

columnspan = "1,

ipadx = '0",
ipady = '0’,

padx = '0’,

pady = '0',

rowspan = "1,

sticky = "ns’
)
self.__hscrollbar = AutoScrollbar(self, orient="horizontal")
self.__hscrollbar.grid(row=1, column=0, sticky="ew")
self.grid_columnconfigure(l, weight = 0, minsize = 10, pad = 0)

self.grid_rowconfigure (1, weight=0)
self._canvas = Tkinter.Canvas(
self ,

yscrollcommand=self.__vscrollbar.set,

xscrollcommand=self.__hscrollbar.set ,

)

self._frame = Tkinter.Frame(self._canvas,)

def config(self):
"""destroy the frame and initialise it new """
self._frame. destroy ()

self._canvas.destroy ()

self._canvas = Tkinter.Canvas(
self ,
yscrollcommand=self.__vscrollbar.set,
xscrollcommand=self.__hscrollbar.set ,
)
self . _canvas. grid(
column = 0,
row =0,
columnspan = "17,

ipadx = 0",
ipady = "0’ ,

padx = '0’,
pady = '0’,
rowspan = '1’,
sticky = 'nwes’
)

self._canvas.grid_columnconfigure (0, weight=1)

self._canvas.grid_rowconfigure (0, weight=1)

self.__vscrollbar.config(command = self._canvas.yview)
self.__hscrollbar.config(command = self._canvas.xview)
self._frame = Tkinter.Frame(self._canvas,)

self . _frame. grid(

column = 0,
row =0,
columnspan = 1’7,

ipadx = '0',
ipady = '0’,

padx = 0",
pady = "0’
rowspan = ‘1’ ,

LVI

125

130

135

140

145

150

155

160

165

170

175

180

185

190

Python Scripts

B.7 gui2_ui.py

sticky = ’'nwes’

)

def _canvas_reload(self):

"""refresh the canvas so it is able to make the frame scrollable """

self._canvas.create_window (0, 0, anchor = "nw", window = self._frame)

self._frame.update_idletasks ()
self._canvas.config(scrollregion = self._canvas.bbox("all"))
class graph_choice:

""" The main frame with 4 different listboxes to choose the graphs"""

def __init__(self ,parent,app):
wnn o constructor "UU
self._parent = parent
if app != None:

self.__app = app

self.__project = None
self.__srbserver = None
self.__test = None

def config(self):

set the frame for the tables to get the measurements of the database
self._parent._main_frame.config ()

self._frame = self._parent._main_frame._frame
self . _parent._active = "main"
label_title = Tkinter.Label(self._frame,

label_title . grid(

text = "SRB database information™)

in_ = self._frame,
column = 0,

row =0,
columnspan = ’5’,
ipadx = ’8',

ipady = 8",

padx = ’5",

pady = '5",

rowspan = "1/,

sticky = 'nwes’

)

button_project = Tkinter.Button(self._frame, text = state

disabled",)
button_project. grid(

"Projects", command = self._project_table ,

in_ = self._frame,
column =1,

row =1,
columnspan = "1,
ipadx = '0',

ipady = 0",

padx = 5",

pady = ’5',

rowspan = '1’,

sticky = "7

button_srbserver =
disabled")

button_srbserver. grid(

Tkinter.Button(self._frame, text = "srbservers", command = self._srbserver_table ,

in_ = self._frame,
column = 4,

row =1,
columnspan = 17,
ipadx = '0’,

ipady = '0’,

padx = "1’

pady = "17,

rowspan = ‘1’ ,

sticky = "'

LVII

state = "

195

200

205

210

215

220

225

230

235

240

245

250

255

Python Scripts B.7 gui2_ui.py

)
self.__select_box_project = Tkinter.Listbox(self._frame, selectmode="single", bg = "white")
self.__select_box_project. grid(
in_ = self._frame,
column = 1,
row =2,
columnspan = "1’ ,
ipadx = '0',
ipady = '0',
padx = '0',
pady = '0",
rowspan = ‘1’ ,
sticky = 'nw’
)
self.__select_box_srbserver = Tkinter.Listbox (self._frame, selectmode="single", width = 30, bg = "white")
self.__select_box_srbserver. grid(
in_ = self._frame,
column = 4,
row =2,
columnspan = 1’7,
ipadx = '0',
ipady = '0’,
padx = '0’,
pady = '0",
rowspan = ‘1’ ,
sticky = 'nw’
)

self.__app._measure_obj.db_object.lock_it()

try:

self.__app._measure_obj.db_object.db_cursor.execute ("SELECT title FROM project ORDER BY title")
except:

print "Bad database file"

sys.exit(—1)

self.__app._measure_obj.db_object.rlock ()
project_table = self.__app._measure_obj.db_object.db_cursor. fetchall ()
self.__app._measure_obj.db_object.rlock ()

if len(project_table) != 0:
button_project.config(state = "active")

for project in project_table:
self.__select_box_project.insert("end", project[0])

self.__app._measure_obj.db_object.lock_it()
self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT host.hostname, srbserver.srb_port
FROM srbserver, host WHERE srbserver.host_id = host.host_id""")

srbserver_table = self.__app._measure_obj.db_object.db_cursor.fetchall ()
self.__app._measure_obj.db_object.rlock ()
#print srbserver_table
if len(srbserver_table) != 0:

srbserver_table.sort ()

button_srbserver.config(state = "active")

for x in srbserver_table:

self. _select_box_srbserver.insert("end", str(x["srbserver.srb_port"])+": "+x["host.hostname"])
select_scrollbar_project = Tkinter. Scrollbar(self._frame)
self.__select_box_project.configure (

yscrollcommand = select_scrollbar_project.set

select_scrollbar_project.configure (

command = self.__select_box_project.yview,
)
select_scrollbar_project.grid(
in_ = self._frame,
column = 2,

LVIII

270

275

280

285

290

295

300

305

310

315

320

325

330

Python Scripts

B.7 gui2_ui.py

columnspan = ’1’,
ipadx = '0",
ipady = '0’,

padx = '0’,
pady = '0’,
rowspan = "1/,
sticky = "nws’,
)
select_scrollbar_srbserver = Tkinter.Scrollbar(self._frame)
select_scrollbar_srbserver_h = AutoScrollbar(self._frame, orient="horizontal")
self.__select_box_srbserver.configure (
yscrollcommand = select_scrollbar_srbserver.set,
xscrollcommand = select_scrollbar_srbserver_h.set
)

select_scrollbar_srbserver.configure (

command = self.__select_box_srbserver.yview,
)
select_scrollbar_srbserver_h.configure (

command = self.__select_box_srbserver.xview

select_scrollbar_srbserver. grid(

in_ = self._frame,
column = 5,

row =2,
columnspan = 1’7,

ipadx = '0',
ipady = '0’,

padx = '0’,
pady = "0’ ,
rowspan = ‘1’ ,
sticky = 'nws’,

)
select_scrollbar_srbserver_h. grid(
in_ = self._frame,
column = 4,
row = 3,
columnspan = "1’
ipadx = '0’,

ipady = '0’,

padx = '0',
pady = 10",
rowspan = ‘1’ ,
sticky = 'nwes’,
)
self.__button_set_project = Tkinter.Button (
self . _frame ,
text= "set Project",
command = self.__get_project
)
self.__button_set_project.grid(
in_ = self._frame,
column = 1,
row =4,
columnspan = "1’ ,
ipadx = '0',
ipady = '0',
padx = "0’ ,
pady = ’5",
rowspan = "1’/
sticky = 'n’,
)
self.__button_set_srbserver = Tkinter.Button (

LIX

335

340

345

350

355

360

365

370

375

380

385

390

395

400

Python Scripts

B.7 gui2_ui.py

self . _frame ,

text = "set Srbserver",
command = self.__get_srbserver
)
self.__button_set_srbserver. grid(
in_ = self._frame,
column = 4,
row =4,
columnspan = "17,
ipadx = "0',
ipady = '0",
padx = '0’,
pady = '5",
rowspan = '1’,
sticky = 'n’,
)
if self.__srbserver or self.__project:
if self.__srbserver:
self.__button_set_srbserver.configure(text = "unset srbserver")
if self.__project:
self.__button_set_project.configure(text = "unset Project")
self.__set_test()
self._frame.grid_columnconfigure (0, weight = 0, minsize = 5, pad = 0)
self. _frame.grid_rowconfigure (0, weight = 0, minsize = 5, pad = 0)
self._frame.grid_columnconfigure (1, weight = 0, minsize = 10, pad = 0)
self._frame.grid_rowconfigure (1, weight = 0, minsize = 10, pad = 0)
self._frame.grid_columnconfigure (2, weight = 0, minsize = 10, pad = 0)
self. _frame.grid_rowconfigure (2, weight = 0, minsize = 10, pad = 0)
self._frame.grid_columnconfigure (3, weight = 1, minsize = 10, pad = 0)
self._frame.grid_rowconfigure (3, weight = 0, minsize = 0, pad = 0)
self._frame. grid_columnconfigure (4, weight = 0, minsize = 10, pad = 0)
self . _frame. grid_rowconfigure (4, weight = 0, minsize = 10, pad = 0)

self._parent._main_frame._canvas_reload ()

def

_set_test(self):

if a srbserver and a project or just a project has been chosen

in the main frame the test table will be shown to choose a test

and the

test_label =

self .

select_scrollbar_test =

__select_box_test =

iteration table will be shown

Tkinter.Button(self._frame, text = "Tests", command = self._test_table)

Tkinter . Listbox (self._frame, selectmode = "single", bg = "white")

Tkinter. Scrollbar (self._frame)

self.__select_box_test.configure (

yscrollcommand =

select_scrollbar_test.set

select_scrollbar_test.configure (

command

if self.__project !=

= self.__select_box_test.yview,

None:

self.__app._measure_obj.db_object.lock_it()

if self.

__srbserver != None:

self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT DISTINCT name

tests =

FROM test,iteration INNER JOIN iteration_srbserver where iteration_srbserver.srbserver_id =
(Select srbserver.srbserver_id from srbserver, host

AND srb_port = %d and host.host_id = srbserver.host_id)
"%s’)

iteration_srbserver.

where host.hostname = ’%s’

AND test.project_id = (Select project.project_id from project where project.title =
AND test.test_id =
iteration_id AND

test.failed_flag = 0""" % (str(self.

iteration.test_id AND iteration.iteration_id =
__srbserver),int(self.__srb_port),str(self.__project)))

self.__app._measure_obj.db_object.db_cursor. fetchall ()

LX

405

410

415

420

425

430

435

440

445

450

455

460

465

470

Python Scripts

B.7 gui2_ui.py

if tests == []:
self.__srbserver = None
print "no test with this project and the selected srbserver"

self.config ()

else:

self.__app._measure_obj.db_object.db_cursor.execute("""

SELECT test.name,test_id

FROM test INNER JOIN project WHERE project.title = ’'%s’

AND test.project_id = project.project_id AND test.failed_flag = 0""" % self.__project)
tests = self.__app._measure_obj.db_object.db_cursor. fetchall ()
self.__select_box_srbserver.delete (0,"end")
self.__app._measure_obj.db_object.db_cursor.execute (""" SELECT DISTINCT H.hostname, S.srb_port

FROM host AS H, srbserver AS S

INNER JOIN project as P ON (P.project_id = T.project_id) AND P.title "%s’
INNER JOIN iteration_srbserver AS I_S ON (I_S.srbserver_id = S.srbserver_id)
INNER JOIN iteration AS I ON (I.iteration_id = I_S.iteration_id)

INNER JOIN test AS T ON (I.test_id = T.test_id)

AND H.host_id = S.host_id""" % self.

self.__app._measure_obj.db_object.db_cursor. fetchall ()

__project)
new_srbservers =
#print new_srbservers
new_srbservers.sort ()
for srbserver in new_srbservers:
self.__select_box_srbserver.insert("end",
hostname"]))
self.__app._measure_obj.db_object.rlock ()
for test in tests:
self.__select_box_test.insert("end", test[0])
test_label . grid(

in_ =

self . _frame,

column =1,

row =35,
columnspan = 17,
ipadx = '0',
ipady = '0',

padx = '0",

pady = '5",
rowspan = ‘1’

sticky = "',

)
self.__select_box_test. grid(
in_ = self._frame,
column =1,
row =6,
columnspan = ’17,
ipadx = '0',
ipady = '0',
padx = '0',
pady = '5",
rowspan = "1’ ,
sticky = 'n’,
)

select_scrollbar_test.grid(

in_ = self._frame,
column = 2,

row =6,
columnspan = "1’ ,
ipadx = '0',

ipady = '0',

padx = 0’ ,

pady = '5",

rowspan = ’17,

sticky = 'nws’,

button_set_test = Tkinter.Button (
self._frame,
text = "set Test",

command = self.__set_test_command

LXI

str(srbserver["S.srb_port"])+":

"tstr(srbserver["H.

475

480

485

490

495

500

505

510

515

520

525

530

535

540

Python Scripts

B.7 gui2_ui.py

def

def

def

def

button_set_test.grid(
column =1,

row =17,

columnspan = "17,

ipadx = 0",

ipady = "0’ ,

padx = '0’,
pady = ’5',
rowspan = '1’,

sticky = "7,

)
if self.__test != None:
self.__set_test_command ()
elif self.__srbserver != None:
self.__select_box_project.delete (0,"end")

self.__app._measure_obj.db_object.lock_it()
self.__app._measure_obj.db_object.db_cursor.execute (""" SELECT DISTINCT P.title FROM project AS P

INNER JOIN srbserver as S, host AS H ON (S.srb_port = ’'%s’) AND H.host_id = S.host_id AND H.hostname

regr
INNER JOIN iteration_srbserver AS I_S, iteration ON (I_S.srbserver_id = S.srbserver_id) AND
(iteration.test_id = T.test_id) AND (iteration.iteration_id = I_S.iteration_id)

INNER JOIN test AS T ON (P.project_id = T.project_id) ORDER BY P.title""" % (self.__srb_port,self.

__srbserver))
d_projects = self.__app._measure_obj.db_object.db_cursor.fetchall ()
self.__app._measure_obj.db_object.rlock ()
for project in d_projects:

self.__select_box_project.insert("end", project[’P.title’])

self._parent._main_frame. _canvas_reload ()

_project_table (self):
""" show all projects in a table """

self.__app._measure_obj.db_object.lock_it()

self.__app._measure_obj.db_object.db_cursor.execute("""SELECT * FROM project""")
d_project = self.__app._measure_obj.db_object.db_cursor. fetchall ()
self.__app._measure_obj.db_object.rlock ()

self. _create_table(d_project,"Projectlist™)

_test_table (self):
""" show all tests in table """
self.__app._measure_obj.db_object.lock_it()
self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT T.failed_flag, T.test_id, T.name,
T.description, TER.forename, TER.surname,TER.email FROM test AS T
INNER JOIN project AS P ON (T.project_id = P.project_id) AND P.title = '%s’
INNER JOIN tester AS TER ON (TER.tester_id = T.tester_id)""" % self.__project)
d_tests = self.__app._measure_obj.db_object.db_cursor.fetchall ()
self.__app._measure_obj.db_object.rlock ()

self._create_table (d_tests ,"Testlist")

_srbserver_table (self):

""" show all srbservers in a table """

self.__app._measure_obj.db_object.lock_it()

self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT S.srbserver_id,
H.hostname, S.srb_port, H.cpu_speed, H.memory, H.ip_address FROM host AS H, srbserver AS S
WHERE H.host_id = S.host_id""")

d_srbservers = self.__app._measure_obj.db_object.db_cursor. fetchall ()

self.__app._measure_obj.db_object.rlock ()

self. _create_table(d_srbservers ,"SRBserverlist")

_create_table (self , d_measurements, heading, append = 0):

""" create a table in the main-frame for project, test and srbserver """
self. _parent._active = "create_table"

d_meas_labels = {}

self . _parent._main_frame.config ()
self._frame = self._parent._main_frame._frame

self._i_count = 0

LXII

545

550

555

560

565

570

575

580

585

590

595

600

605

610

Python Scripts

B.7 gui2_ui.py

i_count = 0

meas_heading = Tkinter.Label(self._frame, text = heading)
meas_heading . grid (
column = i_count,
row =0,
columnspan = len(d_measurements[0]),
ipadx = 0",
ipady = "0’ ,
padx = ’5',
pady = '5",
rowspan = "1/,
sticky = 'nwes’
)
for headings in d_measurements [0].keys():
point = headings.find(".")
if point != —1:
headings = headings[point+1:]
d_meas_labels[headings] = Tkinter.Label(self._frame, text = headings, relief = "groove")
d_meas_labels[headings]. grid(
column = i_count,
row =1,
columnspan = 17,
ipadx = ’'0'",
ipady = "0’ ,
padx = 0",
pady = '0",
rowspan = "1’
sticky = ’nwes’
)
i_count += 1
i_count = 0
column_begin = 0
self._d_meas_entries = []
self._failedVar = []
for measurement in d_measurements:
i_count2 =0
#print i_count
self._d_meas_entries.append ([])
for content in measurement:
if heading == "Testlist" and i_count2 ==
self._failedVar.append({})
self. _failedVar[i_count][’failed_flag’] = Tkinter.IntVar ()
self._failedVar[i_count][’failed_flag’].set(content)
self._d_meas_entries[i_count].append(Tkinter.Checkbutton(self._frame, variable = \
self. _failedVar[i_count][’failed_flag’], onvalue = 1, offvalue = 0))
#d_meas_entries[i_count][i_count2].
elif heading == "Testlist" and i_count2 == 1:
self._failedVar[i_count][’tm_id’] = Tkinter.StringVar ()
self._failedVar[i_count][’tm_id’].set(content)
self._d_meas_entries[i_count].append(Tkinter.Label(self._frame, \
text = self._failedVar[i_count]["tm_id’].get(), relief = "ridge"))
self._failedVar[i_count][’tm_id’].set(content)
else:
print i_count
self._d_meas_entries[i_count].append(\
Tkinter.Label(self._frame, text = content, relief = "ridge"))

self._d_meas_entries[i_count][i_count2]. grid(

column = i_count2,
row = i_count+2,
columnspan = "1’
ipadx = 0",

ipady = 0",

padx = '0',

LXIII

615

620

625

630

635

640

645

650

655

660

665

670

675

680

Python Scripts

B.7 gui2_ui.py

pady = '0",
rowspan = ’17,
sticky = ’'nwes’

)
i_count2 +=1
i_count += 1
if heading == "Testlist":
set_test_button = Tkinter.Button(
self._frame ,
text = "Set Flags",
command = self._set_test_flag
)
set_test_button.grid(
column = 0,
row = i_count+2,
columnspan = "1’ ,
ipadx = '0',
ipady = '0',

padx = '0',
pady = '0',
rowspan = "1’ ,

sticky = "7
#d_meas_entries = {}

self . _parent._main_frame. _canvas_reload ()

def __get_project(self):

set a project in the main view

if self.__project != None:
self.__button_set_project.configure(text = "set Project")
self.__project = None

self.config ()

elif self.__select_box_project.curselection() != ():
self.__project = self.__select_box_project.get("active")
self.__button_set_project.configure(text = "unset Project")
self.__set_test()

def __get_srbserver(self):

""" set a srbserver in the main view"""

if self.__srbserver != None:
self.__button_set_srbserver.configure(text = "set srbserver")
self.__srbserver = None
self.__srb_port = None
if self.__project == None:

self.config ()
else:

self.config ()

self.__set_test()
elif self.__select_box_srbserver.curselection() != ():
self.__srbserver = self.__select_box_srbserver.get("active")
srb_var = self.__srbserver.find(":")
self.__srb_port = self.__srbserver[:srb_var]
self.__srbserver = self.__srbserver[srb_var+2:]
self.__button_set_srbserver.configure(text = "unset srbserver")

self.config ()
self.__set_test()

def __set_test_command(self):

""" this function sets the test in the main view and start the iteration table """

if self.__select_box_test.curselection() != ():
self.__test = self.__select_box_test.get("active")
self.__select_box_times = Tkinter.Listbox(self._frame, selectmode = "extended",

LXIV

bg = "white")

685

690

695

700

705

710

715

720

725

730

735

740

745

750

Python Scripts

B.7 gui2_ui.py

select_scrollbar_times =

Tkinter. Scrollbar (self._frame)

__select_box_times.configure (

scrollcommand =

select_scrollbar_times.set

select_scrollbar_times.configure (

command =

self.__select_box_times.yview,

self.__app._measure_obj.db_object.lock_it()

if self.__srbserver != None and self.__srb_port != None
self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT DISTINCT iteration.time FROM iteration
INNER JOIN iteration_srbserver AS I_S
ON I_S.srbserver_id = (SELECT srbserver.srbserver_id
FROM srbserver,host WHERE host.host_id = srbserver.host_id AND
host.hostname = ’'%s’ AND srbserver.srb_port = '%s’)
AND iteration.iteration_id = I_S.iteration_id
AND iteration.test_id = (SELECT test.test_id FROM test INNER JOIN
project WHERE project.title = ’'%s’ AND project.project_id = test.project_id AND test.name = ’'%
BEEEER
% (self.__srbserver, self.__srb_port, self.__project, self.__test))
else:
self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT DISTINCT iteration.time FROM iteration
INNER JOIN iteration_srbserver AS I_S
WHERE iteration.test_id = (SELECT test.test_id FROM test INNER JOIN
project WHERE project.title = ’%s’ AND project.project_id = test.project_id AND test.name =
s’)
AND iteration.iteration_id = I_S.iteration_id
"nw 9% (self.__project, self.__test))
d_times = self.__app._measure_obj.db_object.db_cursor. fetchall ()
self.__app._measure_obj.db_object.rlock ()

for time_stamp in d_times:

self.

)

self.__select_box_times.insert("end",

in_

time_stamp [0])

__select_box_times. grid(

= self._frame,

column = 4,

row =6,
columnspan = "1’ ,
ipadx = 0’
ipady = "0’ ,
padx = 0",

pady = '5",
rowspan = ’17,
sticky = ’nwe’,

select_scrollbar_times. grid(

)

butmnigelimeasurement =

in_

= self._frame,

column = 5,

row =6,
columnspan = 17,
ipadx = ‘0',
ipady = '0',
padx = '0',

pady = '5",
rowspan = "1’/
sticky = ’nws’,

Tkinter . Button (

self._frame ,

LXV

’

%

755

760

765

770

775

780

785

790

795

800

805

810

815

820

Python Scripts

B.7 gui2_ui.py

text = "get Measurements",
command = self.__get_measurements
)
button_get_measurement. grid (
in_ = self._frame,
column = 6,
row =6,
columnspan = 17,

ipadx = '0',
ipady = ‘0',
padx = '0',
pady = '5",
rowspan = "1’ ,

sticky = "',

def __get_measurements(self, view = "graph"):

""" get the measurements and create a measurement table """

if self.__select_box_times.curselection() != ():
self.__times = []
selection = self.__select_box_times.curselection ()
s_times = ""

for x in selection:

i_time = self.__select_box_times.get(x)

self.__times.append(i_time)

s_times += " I.time = ’'%s’ OR" % i_time

self.__app._measure_obj.db_object.lock_it()

if self.__srbserver != None and self.__srb_port != None

select_string = """ SELECT DISTINCT M.* from measurement AS M

INNER JOIN project AS P, test AS T on (P.project_id = T.project_id) AND P.title =

rogr
%s

INNER JOIN iteration AS I, iteration_srbserver as I_S ON (T.test_id = I.test_id)

AND I_S.iteration_id = I.iteration_id AND (%s) AND T.name = ’'%s’
AND I_S.srbserver_id = (SELECT srbserver.srbserver_id
FROM srbserver,host WHERE host.host_id = srbserver.host_id AND
host.hostname = ’'%s’ AND srbserver.srb_port = '%s’)
AND M.is_id = I_S.is_id

"ew 9(self.__project,s_times[:—2], self.__test, self.__srbserver, self.__srb_port)
print select_string
self.__app._measure_obj.db_object.db_cursor.execute(select_string)
else:
self.__app._measure_obj.db_object.db_cursor.execute (""" SELECT DISTINCT M.* from measurement AS M
INNER JOIN project AS P, test AS T on (P.project_id = T.project_id) AND P.title = ’'%s’
INNER JOIN iteration AS I, iteration_srbserver as I_S ON (T.test_id = I.test_id)
AND I_S.iteration_id = I.iteration_id AND (%s)
AND M.is_id = I_S.is_id
nnn G(self.__project,s_times[:—2]))
d_measurements = self.__app._measure_obj.db_object.db_cursor. fetchall ()

print d_measurements
self.__app._measure_obj.db_object.rlock ()
self.list = d_measurements

myplot.Graph(self.__app._measure_obj.db_object).config(self.list)

def _set_test_flag(self):

""" set the flag if a test shouldn’t be seen in the table """

#print self._d_meas_entries[0]

i_count = 0

self.__app._measure_obj.db_object.db_cursor.execute("""Select failed_flag from test""")

old_flags = self.__app._measure_obj.db_object.db_cursor. fetchall ()

for failed in self._failedVar:
new_flag = failed [’ failed_flag’]. get()
self.__app._measure_obj.db_object.db_cursor.execute ("""SELECT count (failed_flag) from test where

failed_flag = 0""")

LXVI

825

830

835

840

845

850

855

860

865

870

875

880

885

890

Python Scripts

B.7 gui2_ui.py

test =
if int(test[0]) == 1:
self._parent.protocol (' WM_DELETE_WINDOW’, lambda:

self.__app._measure_obj.db_object.db_cursor. fetchone ()

"do nothing")

tkMessageBox .showerror("Last test"™, message = " Sorry but each project needs one unfailed test")
self._parent.protocol (' WM_DELETE_WINDOW’, self._parent._gui_quit)
failed [’ failed_flag’].set(0)
break
if old_flags[i_count][’failed_flag’] != new_flag:

self.__app._measure_obj.db_object.db_cursor.execute ("""UPDATE test SET failed_flag =

WHERE test_id

i_count +=1

class Mymenu(Tkinter.Menu) :

"""class which creates the menu

def __init__ (self ,parent):
""" constructor to initiliase the menu """
self.__parent = parent
Tkinter .Menu. __init__(self ,self.__parent)
self.__create_menu_1()
self.__create_menu_2()
def __create_menu_1(self):
""" create the first menu """
menu_l = Tkinter.Menu(self ,
tearoff = 0,
)
self.add_cascade(
columnbreak = 717,
label = ’'Menu’,
menu = menu_I,
)
menu_1 .add_command (
label = ’'Open db’,
underline = '0’,
command = self.__parent._open_db
)
menu_1 .add_command (
label = ’Save db as’,
underline = '0’,
command = self.__parent._save_db
)
#self . _menu_I.add_command (
label = *Print’,
underline = 07,
command = self.__parent._main_frame. _print_it
#
#)
menu_1 .add_command (
label = "Exit’,
underline = '0’,
command = self.__parent._gui_quit
)
def __create_menu_2(self):
""" create the second menu """
menu_2 = Tkinter.Menu(self ,
tearoff = 0",
)
self.add_cascade(
label = ’'Window’,
menu = menu_2,
)

menu_2.add_command (
label = "Main’,

underline = "0’ ,

LXVII

regr

= '$s'""" % (new_flag, failed["tm_id’].get()))

895

900

905

910

915

920

925

930

935

940

945

950

955

960

Python Scripts

B.7 gui2_ui.py

command = self.__parent.graph_choice.config
)
menu_2.add_command (
label = ’Configuration’,
underline = "0’ ,
command = self.__parent.configuration_frame._configuration_frame

class Dialog(Tkinter.Tk):

def

main Dialog class """

__init__(self ,tkparent):
""" constructor for the main Dialog
initialisation of all main widgets

Tkinter . Tk. __init__(self)

#self .sema = threading.BoundedSemaphore(value = 1)

#self.threads_connected =threads_connected

self._parent = tkparent

self._active = "main"

#self._root = root #main window
self._all_measurements = []

self._button_start = Tkinter.Button(self ,
text = 'Start’,
)

""" start button to start a connection and get data from servers """

self._button_stop = Tkinter.Button(self ,
text = 'Stop’,

)
""" stop the connection and close all open descriptors """
self.__text_console_output = Tkinter.Text(self,
height = 70",
width = 70",
state = ’disabled’
)

""" console output for the gui """

self.__d_text = {}

""" text dictionary for the configuration window """

self.__d_label = {}

""" label dictionary for the configuration window """

self.__button_write_config = {}

""" write config button initialisation """

self . _button_start.configure (
command = self._button_start_command

)

""" configuration of the start button """

self._button_stop.configure (

command = self._button_stop_command,

state = "disabled"
)
""" configuration of the stop button """
self.__text_console_scrollbar = AutoScrollbar(self ,)

""" automatic scrollbar for the text console """

LXVIII

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

Python Scripts

B.7 gui2_ui.py

self.__text_console_output.configure (
yscrollcommand = self.__text_console_scrollbar.se
)
self.__text_console_scrollbar.configure (
command = self.__text_console_output.yview
)

Geometry Management
self.__text_console_scrollbar. grid(

in_ = self ,

column = 2,

row =1,

columnspan = "1,

ipadx = '0',

ipady = '0’,

padx = '0',
pady = "0,
rowspan = ‘2’ ,
sticky = ’'nsw’

self . _button_start. grid(
in_ = self,
column = 0,
row =1,
columnspan = "1,
ipadx = '0’,
ipady = '0’,

padx = '0’,
pady = '0',
rowspan = ‘1’ ,
sticky = ’"nesw’

)
self._button_stop.grid(
in_ = self,
column = 0,
row =2,

columnspan = ’1’,
ipadx = "0’
ipady = '0",

padx = '0’,
pady = '0’,
rowspan = "1’/
sticky = "nesw’,
)
self.__text_console_output. grid(
in_ = self,
column = 1,
row =1,
columnspan = "1,
rowspan = "2’
ipadx = 0",
ipady = "0’ ,
padx = '0’,
pady = '0',
sticky = ’swen’
)

self._main_frame = Mainframe(self)
self._main_frame. grid(

in_ = self,

column = 0,

row =0,

columnspan = "3’

ipadx = ‘0',

ipady = "0",

padx = 0",

pady = "0’

LXIX

t,

Python Scripts B.7 gui2_ui.py

rowspan = "1’

sticky = ’nwes’
)
1040
self.configuration_frame = Configuration(self)
self.graph_choice = graph_choice(self ,app = tkparent)#._raw_output_frame ()
self.graph_choice.config ()
self._mymenu = Mymenu(self)
1045 db_name = self._parent._measure_obj.db_object._get_db ()

print db_name

db_name = db_name.split("/")

db_name.reverse ()

self.title ("SRB Benchmark: "+db_name[0])

1050 self._dyn = None

Resize Behavior

self.grid_rowconfigure (0, weight = 1, minsize = 40, pad = 0)
self.grid_rowconfigure(l, weight = 0, minsize = 40, pad = 0)
self.grid_rowconfigure (2, weight = 0, minsize = 40, pad = 0)

1055 self.grid_columnconfigure (0, weight = 0, minsize = 40, pad = 0)
self.grid_columnconfigure(l, weight = 1, minsize = 40, pad = 0)
self.grid_columnconfigure (2, weight = 0, minsize = 10, pad = 0)
self.configure (menu = self._mymenu)

#self.graph_start = threading.Event()
1060

MWW ko k kKKK KKKKAA ACTIONS FHAKKKAKAA AKX KK kKK KKK MMM

def _button_start_command(self):

""" start button command """
1065 self. _button_start.config(state = "disabled")
self.closed = 0
kick old measurements
self._parent._measure_obj.db_object.get_measurements ()
#self . threads_connected.clear ()
1070 ## start the measurement ##

i_measurement_return = self._parent._measure_obj.run_measurements ()

a server connection failed, stop all other connections
if (i_measurement_return == —1):

1075 print "no connection reached"

self._parent._measure_obj.stop_connections ()
self._button_start.config(state = "normal")
all server connected
1080 else:

set all measurements to zero (for the dynamic table and the graph

self._all_measurements = []
1085
graph_supp = myplot.Graph(self._parent._measure_obj.db_object)
start a thread that checks every second if the measurement is still running and stop it if not
thread .start_new_thread (self. _test_stop, ())
1090
set_var controls the test_stop thread. if it is set to one the thread automatically stops
self._set_var = 0
change the state of both buttons
1095
self._dyn = myplot.dyn_table (self , graph_supp)
create a thread for the dynamic graph
dyn_graph = thread.start_new_thread(self._dyn.config2 ,())
1100 self._button_stop.config(state = "normal")
def _change_text_in_console(self, s_text):
1105 """ insert function to put text into the console """

LXX

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

Python Scripts

B.7 gui2_ui.py

def

def

def

enable the text widget to write
self.__text_console_output.config(state = "normal")
insert the text at the end
self.__text_console_output.insert("end", s_text)

disable the console again
self.__text_console_output.config(state = "disabled")
change the yview to the end

self.__text_console_output.yview("end")

_button_stop_command (self):

""" stop button command """

print "pressed stop"

stop the _test_stop thread which looks if the measurement has ended,
is reached

self._button_stop.config(state = "disabled")

self._set_var =1

stop the measurement
self._parent._measure_obj.stop ()

restart the main site , to renew the listbox tables

if self._active == "main":
self.graph_choice.config()

change the buttons
self._dyn.stop_table ()

self . _button_start.config(state = "normal")

print "stop button finished"

_gui_quit(self):
"en quit function "UM

stop the connection to the tables
if ’'disabled’ in self._button_start.config(’state’):
self._button_stop_command ()

self._parent._measure_obj.db_object.db_cursor.close ()
self . _parent._measure_obj.db_object.db_con.close ()

print "close cursor"

print "gui_quit just self.quit"
self.quit()
kill yourself

_test_stop (self):

""" thread to test if the measurement is still running """
time.sleep (1)

while 1:

if self._parent._measure_obj.ganglia_obj._stopevent.isSet():

if self._set_var == 1:
print "thread already stopped"
break

press manually the stop button

self . _button_stop_command ()
break

LXXI

because

the max number of measurement

Python Scripts B.7 gui2_ui.py

time.sleep (1)

1180 def _open_db(self):

""" open a different database """

bad_file = 0

old_db = self._parent._measure_obj.db_object._get_db ()

while 1:

1185 self.protocol ("WM_DELETE_WINDOW",self._dummy)

result = tkFileDialog.askopenfilename (filetypes = [("database","*.db")])

self.protocol (' WM_DELETE_WINDOW’, self._gui_quit)

#print result

1190 if result == "":

if bad_file == 1:
self.protocol ("WM_DELETE_WINDOW",self._dummy)
tkMessageBox .showerror(title = "Error", message = "take the old database")
self.protocol (' WM_DELETE_WINDOW', self._gui_quit)

1195 self._parent._measure_obj.db_object.set_new_db(old_db)
result = old_db
break

if self._parent._measure_obj.db_object.set_new_db(result) ==
self.graph_choice.config()

1200 break

else:
self.protocol ("WM_DELETE_WINDOW",self._dummy)
tkMessageBox .showerror(title = "Error", message = "Bad database file")

1205 self .protocol (* WM_DELETE_WINDOW’ , self._gui_quit)

bad_file =1
result = result.split("/")
result.reverse ()
1210 self.title ("SRB Benchmark: "+result[0])

def e_db(self):
1215 """ function to save the actual database in another file """

db = self._parent._measure_obj.db_object._get_db ()

db_name = db.split("/")

db_name.reverse ()

self.protocol ("WM_DELETE_WINDOW",self._dummy)

1220 result = tkFileDialog.asksaveasfilename (filetypes = [("database","*.db")], title = "Save "+db_name[0]+" AS")

self.protocol (WM_DELETE_WINDOW', self._gui_quit)

if result != "":

1225 shutil.copyfile(db, result)
if self._parent._measure_obj.db_object.set_new_db(result) == —1:
self .protocol ("WM_DELETE_WINDOW",self._dummy)
tkMessageBox .showerror(title = "Error", message = "Bad database file")

self.protocol (' WM_DELETE_WINDOW’, self._gui_quit)

1230
bad_file =1
self . _parent._measure_obj.db_object.set_new_db(db)
else:
result = result.split("/")
1235 result.reverse ()
self.title ("SRB Benchmark: "+result[0])
def _dummy(self ,event = None):
""" dummy function, to do nothing """
1240 return ’'break’
WUN ok kkkkkx kxR Ak xkx CONFIGURATION FRAME *** %4 kkxkxkkkkrkxks nun
class Configuration:
""" class for the configuration frame, which sets and writes a new config file """
1245 def __init__(self ,parent):
self. _parent = parent
self._main_frame = parent._main_frame

LXXII

Python Scripts B.7 gui2_ui.py

self._measure_obj = parent._parent._measure_obj
self.__d_text = {}
1250 self.__d_label = {}
def _configuration_frame(self, server_number = None):
""" set the frame for the configuration vision """
1255 self . _active = "config"
if server_number != None:
self .server_number = int(server_number)
self._main_frame.config ()
1260
I_config_keys = []
I_config_keys[1:] = self._measure_obj.get_config().keys()
I_config_keys.sort()
1265 counter = 1
d_config = self._measure_obj.get_config()
if server_number == None:
self.server_number = int(d_config[’server.quantity’])
1270 for s_key in I_config_keys:
if s_key == "server.quantity":
row_number = 0
else:
row_number = counter
1275 if s_key.startswith("server.") == False:
self.__d_label[s_key] = Tkinter.Label(self._main_frame._frame, text = s_key)
self.__d_label[s_key]. grid(
column = 1,
row = row_number,
1280 columnspan = "1’,
ipadx = '0',
ipady = '0',
padx = '0',
pady = 0",
1285 rowspan = "1’
sticky = "nwes’
)
else:
counter —= 1
1290
if s_key == "server.quantity":
self.__d_label[s_key] = Tkinter.Label(self._main_frame._frame, text = s_key)
self.__d_label[s_key]. grid(
1295 column = 1,
row = row_number ,
columnspan = "1’ ,
ipadx = 0’
ipady = "0’ ,
1300 padx = 0",
pady = '0",
rowspan = ’17,
sticky = ’nwes’
)
1305 self.__quantity_listbox = Tkinter.Listbox(self._main_frame._frame, height = 2, width = 10, bg = "white
")
self.__quantity_listbox.grid(
column = 2,
row = row_number ,
columnspan = ’17,
1310 ipadx = '0',
ipady = "0",
padx = 0",
pady = '0",
rowspan = ’'1',
1315 sticky = ’'nwes’
)
for server inm range(l, 10):

LXXIII

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

Python Scripts

B.7 gui2_ui.py

self.__quantity_listbox.insert("end", server)

select_scrollbar = Tkinter.Scrollbar(self._main_frame._frame)
self.__quantity_listbox.configure (

yscrollcommand = select_scrollbar.set,

)
self.__quantity_listbox.bind("<Button-1>",
bind ("<Double-Button-1>",

self._parent._dummy)
self.__quantity_listbox. self._cur_selec)
select_scrollbar.configure (

command = self.__quantity_listbox.yview,

)

select_scrollbar. grid(

in_ = self._main_frame._frame,
column = 3,

row = row_number,

columnspan = "1’

ipadx = '0’,

ipady = '0',

padx = '0',

pady = '0",

rowspan = 1’

sticky = 'nws’,

)
elif s_key.startswith("server."):

"nndo nothing "M

elif s _key == "measurement.srb":
self.__d_text[s_key] = Tkinter.StringVar ()
self.__d_text[s_key].set(d_config[s_key])

srb_toggle= Tkinter.Checkbutton(self._main_frame._frame, variable
", offvalue = "0")
srb_toggle . grid(
column = 2,
row = row_number ,
columnspan = "1’
ipadx = '0',
ipady = '0',
padx = '0',
pady = '0",
rowspan = 1’
sticky = ’'nwes’
)
else:
self.__d_text[s_key] = Tkinter.Entry(self._main_frame._frame, width
self.__d_text[s_key].insert("insert", d_config[s_key])
self.__d_text[s_key]. grid(
column = 2,
row = row_number,
columnspan = "1’
ipadx = '0',
ipady = '0',
padx = "0,
pady = "0’
rowspan = '17,
sticky = "nwes’
)

self._main_frame._frame. grid_rowconfigure (counter, weight = 0,

counter = counter +1

server in range(l, self.server_number+1):

for component in range(l, 3):
if component == 1:

server_key = "server.host_"+str(server)
elif component ==

server_key = "server.port_"+str(server)

LXXIV

minsize

self.__d_text[s_key], onvalue = "1

= 50, bg = "white")
10, pad = 0)

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

Python Scripts

B.7 gui2_ui.py

else:
server_key = "server.poll_time_"+str(server)
self.__d_label[server_key] = Tkinter.Label(self._main_frame._frame,
self.__d_label[server_key]. grid(

I,
counter ,
1

column =
row =
columnspan =
or,
o,
ror,
pady = 0",
1,

ipadx =
ipady =
padx =

rowspan =
sticky = "nwes’

)
self .

d_text[server_key] = Tkinter.Entry(self._main_frame._frame,

self.__d_text[server_key]. grid(

column = 2,

Tow = counter,
columnspan = "1',
ipadx = '0’,
ipady = "0’ ,
padx = '0',

pady = '0",
rowspan = 1’
sticky = ’"nwes’

)
if d_config.has_key(server_key):

text

width

’

self.__d_text[server_key].insert("insert", d_config[server_key])
self._main_frame._frame. grid_rowconfigure (counter, weight = 0, minsize
counter += 1
self.__button_set_config = Tkinter.Button(self._main_frame._frame, text = ’Set
__button_set_command)
self.__button_set_config. grid(
column = 1,
Tow = counter ,
columnspan = ’17,
ipadx = '0',
ipady = '0’,
padx = '0’,
pady = '0’,
rowspan = ‘1’
sticky = "nws’
)
self.__button_write_config = Tkinter.Button (
self._main_frame._frame,
text = 'Write Config’,
command = self.__button_write_config_command
)
self.__button_write_config. grid(
column = 2,
row = counter,
columnspan = "1,
ipadx = 0",
ipady = "0’ ,
padx = '0',
pady = 10",
rowspan = "1/,
sticky = "nws’
)
self._main_frame._frame. grid_columnconfigure (2, weight = 1, minsize = 10, pad =
self._main_frame._canvas.create_window (0, 0, anchor = "nw", window =

self._main_frame._frame.update_idletasks ()

self._main_frame. _canvas.config(scrollregion =

LXXV

server_key)

50, bg ="white")

10, pad = 0)
command = self.
0)

self._main_frame._frame)

self._main_frame._canvas.bbox("all"))

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

Python Scripts B.7 gui2_ui.py

def __button_set_command(self):
""" set command for the configuration set button """

test = self._parent._button_start.config(’state’)
if "disabled’ in test:
parent.protocol ("WM_DELETE_WINDOW",self._parent._dummy)

tkMessageBox .showerror(title = "Error", message = "Cannot set the config during measurement")

self.

self._parent.protocol (' WM_DELETE_WINDOW’, self._parent._gui_quit)
else:

d_config = {}

for content in self.__d_text:

try:

d_config[content] = self.__d_text[content]. get()
except Tkinter.TclError:

print Exception

d_config[content] = "None"
d_config[content] = d_config[content].replace("""/ """ nnn nnny
d_config[content] = d_config[content].replace(’'"",” ")
d_config[content] = d_config[content]. strip ()

for x in range(0,self.server_number):
if d_config[’server.host_’+str(x+1)].find("localhost") != —1 or d_config[’server.host_'+str(x+1)].find
("127.0.0.1") != —1I:
self._parent.protocol ("WM_DELETE_WINDOW",self._parent._dummy)
tkMessageBox .showerror(title = "Error", message = "bad server")
self. _parent.protocol (' WM_DELETE_WINDOW’, self._parent._gui_quit)
return 0

print d_config[’test.name’]

if d_config[’test.name’] == "" or d_config[’project.name’] == "" or d_config[’tester.forename’] == "" \
or d_config[’tester.surname’] == "" or d_config[’measurement.quantity’] == "" or \
d_config[’'measurement.poll_time’] == "" or d_config[’measurement.application’] == "":

self._parent.protocol ("WM_DELETE_WINDOW",self._parent._dummy)
tkMessageBox.showerror(title = "Error", message = "necessary configuration entries are missing")
self._parent.protocol (' WM_DELETE_WINDOW’, self._parent._gui_quit)
else:
d_config[’server.quantity’] = self.server_number
self._measure_obj.set_config(d_config)

self._configuration_frame (self.server_number)

def __button_write_config_command(self):
""" command for the write button on the configuration frame"""
self._parent.protocol ("WM_DELETE_WINDOW",self._parent._dummy)
write_to = tkSimpleDialog.askstring("Write config to","test:", initialvalue = self._parent._parent._cparser.
get_config_file ())
self._parent.protocol (' WM_DELETE_WINDOW'’, self._parent._gui_quit)

if write_to != None:

self.__button_set_command ()

test = self._parent._button_start.config(’state’)
if self._parent._parent._cparser.write(write_to, self._measure_obj.get_config()) == —1:
tkMessageBox .showerror(title = "Write Error", message = "Cannot write the config: File Error?")
def _cur_selec(self, event = None):

""" get the current selection of the listbox """

i = self.__quantity_get_index (event)

if 1> —1:
self.__quantity_listbox.select_clear(0, "end’)
self. _configuration_frame (i+1)
self.__quantity_listbox .see (i)
self.__quantity_listbox.selection_set (i)

def __quantity_get_index (self, event):

LXXVI

Python Scripts B.8 myplot.py

""" help the _cur_selec function to get the actual position in the listbox """

x_org = self.__quantity_listbox.winfo_rootx ()
y_org = self.__quantity_listbox.winfo_rooty ()
1530 X_new = event.X_root — x_org
y_new = event.y_root — y_org
index = self.__quantity_listbox.index ('@’ + str(x_new) + ',’ + str(y_new))
box = self.__quantity_listbox .bbox(index)
if not box or y new > box[1l] + box[3]:
1535 return —1
else:

return index

B.8 myplot.py

#!/usr/local/bin/python

""" MYPLOT creates the Graph-window and creates the graphs """

date__ = "15.12.2005"

__version__ = "0.1"

5 __author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"

__revision__ = "1.0"

from Graphs import =

import time

import tkFileDialog
15 import random
import tooltip
import re

class Graph(Tk):
20 """ class which is able to plot the measurement graphs, all data will be set up for the Graphs.py """

def __init__(self ,db_object):

""" constructor to initialize the Dialog with its Slider and Buttons """

25 Tk.__init__(self)

Don’t allow the window to close before everything is initiliazed , (if not could it could cause thread
problems)

self.protocol (' WM_DELETE_WINDOW’, self.__dummy)

#database object

self.__db_object = db_object

30 #create a statusbar object

self.__statusbar = StatusBar(self)

#set the title of the window

self.title (’'simple bar graph’)

create the frame for the graph

35 self.__fl = Frame(self)

#dummy settings
self.__parent = None
self.__balloonhelp = None
40 self.__showed = None

self.__begin = None

self.__end = None

create the slider for centering

45 self.__scale_begin = Scale(self, orient=HORIZONTAL, state = ’disabled’)
create the slider for zooming

self.__scale_zoom = Scale(self, orient=HORIZONTAL, state = ’disabled’)
#create the labels for the slider

zoom_label = Label(self, text = "Zoom in/out:")

50 value_label = Label(self, text = "Center on:")

LXXVII

55

60

65

70

75

80

85

90

95

100

105

110

115

120

Python Scripts

B.8 myplot.py

create the button which toggles the legend on and off
self.__b_legend = Button(self, text = ’Legend’)

create the button which allows the storing of the graph as a postscript
self.__b_print = Button(self, text = ’Save graph’)
bind the button to the tooltip function
self.__b_print.bind("<Enter>",lambda ev,self = self ,\
ht = """ Save the graph in a Postscript File """,
tt = """ Save graph as ps """:\
self.on_enter(ev,ht, tt))
set the leave function to the print button, which destroys the tooltip

self.__b_print.bind("<Leave>",self.on_leave)

#create the Listbox with the possible graphs

self.__listb = Listbox(self, height = 5, bg = "white") # the listbox with the keys to choose
self.__listb.bind("<Enter>",lambda ev,self = self ,\
ht = """ Double - Click the Value you want to see in the graph
tt = """ pata list """:\

self.on_enter(ev,ht,tt))

self.__listb.bind("<Leave>",self.on_leave)

setup the columns between the widgets, so they can become bigger

self.grid_columnconfigure (3, weight = 1)
self.grid_columnconfigure (6, weight = 1)
self.grid_columnconfigure (8, weight = 1)

dummy settings
self.__graph = None
self.__key_list = []
#self . __full_list = {}

scrollbar for the listbox

select_scrollbar = Scrollbar(self)
self.__listb.configure(

yscrollcommand = select_scrollbar.set
)

stop the normal click on the Listbox
self.__listb.bind("<Button-1>", self.__dummy)
double click and a new graph will be seen

bing the scollbar to the listbox

select_scrollbar.configure (

command = self.__listb.yview,

#self . table_length = 20
#self . longest_table = None

start settings:

sets the active graph

self.__active = None
self.__length = 0
self.__color_values = {}
self.__used_color = 0

SET THE GRID LOCATIONS OF THE WINDOW FOR EVERY WIDGET
self.__b_print.grid(

column = 7,
row =1,
sticky = "swe"

self.__listb.grid(

column =1,
row =1,
columnspan = 1,
sticky = "we",
rowspan = "2’ ,

LXXVIII

125

130

135

140

145

150

155

160

165

170

175

180

185

190

Python Scripts

B.8 myplot.py

)

zoom_label . grid (
in_ = self ,
column = 4,
row =2,
columnspan = "17,
ipadx = '0",
ipady = "0",
padx = '0’,
rowspan = '1’,
sticky = "ws’,

)

value_label . grid(
in_ = self,
column = 4,
row =1,
columnspan = "1’ ,

ipadx = '0',
ipady = '0',

padx = '0’,
rowspan = ‘1’ ,
sticky = "ws’,

)
select_scrollbar. grid(
in_ = self,
column = 2,
row =1,
columnspan = "1’

ipadx = '0',

ipady = 0",
padx = '0’,

rowspan = '2',
sticky = 'nws’,

)
self.__b_legend. grid(
column = 7,
row =2,
sticky = "swe"

)
self.__scale_begin. grid(
in_ = self,
column = 5,
row =1,
columnspan = "1/,
ipadx = '0',
ipady = 0",
padx = '0’,
rowspan = "1’ ,
sticky = 'nws’,

)
self.__scale_zoom. grid(
in_ = self ,
column = §5,
row =2,

columnspan = "1’ ,
ipadx = "0’
ipady = '0',
padx = '0’,
rowspan = "1,
sticky = 'nws’,
)
self.__statusbar.grid(
column = 0,
row =3,
columnspan = 8§,
sticky = "news"
)

LXXIX

195

205

210

215

220

225

230

235

240

245

250

255

260

Python Scripts B.8 myplot.py

######### END OF GRID LOCATION SETTING ##############HH#HIH#HH

set the "Ready" text to the statusbar

self.__statusbar.set()

set the tool tips for the slider
self.__scale_begin.bind ("<Enter>",lambda ev,self = self ,\
ht = """ This slider sets the time value in which the zoom slider will zoom""",
tt = """ Value to zoom """:\

self.on_enter(ev,ht,tt))

self.__scale_begin.bind("<Leave>",self.on_leave)

self.__scale_zoom.bind ("<Enter>",lambda ev,self = self ,\
ht = """ This slider sets number of values, which shall be shown in the graph""",
tt = """ zoom slider""":\

self.on_enter(ev,ht,tt))
self.__scale_zoom.bind("<Leave>",self.on_leave)
start value for the legend (no legend at the beginning)
self.__legend_changer = 0
self.__itersrbserv_comb = {}

self.__view = "single"

de

-

on_enter(self ,event, helptext ,tooltext):

""" starts the tooltip and sets the statusbar with the current widget information """

if helptext:
self.__statusbar.set(text = helptext)
if self.__balloonhelp != None and self.__showed != None:

self.__balloonhelp.destroy ()

self.__showed = None
if tooltext:
y = event.widget.winfo_rooty () —25
self.__balloonhelp = tooltip.ToolTip(tooltext ,event.widget.winfo_rootx (),y)

self.after_id = self.after(300,self.on_after)

def on_after(self):

""" shows the tooltip after a particular time"""

if self.__balloonhelp != None:
self.__showed =1

self.__balloonhelp .show ()

def on_leave(self ,event=None):

""" stops the tooltip and resets the statusbar """

if self.__showed != None and self.__balloonhelp != None:
self.__balloonhelp.destroy ()
self.__showed = None

else:
self.__balloonhelp = None

self.__statusbar.set()

de

-

callback (self ,event):

""" algorithm which calculates the zooming of the graph and sets the slider """

if self.__itersrbserv_comb != {} and (not ’disabled’ in self.__scale_begin.config(’'state’)):
#get the values from the slider
middle_value = self.__scale_begin.get()

number_of_values = self.__scale_zoom.get()

maximum zoom out value

max_num_of_values = int(float(self.__scale_zoom[’from’]))

max value of the time_scale

max_time = self.__scale_begin['to’]

calculate the beginning and the end of the zooming

LXXX

265

270

275

280

285

290

295

300

305

310

315

320

325

330

Python Scripts

B.8 myplot.py

percent = float(middle_value)/float(max_time)
starting_value = int (percent % float(max_num_of_values))
side_values_left=side_values_right = number_of_values/2

if number_of_values%2 == 1:

side_values_right +=1

if int(starting_value + side_values_right) > max_num_of_values:

end = max_num_of_values
side_values_left += starting_value + side_values_right — max_num_of_values
begin = starting_value — side_values_left
elif (starting_value — side_values_left) < 0:
begin = 0
end = starting_value + side_values_right
end += abs(starting_value — side_values_left)
else:
begin = starting_value — side_values_left
end = starting_value + side_values_right
try:
self.config(active = self.__active, begin = begin, end =end)
except:
print "refresh of window and doubleclick on window crushed"
def _cur_selec(self, event = None):

def

def

def

returns the current value of table choice,

is used to create a new graph"""

i = self.__quantity_get_index (event,self.__listb)
if 1> —1:
self.__listb.select_clear(0, "end’)
self.__listb.see(i)
self.__listb.selection_set(i)
#if self.__view == "single":
self.config(active = self.__listb.get(i))
#else :
self.config(active = M. +self.__listb.get(i))
__dummy(self ,event = None):

just to do nothing """

return 'break’

__quantity_get_index (self , event,listb):

calculates the current position in the table listbox and returns it to _cur_selec

x_org = listb.winfo_rootx ()
y_org = listb.winfo_rooty ()
X_new = event.x_root — x_org

y_new = event.y_root — y_org

index = listb.index ('@’ + str(x_new) + ',’ + str(y_new))

box

= listb .bbox(index)

if not box or y_new > box[1] + box[3]:

return —1

else:

return index

close_me(self):

it

if

close the graph class and destroy it """

self.__balloonhelp != None and self.__showed !=None:
self.__balloonhelp.destroy ()
self.__parent != None:

print "I have a parent"

LXXXI

335

340

345

350

355

360

365

370

375

380

385

390

395

400

Python Scripts B.8 myplot.py

self.__parent._dead_graph = 0
if ’disabled’ imn self.__parent._parent._button_start.config(’state’):
self.__parent._parent._button_stop_command ()
else:
print "stop the graph myself"
self.destroy ()

#def set_list(self ,list = []):

self.list = list

def print_it(self):

"ww function to print the graph in a postscript file """

self . protocol (" WM_DELETE_WINDOW’ , self.__dummy)

result = tkFileDialog.asksaveasfilename (filetypes = [("postscript","*.ps")], title = "Save graph as", parent =

self)
self.protocol (' WM_DELETE_WINDOW’ , self.close_me)
if result != "":
self.__graph.canvas.postscript(file=result, colormode = "color", rotate = "true")

print " print it to %s" % result

def legend_toggle(self):
""" toggle the legend on or off """

if self.__legend_changer == 0:
self.__legend_changer = 1
else:

self.__legend_changer = 0

if self.__zoom_start != None:

self.config(active = self.__active ,begin = self.__zoom_start, end = self.__zoom_end)
else:

self.config(active = self.__active)

def colors(self):

""" sets a particular color to a graph (6 standard colors than random colors) """

color_values = ["black", "red", "green", "blue", "cyan", "yellow", "magenta"]
color = ""
if self.__used_color+l > len(color_values):

while len(color) < 6:
color_part = hex(random.randint(0,255))
if len(color_part)<4:
color_part='0’+color_part[2:]
color += color_part[2:]
else:
self.__used_color +=1

return color_values[self.__used_color —1]

self.__used_color +=1

return '#’+color

def mousemov(self ,event):

""" function for a left double click in the graph (automatically zooming 2x on this x-position)"""

x_value = self.__graph.canvas.canvasx(event.x)
width = float(self.__graph.canvas.cget(’width’))
x_value = x_value —0.1xwidth

width = width — 0.16* width

if (width > x_value) and (x_value >= 0.0):
if self.__end ==None:
self.__scale_begin.set(int ((x_value/width)*float(self.__scale_begin.cget('to’))))
else:
self.__scale_begin.set(int((x_value/width)xself.__end)+int((1.0—(x_value/width))sxself.
self.__scale_zoom.set(int ((0.5)*float(self.__scale_zoom.get())))

self.callback (event)

LXXXII

__begin))

405

410

415

420

425

430

435

440

445

455

460

465

Python Scripts B.8 myplot.py

def mousemov_back(self ,event):

""" function for a right double click in the graph (automatically zooming 1/2x on this x-position)"""
self.__scale_zoom.set(int ((2.0)*float(self.__scale_zoom.get())))
self.callback (event)

def __create_view_multiple(self ,list):

""" Create the view for more than one test (reused test)"""

set the view to multiple view

self.__view = "multiple"
self.__itersrbserv_comb = {}
count = 0

self.start_time = {}
self.multilegend = {}

get some information for the legend, so the graphs can be relocated
furthermore store the data in a dictionary for the graphs

for list_elem in list:

self.__db_object.lock_it ()
self.__db_object.db_cursor.execute ("""SELECT I.time, H.hostname, S.srb_port,I_S.is_id FROM
iteration_srbserver AS I_S, srbserver AS S, iteration AS I, host
AS H, test AS T

where I_S.is_id = %s AND I_S.srbserver_id = S.srbserver_id
AND S.host_id = H.host_id AND I.iteration_id = I_S.iteration_id
AND I.test_id = T.test_id """ % list_elem["M.is_id"])#, T.name,

test_time = self.__db_object.db_cursor.fetchone ()

self.__db_object.rlock ()

is_id = str(test_time[3])

if not self.start_time.has_key(is_id):

self.start_time[is_id] = list_elem["M.time"]

self . multilegend[is_id] = (test_time[0],test_time[1],test_time[2])
if count ==

count =1

keys = list_elem .keys ()

s = re.compile(" (.*) (time|_1id$) ")

for x in keys:

if not s.match(x):
self.__itersrbserv_comb[x[2:]] = {}

for x in keys:

if not s.match(x):

if not self.__itersrbserv_comb[x[2:]].has_key(is_id):
self.__itersrbserv_comb[x[2:]][is_id] = []
self.__itersrbserv_comb[x[2:]][is_id].append ((time.mktime(time.strptime (list_elem[’M.time’],"%Y-%m

-%d $H:%M:%S7"))\
—time . mktime (time . strptime (self.start_time[is_id],’%Y-%m-%d %H:%M
1557)\
,float(list_elem([x])))

self.__db_object.lock_it ()
self.__db_object.db_cursor.execute ("SELECT A.* FROM application AS A, measurement AS M WHERE A.

measurement_id = %s \
and M.measurement_id = A.measurement_id" %list_elem ["M.measurement_id"])
applications = self.__db_object.db_cursor.fetchall ()

self.__db_object.rlock ()

store the values for the particular time in is_id
for x in applications:
for key, item in x.items():

if key != "A.name" and key != "A.command" and key != "A.application_id" and key != "A.
measurement_id":
if not self.__itersrbserv_comb.has_key(x[’A.name’]+"_"+key[2:]):
self.__itersrbserv_comb [x['A.name’]+"_"+key[2:]] = {}
if not self.__itersrbserv_comb[x[’A.name’]+"_"+key[2:]].has_key (is_id):
self. _itersrbserv_comb[x["A.name’ J+"_"+key [2:]][is_id] = []

LXXXIII

470

475

480

485

490

495

500

505

510

515

520

525

530

Python Scripts B.8 myplot.py

self.__itersrbserv_comb [x['A.name’]J+"_"+key[2:]][is_id].append ((time.mktime(time.strptime (
list_elem['M.time’],’%Y-%m-%d %H:%3M:%5"))\
—time . mktime (time . strptime (self.start_time[is_id],’%Y-%m-%d %$H:%M
:557))\
,float (item)))

count = 0

setup the listbox with possible graphs
if self.__listb.size() ==
for x in self.__itersrbserv_comb .keys():
self.__key_list.append(x)
self.__key_list.sort()

for x in self.__key_list:
self.__listb.insert("end",x)
active = x
store the current graph in self.__active
if self.__active == None:
self.lists = self.__itersrbserv_comb[active]
self.__active = active

#self . title (active)

#else:
#self.lists = self.__itersrbserv_comb[self.__active]
#self . title (self.__active)

def __create_view_single(self,list):

"""create the view for only one test"""

self.__view = "single"
self.__db_object.lock_it ()
self.__db_object.db_cursor.execute ("SELECT A.*,M.time FROM application AS A, measurement AS M WHERE A.
measurement_id = $s and \
M.measurement_id = A.measurement_id" %list [0]["M.measurement_id"])
applications = self.__db_object.db_cursor.fetchall ()
self.__db_object.rlock ()
self.__itersrbserv_comb = {}
create the dictionary with possible graphs
for x in applications [0].keys():
if not re.match(" (.*) (command|name|time|id)$" ,x):
self.__itersrbserv_comb[x[2:]] = {}

for x in applications:
self.__db_object.lock_it ()
self.__db_object.db_cursor.execute ("SELECT A.*,M.time FROM application AS A, measurement AS M WHERE M.
is_id = %s and \
M.measurement_id = A.measurement_id and A.name = '%s’ " % (list[0]["M.
is_id"],x["A.name"]))
apps = self.__db_object.db_cursor. fetchall ()
self.__db_object.rlock ()
create the lists for the applications

for y in self.__itersrbserv_comb .keys():

self.__itersrbserv_comb[y][x["A.name"]] = []
store the beginning of the measurement in start_time
self.start_time = apps[O]["M.time"]
for app_item in apps:
for y in self.__itersrbserv_comb.keys():
#store the value for the particular time in the tm_id dictionary
self.__itersrbserv_comb[y][app_item["A.name"]].append ((time.mktime(time.strptime (app_item["M.time"
1.7%Y-%m-%d $H:3M:%S'))— \
time . mktime (time . strptime (self .start_time ,’$Y-%m-%d %$H:%
M:%S7)), \
float(app_item["A."+y])))

count = 0
meas_keys = []

the lists for the graphs will be generated and stored in the dictionary tm_id

for list_elem in list:

LXXXIV

535

540

545

550

555

560

565

570

575

580

585

590

595

600

Python Scripts

B.8 myplot.py

def

if count ==
count =1

for key,value in list_elem.items():

if key.find("server") != —1:
client_key = re.sub("server","client", key)
if list_elem.has_key(client_key):
name = re.sub("M.server_","" key)

meas_keys.append (name)

self.__itersrbserv_comb[name] = {}
self.__itersrbserv_comb [name]["server"] =[]
self.__itersrbserv_comb [name]["client"] =[]

append the values for server cpu load and client cpu load

for measkey inm meas_keys:

self.__itersrbserv_comb [measkey]["client™].append ((time.mktime(time.strptime (list_elem["M.time"],’%Y

-%m-%d $H:%$M:%S7))— \

time . mktime (time . strptime (self.start_time ,’$Y-%m-%d %H:%

M:%87)), \
float(list_elem [’M.client_’+measkey])))
self.__itersrbserv_comb [measkey]["server"].append ((time.mktime(time.strptime (list_elem["M.time"],’%Y-%

m-%d $H:%M:%S’))— \

time . mktime (time . strptime (self.start_time ,’$Y-%m-%d %$H:%

M:%S7)), \
float(list_elem [’'M.server_’+measkey])))

active = measkey
if self.__listb.size() ==
for x in self.__itersrbserv_comb .keys():

self.__key_list.append(x)
self.__key_list.sort()

for x in self.__key_list:
self.__listb.insert("end",x)
if self.__active == None:
self.lists = self.__itersrbserv_comb[active]

self.__active = active
#self.title (active)

#else:

self.lists = self.__itersrbserv_comb[self.__active]

#self . title (self.__active)

__show_graphs(self ,begin = None, end = None):

""" show the graph for a single test or multiple tests """

if self.__graph != None:
self.__graph.destroy ()

create the legend

legend = {}

time_val = []

if self.__view == "multiple":
print "multilegend:",self.multilegend
legend['machine’] = []

legend["port’] = []
legend["time’] = []

else:
legend[self.__active] = []
liste = []
self.__color_values = {}
self.__used_color = 0
for x in self.__itersrbserv_comb[self.__active].keys():
if not self.__color_values.has_key(x):
self.__color_values[x] = self.colors()
if self.__view == "multiple":

legend["time’].append ((self.multilegend [x][0],self.__color_values[x]))
legend['machine’].append ((self.multilegend[x][1],self.__color_values[x]))
legend["port’].append ((self.multilegend [x][2],self.__color_values[x]))

LXXXV

605

610

615

620

625

630

635

640

645

650

655

660

665

670

Python Scripts B.8 myplot.py

else:
legend[self.__active].append ((x,self.
legend finished

_color_values[x]))

create the list for the x—axis
self.__id_list = []

#any_key = self.__itersrbserv_comb[self.__active].keys()
self.__length =0

for x in self.__itersrbserv_comb[self.__active].keys():
if len(self.__itersrbserv_comb[self.__active][x]) > self.__length:
self.__length = len(self.__itersrbserv_comb[self.__active][x])
id = x
for x in self.__itersrbserv_comb[self.__active][id]:

self.__id_list.append ((x[0],str(x[0])))

if self.__legend_changer == 0:

legend = None

#print legend

#create the graph_objects
if begin != None:

self.__graph = GraphBase(self.__fl, 500, 500, liste = (self.__id_list[begin:end]) ,\
relie f=SUNKEN, border=2, y_label = self.__active ,\
legend = legend)
self.__end = self.__id_list[end —1][0]
self.__begin = self.__id_list[begin][0]
else:
_f1, 500, 500, liste = self.__id_list ,\

self.__graph = GraphBase(self._
relief=SUNKEN, border=2, y_label = self.__active ,\

legend = legend)

#set the slider to the possible values

if len(self.__itersrbserv_comb[self.__active][id]) > 2:
self.__scale_zoom.configure (
from_ = len(self.__itersrbserv_comb[self.__active][id]),
to = 2,
state = ’active’
)
self.__scale_begin.configure (
to = self.__itersrbserv_comb[self.__active][id][—1][0],
state = ’active’
)
if begin == None:
self.__scale_zoom.set(len(self.__itersrbserv_comb[self.__active][id]))

draw the lines
for x in self.__itersrbserv_comb[self.__active].keys():

if begin == None:

if len(self.__itersrbserv_comb[self.__active][x]) == 1:
short_line = [(=0.1,-1.0)1]
short_line .append(self.__itersrbserv_comb[self.__active][x][0])
lines = GraphLine(short_line , color = self.__color_values[x],\

width = 2, smooth = 0)

else:
lines = GraphLine(self.__itersrbserv_comb[self.__active][x],\
color = self.__color_values[x], width = 2,smooth = 0)
else:
if begin+2 > len(self.__itersrbserv_comb[self.__active][x]):
if begin ==
if len(self.__itersrbserv_comb[self.__active][x]) == 1:
short_line = [(=0.1,-1.0)]
short_line .append(self.__itersrbserv_comb([self.__active][x][0])

lines = GraphLine(short_line, color = self.__color_values[x],\
width = 2, smooth = 0)

LXXXVI

675

680

685

690

695

700

705

710

715

720

725

730

735

740

Python Scripts

B.8 myplot.py

else:
lines = GraphLine(self.__itersrbserv_comb[self.__active][x],\
color = self.__color_values[x], width = 2,smooth = 0)
else:
continue
else:
lines = GraphLine(self.__itersrbserv_comb[self.__active][x][begin:end],\
color = self.__color_values[x], width = 2, smooth = 0)
liste .append(lines)
return liste
def config(self,list = [],parent = None, active = None, table_num = None, begin = None,
""" configuration of the graph --> creates if necessary and shows the graph """

test if it is a dynamic graph or a static graph
if parent != None:
self.__parent = parent

set the close_me function to the exit (x)— Button
self.protocol ("WM_DELETE_WINDOW", self.close_me)
self.__scale_begin.bind("<ButtonRelease-1>",self.__dummy())
self.__scale_zoom.bind ("<ButtonRelease-1>",self.__dummy())
self.__listb.bind("<Double-Button-1>", self.__dummy())

change the table for the graph if someone clicked on the listbox
if active != None:

self.__active = active

#self . title (self.__active)
destroy the frame with the graph
self.__fl.destroy ()
#create a new frame
self.__fl = Frame(self)
self.__fl.grid(

column = 0,

row =0,

columnspan = 9,

sticky = "news",

)

self.grid_rowconfigure (0, weight = 1, pad = 0)
self.grid_columnconfigure (0, weight = 1, pad = 0)

safe the zoom begin and end
self.__zoom_start = begin

self.__zoom_end = end

create a new measurement graph
if active == None:
self.__key_list = []
self. __id_list = {}

self.__itersrbserv_comb = {}

##sort the measurements after time_id
for list_elem in list:
if self.__itersrbserv_comb.has_key(list_elem['M.is_id’]) == False:
print list_elem['M.is_id’]
self.__itersrbserv_comb[list_elem['M.is_id’]] = []

if there is more than one test create a view for multiple tests
if len(self.__itersrbserv_comb) > 1:

active = self.__create_view_multiple (list)
else:

else create a view for a single test

LXXXVII

end

None) :

745

755

760

765

770

775

780

785

790

795

800

805

810

Python Scripts B.8 myplot.py

self.__create_view_single (list)
liste = self.__show_graphs()
else:
#show an already stored graph
liste = self.__show_graphs(begin,end)

graphObject = GraphObjects(liste)

self.title(self.__active)
self.__graph.draw(graphObject, "automatic’, ’'automatic’)
self.__graph.canvas.bind("<Double-Button-1>",self.mousemov)
self.__graph.canvas.bind("<Double-Button-3>",self.mousemov_back)
self.__graph.canvas.bind ("<Enter>",lambda ev,self = self ,\
ht = """DoubleClick Left Mouse Button to zoom in and Right Button to zoom out""",

tt = None:\

self.on_enter(ev,ht, tt))
self.__graph.canvas.bind("<Leave>",self.on_leave)
self.__graph.pack(fill=BOTH, expand=YES)
self.__scale_begin.bind ("<ButtonRelease-1>",self.callback)
self.__scale_zoom.bind ("<ButtonRelease-1>",self.callback)
self.__listb.bind("<Double-Button-1>", self._cur_selec)
self.__b_legend.configure (command = self.legend_toggle)
self.__b_print.configure (command = self.print_it)

class StatusBar (Frame):
""" class which creates a statusbar with one label field """

def __init__ (self ,parent):

""" initialize the graph """

Frame. __init__ (self ,parent)

self.label = Label(self, bd = 1, relief = "sunken", anchor = W)

self.label.pack(side = "left", fill = "x", expand = "yes", padx = 2, pady = 1)
def set(self, text = "Ready"):

""" change the text of the label in the statusbar """

self.label["text’] = text
self.label .update_idletasks ()

class dyn_table:

""" class which collects the measurements and draws a dynamic graph """
def __init__(self ,parent,plot_object):

""" constructor to setup a new graph """

self.__plot_object = plot_object

self._parent = parent

#self . list = []

if self.__plot_object == None:
self._dead_graph =1

else:
self._dead_graph = 0

def config2(self):
self._show_table ()

def stop_table(self):

if self._dead_graph == 0:
self._dead_graph =1

#if self.plot_object != None:

try:
self.__plot_object.destroy ()

except:

"Graph already dead"
#self .plot_object.destroy ()

LXXXVIII

815

820

825

830

835

840

10

15

20

25

30

Python Scripts B.9 tooltip.py

def _show_table(self):

#count = 1

while ’disabled’ in self._parent._button_start.config(’state’):

if (self._parent._set_var ==1):
break
measurements = self._parent._parent._measure_obj.db_object.get_measurements ()
if measurements != []:
if (self._parent._set_var ==1):
break
self._parent._all_measurements = self._parent._all_measurements + measurements
if self._dead_graph == 1:
break
else:
self.__plot_object.config(self._parent._all_measurements[0:],self) ## be careful

is a pointer

time.sleep (1)

try:
self.__plot_object.destroy ()
except:
"Graph already dead"
print "dynamic graph ends"
#print self._dead_graph

without

[0:]

it

B.9 tooltip.py

#!/usr/bin/env python

""" create tooltips """

__author__ = "Carsten Koebernick <c.koebernick@rdg.ac.uk>"
__date__ = "17.10.2005"

__version__ = "0.1"

__revision__ = "1.0"

import Tkinter

class ToolTip(Tkinter.Toplevel):

""" Class creates tooltips for widgets """

def __init__ (self ,text,x,y):
""" constructor sets text, x, y -value """
self.__text =text
self.__x_value = x
self.__y_value =y
def show(self):

""" show the tooltip """

Tkinter . Toplevel. __init__(self)

self.overrideredirect (1)

self.geometry ("+%d+%d" % (self.__x_value —15,self.__y_value+5))

self.label = Tkinter.Label(self, text = self.__text, fg = "#000000", bg = "#ffffaa",
bd = 2, relief = "raised")

self.label.pack(fill = "both", expand = "yes")

LXXXIX

20

C Bash Scripts

C.1 average.sh

s
#!/bin/bash

#x measure the average cpu_load
#variable=‘cat ~/.srb/.MdasEnv*

#| sed —e 's/=x://")
if ! [S$Sppid]
then

echo "0"

echo "no srbMaster found"

exit 0
fi
list=(‘ps —o pcpu —ppid $ppid)
sum=0.0

list_length=${#list [@]}
for ((i=$list_length —1;i>0;i—-))
do
sum=‘echo S{list[${i}]}+Ssum | bc*
done
echo $sum

exit 0

if [S$1]
then
exit —1;
else
var=$1
fi
ppid=$(lsof —c srbMaster | grep —i $var | awk ’{print $2}’

)

C.2 average_mem.sh

~
#!/bin/bash

measure the average cpu_load
#variable=‘cat ~/.srb/.MdasEnv "

#1 sed —e ’s/x://")
if ! [Sppid]

it L[S
then
exit —1
else
var=$1
fi
get the ppid of the srbserver which is the pid of the srbMaster
ppid=$(lsof —c srbMaster | grep —i $var | awk *{print $2}

")

XC

process

20

25

20

25

Bash Scripts

C.3 num_fd.sh

then
echo "0"
echo "no srbMaster found"
exit 0
fi
list=(‘ps —o pmem —ppid $ppid “)
sum=0.0
list_length=${#list [@]}
for ((i=$list_length —1;i>0;i—-))
do
sum=‘echo ${list[${i}]}+Ssum | bc*
done
echo $sum
exit 0

C.3 num_fd.sh

#!/bin/bash

#axxxxxx measure the average cpu_load sssssssrrmssses#

if [S$1]
then

exit —1
else

var=$1
f

ppid=$(lsof —c srbMaster | grep —i $var | awk {print $2}°)
#sed —e s/x://")
if ! [Sppid]
then
echo "0"

echo "no srbMaster found"

exit 0
fi
#list srb servers with srbMaster as ppid and kill the table head and the zombies
list=(‘ps —o pid ,command, ppid —ppid $ppid | grep —v —i —e "\ (PID\|defunct\)"*)
sum=0

list_length=${#list[@]}
for ((i=0;i<$list_length;i=i+3))

do
add all fd together
let sum=°‘ls —1 /proc/${list[${i}]1}/fd | wc —1‘—1+$sum
done
echo $sum
exit 0

XCI

	List of Figures
	List of Tables
	1 Introduction
	1.1 Project Description
	1.2 Motivation
	1.3 Restrictions
	1.4 Document Structure

	2 Monitoring Systems
	2.1 Ganglia
	2.2 Nagios
	2.3 Comparison

	3 Technologies
	3.1 Storage Resource Broker
	3.1.1 Scommands

	3.2 User Management of Unix based systems
	3.3 Python
	3.4 Tkinter
	3.5 Bash
	3.6 Database system
	3.6.1 Database models
	3.6.2 Entity Relationship Model (ERM)
	3.6.3 Structured Query Language - SQL
	3.6.4 SQLite
	3.6.5 Pysqlite

	3.7 XML
	3.7.1 Structure and Rules
	3.7.2 Parser
	3.7.3 Meta languages

	4 Analysis
	4.1 Ganglia
	4.2 SRB System
	4.3 Basic Approach
	4.4 Solutions
	4.4.1 Solution with Network Functionality of Ganglia
	4.4.2 Solution with Data Transmission over the Socket
	4.4.3 Comparison and Decision

	5 Design
	5.1 System Architecture
	5.1.1 Monitoring Server
	5.1.2 Monitoring Client
	5.1.3 Measurement Sequence

	5.2 Database
	5.2.1 Entity Relationship Model - ERM
	5.2.2 Relational Data model - (RDM)

	5.3 GUI Design
	5.3.1 Main Frame
	5.3.2 Configuration Frame
	5.3.3 Diagrams

	5.4 Modularisation
	5.5 Object Models
	5.5.1 Monitoring Server
	5.5.2 Monitoring Client

	6 Implementation
	6.1 Socket Connection
	6.2 Application Measurements
	6.2.1 Standard Application
	6.2.2 SRB Application

	6.3 XML Parser
	6.4 Client Measurement Thread
	6.5 Multiple Measurement Diagram

	7 Tests
	7.1 Test with one Server
	7.1.1 Configuration
	7.1.2 Results

	7.2 Test with three Servers
	7.2.1 Configuration
	7.2.2 Results

	8 Conclusion
	9 Future prospect
	Abbreviations
	Bibliography
	A Handbook
	A.1 Files
	A.1.1 Monitoring server
	A.1.2 Monitoring client

	A.2 Installation and Configuration
	A.2.1 Ganglia
	A.2.2 Python
	A.2.3 SQLite and Pysqlite
	A.2.4 Measurement system

	A.3 Monitoring Server
	A.4 Console Client
	A.5 GUI Client

	B Python Scripts
	B.1 python_server.py
	B.2 socket_connection.py
	B.3 ganglia.py
	B.4 python_client.py
	B.5 console.py
	B.6 gui2.py
	B.7 gui2_ui.py
	B.8 myplot.py
	B.9 tooltip.py

	C Bash Scripts
	C.1 average.sh
	C.2 average_mem.sh
	C.3 num_fd.sh

