The open archive for STFC research publications

Full Record Details

Persistent URL http://purl.org/net/epubs/work/24181930
Record Status Checked
Record Id 24181930
Title Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon
Abstract The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-1020 Wcm−2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime.
Organisation CLF , CI , STFC
Funding Information
Related Research Object(s):
Licence Information:
Language English (EN)
Type Details URI(s) Local file(s) Year
Journal Article Plasma Phys Contr F 58, no. 1 (2016): 014027. Is in proceedings of: 42nd European Physical Society Conference on Plasma Physics, Lisbon, Portugal, 22-26 Jun 2015. doi:10.1088/0741-3335/58/1/014027 2016