ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Suggest an Enhancement
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/29642
Record Status
Checked
Record Id
29642
Title
The Optimisation of Analyser Geometry for a Near Back-Scattering Spectrometer - IRIS on the ISIS Pulsed Source
Contributors
M T F Telling
,
S I Campbell
Abstract
This report describes the upgrade of the pyrolytic graphite (PG) analyser bank on the IRIS high-resolution inelastic spectrometer at ISIS from 1350 graphite pieces (6 rows by 225 columns) to 4212 crystal pieces (18 rows by 234 columns). The new analyser array will achieve a three-fold increase in area and in addition the graphite crystals will be cooled close to liquid helium temperature to reduce thermal diffuse scattering, thereby further improving the sensitivity of the spectrometer. For an instrument such as IRIS, with its analyser out of exact back-scattering geometry, optical aberration and variation in the time-of-flight of the analysed neutrons is introduced as one moves out from the horizontal scattering plane. To minimise such effects, the profile of the analyser array has been redesigned. The concept behind the design of the new analyser bank and the factors that effect the overall resolution of the instrument are discussed. Results of Monte Carlo simulations of the expected resolution and intensity of the complete instrument are presented and compared to the current instrument performance.
Organisation
CCLRC
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Report
RAL Technical Reports
RAL-TR-1999-044. 1999.
raltr-1999044.pdf
1999
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
SHERPA FACT
SHERPA RoMEO
SHERPA JULIET
Journal Checker Tool
Google Scholar