ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Suggest an Enhancement
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/38120341
Record Status
Checked
Record Id
38120341
Title
Inducing Microbunching in the CLARA FEL Test Facility
Contributors
AD Brynes (STFC Daresbury Lab.)
Abstract
We present simulation studies of the laser heater interaction in the CLARA FEL test facility using a non-uniform laser pulse. The microbunching instability, which manifests itself as correlated energy or density modulations in an electron bunch, can degrade the performance of an FEL. Most x-ray free electron lasers (FELs) utilise a so-called laser heater system to impose a small increase in the uncorrelated energy spread of the bunch at low energy to damp the instability – this technique involves imposing a laser pulse on the bunch while it is propagating through an undulator in a dispersive region. However, if the instability can be controlled, the electron bunch profile can be manipulated, yielding novel applications for the FEL, or for generation of THz radiation. Control of the microbunching instability can be achieved by modulating the intensity profile of the laser heater pulse to impose a non-uniform kick along the electron bunch. We have simulated this interaction for various laser intensity profiles and bunch compression factors.
Organisation
ASTeC
,
STFC
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Paper In Conference Proceedings
In 38th International Free Electron Laser Conferenc (FEL2017), Santa Fe, NM, USA, 20-25 Aug 2017, (2017): 467-470.
doi:10.18429/JACoW-FEL2017-WEP026
2017
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
SHERPA FACT
SHERPA RoMEO
SHERPA JULIET
Journal Checker Tool
Google Scholar