ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/40902308
Record Status
Checked
Record Id
40902308
Title
The Core Design of a Small Modular Pressurised Water Reactor for Commercial Marine Propulsion
Contributors
A Peakman (University of Liverpool)
,
H Owen (Cockcroft Inst., and Manchester Univ.)
,
T Abram (University of Manchester)
Abstract
If international agreements regarding the need to significantly reduce greenhouse gas emissions are to be met then there is a high probability that the shipping industry will have to dramatically reduce its greenhouse gas emissions. For emission reductions from ships greater than around 40\% then alternatives to fossil fuels - such as nuclear energy - will very likely be required. A Small Modular Pressurised Water Reactor design has been developed specifically to meet the requirements of a large container ship with a power requirement of 110~MWe. Container ships have a number of requirements - including a small crew size and reduced outages associated with refuelling - that result in a greater focus on design simplifications, including the elimination of the chemical reactivity control system during power operation and a long core life. We have developed a novel, soluble-boron free, low power density core that does not require refuelling for 15 years. The neutronic and fuel performance behaviour of this system has been studied with conventional UO2 fuel. The size of the pressure vessel has been limited to 3.5 metres in diameter. Furthermore, to ensure the survivability of the cladding material, the coolant outlet temperature has been reduced to 285degC from 320degC as in conventional GWe-class PWRs, with a resulting reduction in thermal efficiency to 25%. The UO2 core design was able to satisfactorily meet the majority of requirements placed upon the system assuming that fuel rod burnups can be limited to 100 GWd/tHM. The core developed here represents the first workable design of a commercial marine reactor using conventional fuel, which makes realistic the idea of using nuclear reactors for shipping.
Organisation
CI
Keywords
Funding Information
EPSRC
Related Research Object(s):
40902280
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Preprint
Prog Nucl Energ
2019.
https://arxiv.org/pdf/1901.10977
2019
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
SHERPA FACT
SHERPA RoMEO
SHERPA JULIET
Journal Checker Tool
Google Scholar