ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/62100901
Record Status
This record has not been checked
Record Id
62100901
Title
Predicting neutron experiments from first principles: A workflow powered by machine learning
Contributors
E Lindgren
,
AJ Jackson
,
E Fransson
,
E Berger
,
S Rudic
,
G Škoro
,
R Turanyi
,
S Mukhopadhyay
,
P Erhart
Abstract
Organisation
ISIS
,
ISIS-TOSCA
,
STFC
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Journal Article
J Mater Chem A
(2025).
doi:10.1039/D5TA03325J
2025
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
Jisc Open Policy Finder
Journal Checker Tool
Google Scholar