The open archive for STFC research publications

Full Record Details

Persistent URL http://purl.org/net/epubs/work/64275
Record Status Checked
Record Id 64275
Title Modular space vehicle architecture for human exploration of Mars using artificial gravity and mini-magnetosphere crew radiation shield
Abstract This paper presents a conceptual Mars Exploration Vehicle (MEV) architecture, which includes two unmanned Mars Lander Transfer Vehicles (MLTVs) and a Mars Crew Transfer Vehicle (MCTV) with a crew of four. The MLTVs and MCTV are assembled in low Earth orbit (LEO) from modules launched by four Space Launch System (SLS) and five Delta IV Heavy rockets. The MLTVs and MCTV individually escape from LEO, transit to Mars, brake into Mars orbit using propulsion and aerobraking, and rendezvous and dock in low Mars orbit (LMO). Each MLTV includes an Earth Departure stage (EDS), Mars Transfer Stage (MTS), Lander Service Module (LSM), and two landers: A Mars Personnel Lander (MPL) provides two-way crew transportation between LMO and the surface. Three unmanned Mars Cargo Landers (MCLs) provide one-way cargo transportation and the functionalities of habitats (MCL-H) (2) and rover (MCL-R). The landers rendezvous and assemble on the surface to form a base. The MCTV includes two EDS, two MTS, and the following: (1) The Multi-Purpose Crew Vehicle (MPCV) transports the crew from Earth to LEO, provides propulsion, and returns the crew to Earth after nominal mission completion or in aborts. (2) Three Deep Space Vehicles (DSVs) provide life support consumables, passive biological radiation shielding, crew habitation space, and propulsion. The DSV design was derived from the MCL-H. (3) An Artificial Gravity Module (AGM) allows the MCTV to rotate and generate artificial gravity for the crew and provides photo-voltaic power generation and deep space communications. A miniature magnetosphere (Mini-Mag), a potential key enabler for human interplanetary exploration, is electromagnetically generated on the AGM and provides active crew biological radiation shielding. The MEV architecture is based on many existing or near-term technologies. It incorporates significant modularity and could provide an economical approach to achieve progressively morambitious stepping stone missions along a flexible path for human solar system explorationstarting with test flights in Earth and lunar orbit and progressing through missions to near-Earth asteroids and the moons of Mars, and culminating in the Mars landing mission.
Organisation CLF , STFC , RALSP
Funding Information
Related Research Object(s):
Licence Information:
Language English (EN)
Type Details URI(s) Local file(s) Year
Paper In Conference Proceedings In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. AIAA 2012-0633, Nashville, Tennessee, 9-12 January 2012, (2012). 2012