ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/66491
Record Status
Checked
Record Id
66491
Title
Direct Measurement of Competing Quantum Effects on the Kinetic Energy of Heavy Water upon Melting
Contributors
G Romanelli
,
M Ceriotti
,
DE Manolopoulos
,
C Pantalei
,
R Senesi
,
C Andreani
Abstract
Even at room temperature, quantum mechanics plays a major role in determining the quantitative behaviour of light nuclei, changing significantly the values of physical properties such as the heat capacity. However, other observables appear to be only weakly affected by nuclear quantum effects (NQEs): for instance, the melting temperatures of light and heavy water differ by less than 4~K. Recent theoretical work has attributed this to a competition between intra and inter molecular NQEs, which can be separated by computing the anisotropy of the quantum kinetic energy tensor. The principal values of this tensor change in opposite directions when ice melts, leading to a very small net quantum mechanical effect on the melting point. This paper presents the first direct experimental observation of this phenomenon, achieved by measuring the deuterium momentum distributions n(p) in heavy water and ice using Deep Inelastic Neutron Scattering (DINS), and resolving their anisotropy. Results from the experiments, supplemented by a theoretical analysis, show that the anisotropy of the quantum kinetic energy tensor can also be captured for heavier atoms such as oxygen.
Organisation
ISIS
,
ISIS-VESUVIO
,
STFC
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Journal Article
J Phys Chem Lett
4, no. 19 (2013): 3251-3256.
doi:10.1021/jz401538r
2013
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
SHERPA FACT
SHERPA RoMEO
SHERPA JULIET
Journal Checker Tool
Google Scholar