ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/11202554
Record Status
Checked
Record Id
11202554
Title
Oxidation of GaN: an ab initio thermodynamic approach
Contributors
AJ Jackson (Bath Univ.) (Pr.Au.)
,
Dr. A Walsh (Bath Univ.)
Abstract
GaN is a wide-band-gap semiconductor used in high-efficiency light-emitting diodes and solar cells. The solid is produced industrially at high chemical purities by deposition from a vapor phase, and oxygen may be included at this stage. Oxidation represents a potential path for tuning its properties without introducing more exotic elements or extreme processing conditions. In this work, ab initio computational methods are used to examine the energy potentials and electronic properties of different extents of oxidation in GaN. Solid-state vibrational properties of Ga, GaN, Ga2O3, and a single substitutional oxygen defect have been studied using the harmonic approximation with supercells. A thermodynamic model is outlined which combines the results of ab initio calculations with data from experimental literature. This model allows free energies to be predicted for arbitrary reaction conditions within a wide process envelope. It is shown that complete oxidation is favorable for all industrially relevant conditions, while the formation of defects can be opposed by the use of high temperatures and a high N2:O2 ratio.
Organisation
STFC
,
HC
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Journal Article
Phys Rev B
88, no. 16 (2013): 165201.
doi:10.1103/PhysRevB.88.165201
2013
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
SHERPA FACT
SHERPA RoMEO
SHERPA JULIET
Journal Checker Tool
Google Scholar