ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/39896
Record Status
Checked
Record Id
39896
Title
Eddy Resolved Ecosystem Modelling in the Irish Sea
Contributors
JT Holt
,
R Proctor
,
M Ashworth
,
JI Allen
,
JC Blackford
Abstract
A computationally efficient three-dimensional modelling system (Proudman Oceanographic Laboratory Coastal-Ocean Modelling System, POLCOMS) has been developed for the simulation of shelf-sea, ocean and coupled shelf-ocean processes. The system is equally suited for use on single processor workstations and massively parallel supercomputers, and particular features of its numerics are an arbitrary (terrain following) vertical coordinate system, a feature preserving advection scheme and accurate calculation of horizontal pressure gradients, even in the presence of steep topography. One of the roles of this system is to act as a host to ecosystem models, so that they can interact with as accurate a physical environment as is currently feasible. In this study, a hierarchy of nested models links the shelf-wide circulation and ecosystem, via a high resolution physics model of the whole Irish Sea, to the test domain: a region of the western Irish Sea. In this domain, ecosystem models are tested at a resolution of ~1.5km (c.f. the typical summer Rossby radius of 4km). Investigations in the physics-only model show the significance of advective processes (particularly shear diffusion and baroclinic eddies) in determining the vertical and horizontal temperature structure in this region. Here we investigate how a hierarchy of complexity (and computational load) from a 1D point model to a fully 3D eddy resolved model affects the distribution of phytoplankton (and primary production) and nutrients predicted by the European Regional Seas Ecosystem Model (ERSEM), a complex multi-compartment ecosystem model. We shall also show how the parallel programming features of the POLCOMS code allows large-scale simulations to be carried out on hundreds, and now on over a thousand, processors, approaching Teraflop/s performance levels. This is shown using a series of benchmark runs on the 1280 processor IBM POWER4 system operated by the UK's HPCx Consortium
Organisation
CCLRC
,
CSE
,
CSE-ENV
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Paper In Conference Proceedings
In Realizing Teracomputing: Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computing in Meteorology. Eds. W. Zwieflhofer and N. Kreitz, World Scientific, 2003, pp 268-278, Realizing Teracomputing: Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computing in Meteorology (2003): 268-278.
2003
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
SHERPA FACT
SHERPA RoMEO
SHERPA JULIET
Journal Checker Tool
Google Scholar