ePubs
The open archive for STFC research publications
Home
About ePubs
Content Policies
News
Help
Privacy/Cookies
Contact ePubs
Full Record Details
Persistent URL
http://purl.org/net/epubs/work/64494
Record Status
Checked
Record Id
64494
Title
The structure of detergent-resistant membrane vesicles from rat brain cells
Contributors
X Chen
,
M Jayne Lawrence
,
DJ Barlow
,
RJ Morris
,
RK Heenan (STFC Rutherford Appleton Lab.)
,
PJ Quinn
Abstract
The size and the bilayer thickness of detergent-resistant membranes isolated from rat brain neuronal membranes using Triton X-100 or Brij 96 in buffers with or without the cations, K+/Mg2+ at a temperature of either 4 °C or 37 °C were determined by dynamic light scattering and small-angle neutron scattering. Regardless of the precise conditions used, isolated membrane preparations consisted of vesicles of ∼ 100 to 200 nm diameter as determined by dynamic light scattering methods, equating to an area of the lipid based membrane microdomain size of 200 to 400 nm diameter. By means of small angle neutron scattering it was established that the average thickness of the bilayers of the complete population of detergent-resistant membranes was similar to that of the parental membrane at between 4.6 and 5.0 nm. Detergent-resistant membranes prepared using buffers containing K+/Mg2+ uniquely formed unilamellar vesicles while membranes prepared in the absence of K+/Mg2+ formed a mixture of uni- and oligolamellar structures indicating that the arrangement of the membrane differs from that observed in the presence of cations. Furthermore, the detergent-resistant membranes prepared at 37 °C were slightly thicker than those prepared at 4 °C, consistent with the presence of a greater proportion of lipids with longer, more saturated fatty acid chains associated with the Lo (liquid-ordered) phase. It was concluded that the preparation of detergent-resistant membranes at 37 °C using buffer containing cations abundant in the cytoplasm might more accurately reflect the composition of lipid rafts present in the plasma membrane under physiological conditions.
Organisation
ISIS
,
ISIS-LOQ
,
STFC
Keywords
Funding Information
Related Research Object(s):
Licence Information:
Language
English (EN)
Type
Details
URI(s)
Local file(s)
Year
Journal Article
Biochim Biophys Acta Biomembr
1788, no. 2 (2009): 477-483.
doi:10.1016/j.bbamem.2008.11.023
2009
Showing record 1 of 1
Recent Additions
Browse Organisations
Browse Journals/Series
Login to add & manage publications and access information for OA publishing
Username:
Password:
Useful Links
Chadwick & RAL Libraries
Jisc Open Policy Finder
Journal Checker Tool
Google Scholar